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Abstract: We gonsider a problem which occurs in connecting the concepts
of Grobner bases of modules of n-variate polynomial vectors and of linear
recurrences satisfied by n-dimensional (nD) arrays. It also belongs to the class
of problems which must be considered in the similar context of extending the
algebraic theory on linear recurring 1D arrays, i.e. sequences, to nD arrays.
We propose an algorithm for finding efficiently a minimal set of correlated
linear recurrences capable of generating a’ given vector of finite nD arrays.
This algorithm is also an extension of the Berlekamp-Iiassey algorithm for
finding a Grobner basis of an ideal defined by an nD array. Although it has
a close connection with the nD Berlekamp-Massey algorithm for multiple »D
arrays, the former will find a minimal set of compound linear recurrences which
relate all the nD arrays of the given vector while the latter finds a minimal
set of linear recurrences which are common to all the given nD arrays.

1. Introduction
Methods for finding Grdbner bases of modules over multivariable polyno-
mial rings were investigated {3, 4, 5, 6]. From the standpoint of the theory

of nD) linear recurring arrays, a Grobner basis of a module over the n-variate
polynomial ring is a minimal set of compound linear recurrences by which one -

can generate any vector of linear recurring nD arrays. In other words, it is a
mechanism of generating a given ordered set of n-dimensional (nD) arrays, i.e.,
an nD linear discrete system or a combination of nD linear feedback shift reg-
isters. In one of our previous papers, we proposed the nD Berlekamp-Massey
algorithm for multiple nD) arrays {9]. The latter is for finding a minimal set
of linear recurrences which are common to all the given nD arrays. If one
1s required to generate all the given arrays at the same time or in a parallel
fashion, the present compound scheme is much simpler with respect to the

number of storage elements (registers) than the repetition of the same sh1ft e

_:regxster circuits in parallel.

In thzs paper We propose an a.lgonthm for ﬁndmg a Immmal set of pon~j'-




the case of n = 2 is treated, and we consider 2D arrays u = (up) over a
f',-'-ﬁeld E Which are cieﬁned on a subset Ty (called the support of u) of th
-5".'321) mtegral Iattzce Bg = 2%, e, the set of pairs of nonnegatlve mtegers:-,

nomial vectors defined by any vector of nD) arrays, which turns out to be a
Grébner basis of a module over the multivariate polynomial ring under a cer-
tain condition. This is an extension of the Berlekamp-Massey algorithm [1, 2]
to vectors of nD arrays, which also belongs to the series of our investigations
on extending the theory of linear recurrences to n dimensions {7-12].

The contents of the paper are as follows: In Section 2, a Grobner basis of
a module over the n-variate polynomial ring is recognized as a mechanism of
generating vectorssof linear recurring nD arrays. In addition, some prelimi-
nary notations and concepts of a vector of nD arrays over any field and of a
minimal set of compound nD recurrences for a given vector of nD arrays are
explained and our problem is formulated. In Sections 3 and 4, our algorithm
to solve the problem is presented and its validity is shown. In addition, sev-
eral byproducts of the algorithm are given. In Section 5, an overview of our
researches on the nD Berlekamp-Massey algorithm is given. Basically, the
complexity of the algorithm is of order O(s?) for the given vector of arrays
with the total size s, while that of the trite method based on matrix compu-
tation is of order O(s®). We mention only the case of n = 2 for simplicity,
though it is possible to treat the general nD case in a similar way (confer

[10]).

2. A system of compound nD linear recurrences . e
_ Sometimes we make use of terminologies different from our prevmus pa— |
. pers [7-12], which are necessary for some new concepts in this context Only'

-'_'p (pl,pg) p1, 00 € Zy. For the set A of 2D arrays, let a vector of 2D armys‘_i
Ca=(ul,s o ul) be an element of AV, where N is a specified mteger and
'every_ component of uu* € 4,1 <k < N, is a finite or infinite 2D array with -

~the same support T, € 4. Over T the partial order < is defined by

P=(p,p)Sq={q. ) m <a)Ar(pm<q)

a.hd an admissible total order <r is defined, for example, by

P_<TQ®(P1 +P2<91+‘12)V((p1+272"Q’l+q2)/\(p2<'72))



S .E::--'We deﬁne the set of 'ualzd polynomm.l vectors for uas

the one-to-one correspondence ¢: £y — Zg, i.e., $((0,0)) = 0, #((1,0)) =
1,4((0,1)) = 2,¢((2,0)) = 3,---. The next point of a point p € Xy is denoted
as p@ 1, where ¢(p@ 1) = #(p) + 1. In addition to 2D arrays and vectors of
them, we concern ourselves with bivariate polynomials f € K[x] := K (1, z2]
and polynomial vectors f = (f1,---, fN) € (K[x])". A polynomial f e K[x]
is denoted in the form:

Fd f == Z quq7

qtezs(f)

where ezs(f) C I is the set of exponents q of nonzero terms of f, which
is called the ezponent set of f, and, for q = (g1, ¢2) € ezs(f), fq € K and
x9 1= z{'z]*. The elements of exs(f) can be arranged according to the total
order < a.nd the leading eaponent of f is defined as lex(f) := maz <rigalq €
ezs(f)}, i.e., the maximum element q in exs(f) (with respect to the total
order <r). For a polynomial vector f = (f1,. .., f¥), the leading ezponent
lex(f), the head position hp(f), and the kead coefficient he(f) of £ are defined
as follows (with respect to the highest-order largest-suffiz component order;

confer [5, 6]):

lex(f) := maz <, {lex(f*)|1 <k < N}

hp(f) i= maz{k|1 <k < N, lez(f*) = lez(f));

he(f) :=  thecoefficient f: of theleading exponent term f:xq of f¥,
for k = hp(f), q = lex(f). |

Correspondmg to.a polynom:al vector f and a subset T C 20, we consxder

a correlated or compound linear recurrence for a vector of 2D arrays 2
(ul,- -+, u™N) with support I'y as follows: :

k=1 quxa(f")

where f¥ = Zq&m(fk) f(fxq is the k-th component polynomial, 1 < & < N, of |

f and s = lex(f). In most cases, we consider vectors of 2D arrays with support

- of the form: T'y = & := {p € Ty|p <r r} for a certain r € &y and we set T
~to equal g = EsNX" = {p € Tp|s < p <7 r}, where Es = {p € Egls < p}

=0, pE zs n r L

-VaZpol(u) _.,_.{fe (xx ])le[ ul,




Then, we can easily prove
Lemma 1: For a vector of perfect 2D arrays u (with support I, = o),
Valpol(u) is a submodule of (K[x]}" over K [x].

Although one of our major problems is how to determine a Grdbner basis of
such a submodule, we postpone it to the next section. Firstly we assume that
a Grobner basis F = {{(3),- - -, fa} of a submodule M ¢ (K[x])" is given,
where F is a union of N subsets F* := {f1,---,fr;, },1 < & < N, the k-th of
which is composedf of the polynomial vectors fy = ( f&), ceny f("}’))) such that
the head position hp(fy) is equal to k. Consequently, we have an N -tuple of
subsets Ag 1= g\ Ugege s C Sy, where 8% := {s(r,i) = lez(fii)| 1 <1 < i)
From a given Grébner basis, we can obtain uniquely the reduced Grébner basis
F such that ezs(f*)\ {lez(f)} is contained in A; for the k-th component
polynomial f* of any f € F, 1 < k& < N. Then, we have

Lemma 2: Given any set of values vf € K,q € A4, 1 < k < N, it is

— (ul, .. N)

possible to determine uniquely a vector of perfect arrays u U

satisfying the initial condition:

ué:vé,q@ﬂk,ISkSN;

by using the system of compound linear recurrences defined by the polynomial
vectors fy),1 <1< M, in a reduced Grobner basis F.

Example 1: We consider a vector of two 2D arrays over K = GF(2), which
can be generated by a reduced Grdbner basis F ¢ (K[x])? composed of four
polynomial vectors: '

f(}) = (:?:2 +1, v+ 1), f(g) = (y+ 1, 1), f(g) = (1, z), f(4) = (z, yz),

where z = 2,y = z,. From definition F is a union of F! = {f1y, £y}
and F? = {f(3), f(4)}, where 8 = lex(f“)) = (2,0), S(2y = lea:(f{g)) =
(0,1), hp(fzy) = hp(fiz)) = 1i 53y = lex(fg)) = (1,0), sy = lea(frq)) =
(072): hp(f(g)) = hp(f(é)) = 2, and &1 = {(0)0))(1’0)}1 Ag = {(O%O)v(()’ 1)}.
From the following initial values for u! and u?, respectively:

0 11
1

Fig. 1a

we can obtain a couple of the following arrays u! and u? by using the
compound linear recurrences defined by ¥ alternately for both arrays and




iteratively according to the total order <, over 0. (For example, u%o 1 = 1
is detfarmined by using 5y, i.e., u%o,l) + u%s,o) - u?o,o) =0.)

0 1 01 00 11 1 1 0 9
I 1.0 0 1 ¢ 1 0 1 0©
6 1 0 0 1 1 6 0

0 0 1 0 1 0

0 0 = 0 0 =

<1 1 0 0

0 1

Fig. 1b

In passing, we remark that, for S := S*, the subset A 1= A; = 5 \Uses T
introduced above is a union of some subsets of the form T, := {p € Lo|lp < c},
ie, A =TI¢ = UgecT'e, where C is the set of maximal elements of A (with
respect to the partial order <). The subsets S and C ¢ £y are dual in
the sense that (1) one is determined uniquely from the other and (2) there
exists no pair (s, c) of elements s € S and ¢ € C satisfying (s < ¢c) Vv (s > c).
Furthermore, for any ¢ = (¢;,¢;) € C, there exists at least one s = (51,82) €S
such that (s; —1,s2) < ¢ or (81,82 — 1) < ¢. Such an element s € S is said
to be correlated with ¢ and denoted as s - ¢. For convenience we assume that
C contains the artificial elements (co,~1) and (-1, 00), which allows us to
denote Yis = Ty \ I'c, where, for the unit vectors ! = (1,0), e2 = (0,1), s of
the form se® (resp. se?), s € Zy, is correlated with {00, —1) (resp. (=1, 00))
(confer [10]).

Any set of polynomial vectors F C (K[x])V is said to be reduced iff the

conditions mentioned just above Lemma 2 are satisfied. Lemma 2 does not o e

hold for a reduced set of polynomial vectors F which is not a Grébner basis,
At least, we can say that any polynomial vector f contained in the Grobner
basis corresponding to a given vector of perfect 2D arrays u must have a
leading exponent lex(f) which is minimal with respect to the partial order <
among the polynomial vectors in Valpol(u). This consideration leads us to
introduction of the following

Definition 1: For a vector of 2D arrays u, a reduced set of polynomial
vectors ¥ is a minimal polynomial vector set of u if and only if the following
conditions are satisfied:

(1) F C Valpol(u);

(2) ~(3g = (gl," ‘,gN))((g e Valpol(u)) A (le:z:(gk) EAL1I<ES ]\J))7 IR
| ‘where Ag,1 <k < N, are defined by the leading exponents (15 1 l S




M, of the polynomial vectors in F = {f|1 <1 < M} as above-
mentioned.

Now, let F(u) € 2KD" be the class of all minimal polynomial vector sets
of u and A(u) := (Ay,...,Ay) € (229)Y. From now on, we restrict F(u)
to contain only F which are composed of monic polynomial vectors (i.e., any
f € F has he(f) = 1.)

(Remark: A(u) does not depend on F € F(u), but only on u. )

For a vector of finite (or infinite) 2D arrays u with support I'y and a
point p € Iy, the restriction of u within TP is denoted as uP. It is easy
to see that, if p <7 q and uP = (u9)P, then A(uP) C A(u%), where the
inclusion implies every component-wise inclusion. If HE (uP) = 1, ie., a
minimal polynomial vector set of uP F is unique, F is likely to be a Grobner
basis corresponding to a perfect array v satisfying vq = ug, g € ZP {confer
[12]). Although we can obtain F € F(uP) by solving a system of linear
equations having the coefficients determined by uP, this brute force method is
quite inefficient. We can eliminate many wasteful computations by extending
the Berlekamp-Massey algorithm to our case. Any lemma similar to the first
key lemma (Lemma 4 of [7]), which makes the theory of the 2D Berlekamp-
Massey algorithm concise and clear, does not hold in our situation. But, a
lemma corresponding to the second key lemma, (Lemma. 5 of [7]) holds:

Lemma 3: For q <7 p, let

= (f1,-, ") € Valpol(uP), fluly = dp, # 0, lea(f) = s;
g=(g",+19") € Valpol(u"), gluly = dg # 0,lez(g) = &

maz(p,q) := (maz{p:,¢1}, maz{ps,q2}) € To. Then, the following polyno-
mial vector defined by

h = h(f,g) 1= X"~ — (dp/dq)x"~P+a—tg (2)

is valid also at the point p, i.e., h € Valpol(uP®!),

Remark 1: x"~* and x""P+a~t act as scalars for vectors £ and g, respec-
tively.
' Remark 2 lex(h) = r, hp(h) = hp(f) and hc(h) = h(f).

If the cond:tion on a polynomial vector f with lez(f) = s mentioned in ._ﬁ
| 'nmia holds’ at P: P is called the order of f and denoted ag




ord(f); Furthermore, ord(f) — lex(f) = p — s is denoted as span{f). Thus,
r = maz(ord(f) — span(f), ord(f) — span(g)).
Corollary 1: If span(f) = p — s < c(:=span(g) =q—1t), then r = s.

3. Finding a minimal polynomial vector set of a vector of 2D
arrays

In this section we present an algorithm which is an extention of the
Berlekamp-Masseyfalgoﬁthm to the case of a vector of 2D arrays. Our problem
is as follows:

Given: a vector of N finite 2D arrays (over a field X ) with support 'y, = EP

u=(ul o uf),

Find: a minimal polynomial vector set F; € F(uP/) (e 2(5BD™Y of the
vector of subarrays uP/ at each point p ; iteratively for j = 0,1,...,n, where
n = ¢(p).

First we show our algorithm, the proof of which will be given later. In this
algorithm we renew for j = 0,1,...,n the following

Data: F; C (K[x])" whichis a union of N subsets F;‘ ={f= (..., fY)
€ Fj| hp(f) = k} with S? 1= {lez(f)| f € F§} C 5o and Chc Do, b=
1,..., N, such that ESJ’.‘ =EO\I‘C§= (AF = I‘C;_c), k=1,...,N;

G; ¢ (K[x])N with C; = {span(g)|g € G;} C £y and S; C 5y such that
ESj = Xy \ PC,"

where the last half of the above data also will be defined in the algorithm.
(Remark: The data other than F; = U1gk5NF§ and Gj are redundant.)

At the initial point j = 0, we have F§ := {e()}, F} = {en)},..., F} =
{e(N)}, Fy = UlskSNFg € F(up°), where ek = 0,...,0,1,0,...,0) is the
polynomial vector the k-th component of which is a constant polynomial 1
and any other component of which is a constant polynomial 0, 1 < k < N.

In the main procedure of Step 2 in Algorithm, we have two alternative
cases:

(1) (¥ € F;)(flul,, = 0);

(2) (Fk, 1 <k < NY(3f € Ff)(ord(f) = py, ie., flu]p, #0).

In the first case, F; C Valpol{uPi+t) and we can put Fjiiy = F; and go.
The second case can be divided further into two subcases:

(2a) (Vk, 1 < k < N)-(3f € Ff, 35 € §;)(ord(f) = p;, lex(f) < pj ~ $);

(2b) (3k, 1 < kE < N)(3f € F%, 35 € S;)(ord(f) = p;, lez(f) < p; — 8).

- -In case (2a), we can replace each polynomial vector f € F¥ with ord(f) = p;




by h = h(f, g), where g € G with span(g) > span(f). Since § < p;—lez(f )(—
span(f)) does not hold for any § € S, j» there must exist at least one g € G
with span(g) > span(f). In view of Corollary 1, the formula (2) gives h with
lex(h) = lez(f), and so we have S by = Sk and Cf+1 = Ck In case (2b)
F¥ = {f € F¥|ord(f) = pj, lex(f) = s such that (38 € S,)(pj > s+ 8)} #
f, and we cannot have any h € Valpol(uPi+') with lexz(h) = lex(f) and
hp(h) = hp(f) for f € F%, as is shown later. In this case, S%,.1 D S% (in the
strict sense), and there are two possibilities of constructing h € F¥ 741 for each
f ek

(I) 1f there exists g € G; such that span(f) > span(g), then h = h(f,g)
has lex(h) = ord(f) ~ span(g) (> ord(f) - span(f) = lex(f)).

(IT) if there exists g € éj such that, for s = lez(f), & = span(g), there
exist a pairof c € Cf and § € éj satisfying p; < &+c¢, p; 2 8+s,sF ¢ (ie.,
s 1s correlated with ¢), and § I € (i.e., § is correlated with ¢}, then h = h(f, g)
has lez(h) = maz(s,p — &)(# s, p — &).

In the possibility (II) the following special case is contained:

(II'Yg=0¢€ G, with & = span(g) = (o0, —1) or (~1, 00),

for which we simply have h = x*~5f, where

r =maz(s,p— &) =(p1 +1,s;) if &= (-1,00);
(Sl,pg b 1) if é= (OO,—-l)

The function Red(F') executes reduction of a set of polynomial vectors F in
the sense described just above Definition 1.
- Algorithm (Finding a system of compound linear recurrences . . -
- ' for a vector of N 2D arrays)

Step 1: 7 :=0;
FO = {e(l)},Fg == {e(g)};...;Ff}V = {E(N)};
S} =82 := ... 8 = {(0,0)};
C(l} = C% e Cév == {(O'O: _1),(_1700)}5

Go 1= {0,0};Co := {(o0, =1),(~1,00)}; 8, := {(0,0)};

Step 2: fork=1,...,N do

- begin

F" = {f € F"Iord(f) P;, lez(f) = s such that
‘@5 €8,)(p; 2 5+ 9))

: (Sk = {lez(f)| f € FL} )

'; 1f F" = 0 {cases (1) and (Za)} then




begin
Fi o= (FfU{h:=h(f,g)|f € F}, g € G; such that
ord(f) = py,span() < span(g)})\ {f € F¥lord(®) = p,}
(s% 1= S5 CE = Ck;)
end,;
else [F5 # 6, i.e., case (2b)]
begin
Fip = @5 u{h=h(f,g)|f € F¥,g € G; such that
ord(f) = p;, span(f) < span(g)}
U{h = h(f,g)|f Ff, g € G; such that span(f) > span(g)}
Uth = h(f,g)|f € F§ with lea(f) =s, g € G, with span(g) = &
such that (Jc € Cf, s¢€ gj)(p,- <&+c,p;>8+s,skc¢,5F8)})
\{f € F¥|ord(D) = p;};
(Sky1 = (S¥U{p; —¢|é € C; such that (Is € SH(s < p; — &)}
U{maz(s,p; — €)|s € 8%, ¢ € C; such that
(3c e Ck, 5€§;)(p; < é+c, p; >8+s,ske, §F &)}
\{lez(f)|f € F}};
Cf_H = (C*U {p; — 8|8 €S, such that (s € SH(s < p; - 8)})
\{ceC"l(HseSJ,seS )(s<pj-~c p; 2 s+8)})
Giox 1= (G; UFE) \ {g & G;| (3F € F¥)(span(f) > span(g)));
(Cjar = (C; U {span(f)|f € F}})
\{¢e C;l(3fe F")(c < span(f)) };
SJ.H =(S;U{p;—c¢|ce C¥ such that
(38€8Sj,s¢ S")(s<p_,——c p; 2 s+8)}
U{ma:c(p] ~¢,8)|c € Ck 8 €85, such that .
(Bse8 eeC)pj<c+é p;>8+s, sk, si—c)})
\{81(3s € 55) (p; 25+ 8)};)
end;
end; :
Fjy1 = Red(Ur<renF5,, )
Step 3: j =54+ 1;
~if j = n then stop else go to Step 2.

Example 2: Applying our Algorithm to the vector of two arrays over e
K=GF(2)u= (u ,u?) shown in Fig. 2b, we have the computatzon shown._-'_ L

CinTablel . -




Table 1: Application of Algorithm to the vector
of 2D arrays shown in Fig. 2b.

~

p; F; F; G;
(0,0) (1,0) (0,1) (0,0)
(1,0) A1,0) (0,2),(0,y) (0,1)
(071) (55 1) (ya 0) (O,x),(o,y) (110)
(2,0) (z,1),(y,1) (0,z),(0,y+ 1) :
(111) (5‘711)1(%1) (1>$):(an+ 1)
(0,2) (z, 1), (y+1,1) (1,2),(1,y +1) -
(3,0) (z,1),{y+1,1) (L,z),(L,v* +y) (1,0),(1,y+1)
(271) (zzao)a (y+111) (1,33),(1,3}2-?'9') ($:1)=(1:y+ 1)
(1,2) (@*+1L,y+10,w+1,1) (L,2),1,y*+y) :
(0,3) (#*+Ly+1),(y+1,1) (La),(L,y*+y)
(4,0) (@®+Ly+1),y+1,1) (1,2),(0,y2+1)
(3,1) (#+Ly+1),@w+1,1) (1,2),(0,52+1)
(2,2) (2®+Ly+1)(x+1,1) (1,2),(0,%> +1)
(L,3) (F®+Ly+1),(¥y+1,1) (1,2),(z,9%)
(6,4) (@®+Ly+1),¥y+1,1) (1,2),(z,y%)
(4,2) (@®+L,y+1),(y+1,1) (Laz),(zy®) (z,1),(Ly+1)

e -._:;.'_.'_'.4'__.formu1a, (2) (case (Za)) where SH,Jt = SJ , 1< k < N for ezther case..

The result F = {(z® + 1,y + 1), (y + 1,1),(1,2), (z,5%)} € F(u* 2>) is just R

identical with the reduced Grébner basis of Example 1.

4. Verification of Algorithm _

In this section we prove the following theorem which will verify the Algo-
rithm.

Theorem 1: Let ¥;, 7 = 0,1,2,...,
F; e Fu®),j=0,1,2,....

be computed by the algorithm. Then,

Since Fy € F(uP), we must prove that, if F; € F(uPi) for any j € Zq, then
Fjy1 € F(uPi +1}, where F;4; is determined by the procedure of Step 2 in the

algorithm. We discriminate between the two cases F; := U, <1<NF =@¢and .
: 'F" # 0 for some k, 1 < k < N. If Fj = 0§, then either we have F;}; = F; G:'_j_'gi
'.'F(uPrM) (case (1)) or we can find each polynomial vector f € F3+1 by the o




It f‘k % 0, then there exists at least one § < S; such that s < p; —§ for
some f € F¥ with lez(f) = s. Therefore, in view of the duality between S; and
C we have only to show that there does not exist any polynomial vector h €
Valpol(uPi+1} such that lez(h) = r < p; —8 and hp(h) = k, where we remark
that (3%, 1 < k < N)(S§ # S%,)) if and only if §; # S;11. Now, let p; =
Pj(o) := ord(f) for the polynomial vector f = e(x) € F¥. Then, it is easy to see
that there exists no polynomial vector h = (A, A%,..., RV} € Valpol(uPi+1)
such that lez(h) < p; — § = p; and hp(h) = k, where § = (0,0) € . In
this case we have two kinds of polynomial vectors h = x**f & Ff_H with
lez(h) = r = (py 4 1,0) and (0, p; + 1), respectively (case (II')), and Theorem
1 is true. Therefore, we can assume that j7(0) < j. Thus, for

J ={2 € Zg4|0 §i<j,Sf #Sfﬂ forsomek, 1 <k < N}
={i € Zy|0 <1 < 5,5 # Siy1}y
we set
- {J(z) € ZOIOSZST}:

where 0 < 7:=#J and 7(0) < 7(1) < j(2) < ... < j(7) < J.
Any polynomial vector h with lez(h) = r > s and Ap(h) = k can be
expressed in the following form:

h=hex™™f + > heex" " fy
{S:’rf)enr

20 D s Ot (3)
- =0 (ofd),B(3)) ELL() =
whére
f ey lea(f) =s,s <r < p; -8, he(€ K) 5 0;
o) € Fj, lez(fiay) =s', 8 <1/ <rr, how € K
= {(s',r') € (Zo)*|8' = lex(f), ' € By, 8’ <1’ <71},
flatiy) € Fiti)s hair,p0) € K,

() == {(a, B) € (B0)*| @ = lez(g), g € Fys),
. o:<ﬁ<p3(,)msforsomesesj(,)} 0<i <7,

o Rema,rk 1: For ord(f) Pj; f(s) € F has ord(f(s,)) >T pJ, a,nd fa(, €l
H b’rd(fa(,)) = PJ(:)’ _{) <i ST . :




Remark 2: If (o,f),(d/, ") € I(%) and (o, B) # (o', '), then we can
assume that 8 # g,

Now, we claim ord(h) >7 p; on the assumption that lez(h) = r, ie,
hse # 0. To investigate the order of each term of the above expression (3), we
define the (virtual) order of a polynomial vector f raised o a point r > lex(f)
by

ord(f)_q@(f Z Yo kb =0,pexy

k=1me&ezs(f¥)

A (flu]g # 0).

In particular, if lez(f) = s, then ordy(f) = ord(f). To prove Theorem 1, we
require the following two lemmas, whose proofs are in Appendix.

Lemma 4: For any polynomial vector f with lez(f) < r ~ q, the order
raised to r 1is

orde(xf) = r — q + ord(f) — lez(f) = r — q + span(f).

Lemma 5: For (o,8) € (), (¢/, ) € ("), 0 < 4,7 < 7, such that
(o, B) # (&', B"), we have

ordr(x's“"‘f(o,)) # ordr(xﬁ"‘o” flary)-

Since ord.(x* fen) = r—(x'=s)+ord(fisy) ~s' =r—1'+ord(fs)) >r
ord(fsy 2T pj, we have ordr(xr'“s'f(sl)) >7 pj. When we arrange the terms
of the expression (3) in the increasing order of ord.( ), every term

ha(i)ﬁ(i)xﬁ(i)_a(i)f(a(,‘)) with ordr() <t p; must vanish, 1.e., ha(i)ﬁ(:‘} =0,
since hlu]] =0, q € £, and ordp(xP~%f,y) are distinct not only from each
other but also form ord.(x"~*f). Therefore, if ord(h) >7 p;, the first term
herx™%f must also vanish, i.e., hy, = 0, which is a contradiction. .Conse-
quently, h has ord(h) <7 p;, and we have completed the proof of Theorem
1.

Now we inquire the totality of ¥(uP), where p = p;. In other words, we
enumerate all distinct monic reduced polynomial vectors h € Valpol(uP) with
lez(h) = lez(f) and Ap(h) = hp(f) for any f € F;(e F(uP)). (The proofs of
the following two theorems are similar with those of Theorems 4 nd 5 of our
- .. previous paper [10] in the case of n = 1.)




Theorem 2: For f € F¥ with lez(f) = s ¢ Sk let p=p; € s+ Ty =
{s+r|rely ;1. Then, any h € Valpol(uP) Wlth lez(h) = s and hp(h) =k
can be expressed as

h=f+ Z heg,
gEG

where G' := {g € G;| span(g) = €g 271 P — 8}, hg € K{x] with lez(hyg) <7
Pg :=maz< {&+s—mlm>s, p<rm<é+ts)
¢

If a reduced polynomial vector f does not satisfy the assumption of The-
orem 2, f is unique in the sense that there does not exist any other reduced
polynomial vector h € Valpol(uP) with lez(h) = lex(f), hp(h) = hp(f), and
he(h) = he(f)(= 1). In particular, we have

Theorem 3: If

UNs (Usess (s +Tg,) € 5%,
then F; € F(uP) is unique.

5. Concluding Remarks

In our previos works [7-10] we treated various problems in generalizing
the Berlekamp-Massey algorithm [1, 2] to n dimensions. The problems are
described as follows:

Given a finite set of N-dimensional vectors of n-dimensional arrays {u) =
(u Gy ))ll <1 <m} (over a fleld K),

Find a minimal set of systems of compound n-dimensional linear recur-
rences, or more precisely a minimal set of N-dimensional vectors of n-variate
polynomials {f;;, = (f(lj), e ,fg))| 1 €7 £ M} such that

N
Y fEqubate =0, P € asubsetof g, 1 <i <m, 1< j < M.
k=1

The papers {7] and [10] treated the case of m = 1 and N = 1, where n == 2 in
[7] and n > 2 in [10], respectively. While the case of N = 1 and an arbitrary
m was treated in [9], the case of m = 1 and an arbitrary N is treated in
this paper. Of course, the most general case of arbitrary pairs m, N can be
investigated, which will be done in near future. This research can be extended

to n-dimensional arrays over any ring, and the first trial was done in [11].
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Appendix

Proof of Lemma 4: Since

k, k
x%fu Z Z mYm+qtp-r

k=1 meEezs(f*)

N

. ko

_‘Z Z m m+(p-——r+q+lem(f}) lex{f}’
k=1 meezrs(f*)

we have xU[ujf = 0if p — r + g + lea(f) < ord(f), and x9f[u]f # 0if
p —r+q+lez(f) = ord(f). Q.E.D.

Proof of Lemma 5: First, let (a, 8), (', 8') € II(3). Then, 8 # A'. From
ord(f,) = ord{(fy Y= Pj¢) ), it follows that ord . (xf~*f,) = r + ord(f,) + 8
is not equal to ord.(xf ~%f,) = r + ord(fo) + B'. Second, let (a,f8) €
11(2), (@', 8") € II(i'), i < i'. Then, ord(fy) — f and ord(fu) — B’ are distinct
from each other, since, in view of the derivations of C,ﬂ , S,H based on C;, §;
in Step 2 of Algorithm, we have ord(fo,) = Pj(i)» Pitiy — B S pjiy —a < & for
some & € Cg(:)+1 = CJ(=+1): t41 <4, and ord(fy) = Pi(in, Pin — B 2
. PiGny~ (pj(, 1 ~§) = § for some § € Sj(i:), le., pjiy—B' € ESJ-(”)’ Pjiy—B €

and PCJ( 41) n ES,_(;') = {. QED




