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A severe obstacle to the computational use of Groebner basis representations is
the fact that they may “jump”, i.e. change discontinuously, upon small changes of
the ideal without the presence of a situation where such a behavier would appear
natural.

Consider T = (py,...,pa); for each p, = ¥ e, ay;zd v = 1(1)n, we admit po-
tential perturbations e, = 3¢5, €527 where J, 1= {j €e N" : j < 7, 1= maze, i}
and the order in IN® is induced by the term order in 7;,. More intuitively, the per-
turbation may affect the coefficients of all terms not greater than the leading term
LT(p,) = 2J of p,; this may include terms whose coefficients vanish in p,. For some
specified € > 0, ¢ small, we consider the set of near-by ideals

Te = {{(B1y. v Bn) = (P + Z e,,jmj, v = 1(1)n}, with mgxz:leujl <e€}.
jel. i

Note that 7, depends on the generating set of Z. This is meaningful since we assume
that Z has been specified by a specific generating set whose elements have {(some)
coefficients of limited accuracy., Then 7. contains those ideals which cannot be
distinguished from Z.

Definition (near-singular, singular ideal): For specified ¢ > 0, T = {p1,...,P2)
is called near-singularif Z, contains ideals which differ in the dimension(s) of (some
of} their zero component(s), or — for zero-dimensional ideals — in the number of their
isolated zeros, counting multiplicities. 7 is called singular if it is near-singular for
arbitrary small e > 0. O



FEzample: The ideal Z generated by s polynomials of total degree 1 in s variables
is near-singular if and only if the associated guadratic matrix of the coefficients of
the linear terms is near-singular in the sense of numerical linear algebra. In the
near-singular case, the zero sets of ideals in Z, are either one point, empty, or a
one-dimensional variety; pgssfbly, there are even higher-dimensional varieties.

Accordingly, there appgar at least 3 types of Grodbner bases for ideals in T
{3:1 = Zlyee Ty — Zs}, {1}: {‘31 - G1Tg = b1yl Tgp = Gg_1Tg = bs—l} .

Obviously, there cannot be a centinuous transition from one type to another. O
The discontinuous behavior observed in the example is natural if Z is near-
singular. Unfortunately, such a behavior may also occur at manifolds in the data
space where the zeros of the ideals behave perfectly smoothly.
Ezample: n=s=2'7 = (22 + y% — 1, 32%y — y*). Obvioulsy, the zero set of
7 consists of the six corners of the regular hexagon inscribed into the unit circle.
With the term order = > y, we have

Go = {mZ_{__yZ_],yS_%y},
Mo = {1,y 2 ¢ vy, 2y?} .

When we perturb the first generating polynomial into z? + exy + 3% — 1, the unit
circle is slightly distorted into an ellipse and the zeros move continuously and by 0(¢)
as ¢ increases from 0. However, the Groebner basis of the associated ideal becomes

G = {+ey+v’~1 2y’ + £° - Ly, v + 5%y - 3=V
-Afc = {17 Y, z, yza Ty, yB}“-’

and there is no continuous transition from G, to Gy as they have different numbers
of elements and different normal sets.

Naturally, the above perturbation of the generating polynomials is just one of
many that must be considered to establish that Z is not near-singular. A concise
analysis is lengthy; intuitively, it is clear that the zeros must remain near the real
unit circle (in €?) and near that curve an e-perturbation of 3z%y — 4> can move
the zero set only by O{e). Thus, there are 6 isolated zeros for each Z € Z,. O

We will call this phenomenon of a discontinuous change in the structure of the
Groebner basis caused by a small perturbation of the original generating set without
the presence of a (genuine) singularity a representation singularity.

Definition (representation near-singular, representation singular ideal): Assume
that 7 = {(p1,...,pn) is not near-singular for a specified small € > 0. Z is called
representation near-singular if T, contain ideals whose Groebner bases have different
structures (number of elements, leading terms). 7 is called representation singular
if it is representation near-singular for arbitrary small e > 0. O

! For a more intuitive notation, we use (z,y) € €2 in place of (z1,72).

L)
.



Obviously, Z = (22 + 4% — 1, 3zy? — y°) is representation singular. Its zero
set is distinguished by a special symmetry from most of the zero sets which arise
for a slightly perturbed generating set. Quite generally, representation singularities
appear when the zeros assume some special “degenerate” constellation. Therefore
we will call the Groebner bases of representation singular ideals degenerate; they
are commonly “simpler” than the structurally different Groebner bases for nearby
perturbed generating sets.

Typically, some coefficients in the Groebner basis of a representation near-
singular ideal have large moduli which diverge to infinity as the perturbation takes
the ideal into the representation singular situation. In particular, the multiplication
tables A, associated with such Groebner bases also contain some large elements.
Thus the computational value of these matrices, e.g. for the determination of their
eigenvectors which yield the zeros of the ideal, is dubious. The fact that these matri-
ces become arbitrarily ill-conditioned with respect to their eigenproblem is revealed
by the jump in the normal set which occurs at the ideal with the degenerate Groeb-
ner basis: The normal set used with the neighboring ideals does not span the residue
class ring of the limiting degenerate ideal as two or more of its members are linearly
dependent on the zero set of the degenerate ideal.

Ezample, continued: The multiplication tables of (z? 4 exy + y* — 1, 322y — 3®)
w.r.t. A, are

[0 0 1 0 0 0\
0 0 0 0 1 0
1 0 0 -1 —¢ 0
A:c = s
6 L 0 0 0 -2
0 0 0 0 0 z
0 0 0 _16—33ei 16l23c§ 0 )
[0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
A, =
0 0 0 0 0 1
o 1 0 0 0 -3
\0 0 0 e e 0

The matrix X of the common eigenvectors of A, and A, (normalized for a first
component 1) has the columns t{z,) for the zeros z,,u = 1(1)6, with t from M.
The max-norm condition number of X is approxiately 5/¢ which characterizes the



deteriorating condition of the eigenvalue problem of A, and A, for ¢ — 0. Obviously,
t6=y3=g~y=§-t2in./\/;at£:(}.

It is thus obvious that genuine Groebner bases do not furnish a suitable re-
ference system for the representation of polynomials in or near a representation
(near-)singular ideal, at least not for computational purposes with data of limited
accuracy. Naturally, this raises the question what should be used in their place. The
remainder of this paper will be devoted to a proposed answer to this question.

Before we continue, we wish to point to the fact that in the case of n > s poly-
nomials in the generating set there are two possibilities: Either the set is redundant
and s of the n polynomials define the same ideal, or the generated ideal is singular.
Therefore, we will restrict our considerations in the following to the case n = g, the
complete intersection case, without a serious loss of generality, at least not within
the type of applications which we have in mind (solution of polynomial systems of
equations). v

5 Perturbed Groebner Bases

At a representation singularity, there is no chance to extend the non-degenerate
Groebner bases for neighboring ideals into the degenerate Groebmer basis for the
representation singular ideal because they have different leading terms, i.e. different
normal sets. More promising appears the opposite direction: The normal set Ay of
the degenerate Groebner basis Gy is retained but the basis elements are modified by
small perturbations so that they become generating sets of the neighboring ideals.
In this way, a continuous change in the zero sets is reflected by a continuous change
in the reference system.

Definition (perturbed Groebner basis): For a specified fixed term order, con-
sider a Groebner basis Go = {g1,...,9x} C P*°, with the associated normal set
N = {t1,...,tm} C T;. A polynomial system G, = {§1,...,4x}, with (cf. (...) for
the notation),

Gulz) = gulz) +cit(z), e € €™, [lel small,

will be called a perturbed Groebner basis, more specifically a perturbation of Gg. O

Generally, G, will not be a genuine Groebner basis because there will be some
t, € N with t, > LT[g.] for one or several x € {1,...,k}. We could propose
to omit these ¢, in the perturbation of the g, concerned; however, this would be
counterproductive: Due to the uniqueness of Groebner bases, there cannot be a
genuine Groebner basis wifich is a smooth perturbation of the degenerate basis in
cases of a representation singularitf.

Ezample, conlinued: The perturbed Groebner basis
G={a2+y*~1+e ay, v~ 3y + Ze-2p?}

generates the ideal (z? + exy + y* — 1, 32’y — y°) as is immediately seen. Due to
the presence of the zy? term in the perturbation, § is not a Groebner basis; but it



is a continuous extension of the degenerate Groebner basis {2? + ¢* — 1, ¢® — %y}.
0

What advantage may we gain by the use of perturbed Groebner bases in place of
genuine Groebner bases near representation singularities? A genuine Groebner basis
of a representation near-singular ideal contains at least one element with coefficients
of very large moduli; this cause for numerical instabilities has now been eliminated.
More important, the normal set of the degenerate ideal spans the residue class ring
of all neighboring ideals.

This follows from the fact that the matrix of the eigenvectors of the multipli-
cation tables A, is the Gram matriz of the interpolation problem on the zeros of
the ideal, with the span of the normal set as interpolation subspace; cf., e.g., [..].
The Gram matrix is regular at the degenerate situation; by continuity is remains
regular at all neighboring situations. Thus the multiplication tables with respect to
the “degenerate” normal set retain the good condition of their eigenproblem in a
neighborhood of the representation singular ideal.

_ Ezample, continued: The multiplication tables for the perturbed Groebner basis
Ge = (8% + 4% — 1+ exy,y® — Sy + 2exy?) wrt. Np are

o B [ I v B e}
(@

0601 0 0 0 6 1 0 0 0
000 O 1 0 00 0 1 0
100 -1 —€ 0 00 0 0 1
A=l900 o 0 1"4y‘0-§-0 0 0 -
0 Lo o 0 - 060 0 0
0 0 0 357227 ~55 O 00 0 %y =t
16—3¢2 16-3¢% 16—3¢ 16—3¢

these matrices converge to the multiplication tables of Gy for € — 0. The matrix X
of the common eigenvectors has a max-norm condition of approximately 8 indepen-
dently of ¢ (for small |¢|}.

This shows that the perturbed Groebner basis G, which retains the degenerate
normal set Ay provides the appropriate representation near the representation sin-
gularity. O

The preceding trivial example was chosen because it permits an explicit compu-
tation of interesting quantities in terms of €. In a real-life situation, there arise two
questions:

How do we realize the closeness of a representation singularity during the compu-
tation of the Groebner basis for a representation near-singular ideal, and how do we
find the degenerate Groebner basis Gy of the nearby representation singular ideal?

Given Gy, how do we find the perturbation coefficients ¢, and the multiplication
tables w.r.t. A for our specified representation near-singular ideal?

The first problem is very non-trivial. An initial analysis, with some preliminary
results, has been made in the Ph.D. thesis of V. Hribernig [..]. The investigations
have been continued; further results will be published elsewhere. WE will not address
this issue in the present pa:'per.



The second question amounts to the following problem: Consider the generating
set {p1,...,Ps}; by assumption, the p, have small residuals in a representation (..)
w.r.t. the Groebner basis Gy of the nearby representation singular ideal (t refers to
the associated Np):

P = eZt + Z(dg;t)gﬁ + Z (dywrnat)gm Gz + - -

r=1 K2SKL

Now we replace the g, by §. = g« + cft so that the coeflicients e,, dux, duuinyy---
becore functions of the c,; this defines a mapping {¢.) — (e,). Of the possibly
several branches of this mapping we choose the one which coincides with (..) for
{cx) = 0. Since the e, are’'small for (¢,) = 0, there will be a set of small ¢x which
maps on (e,) = 0, under suitable technical conditions. These are the ¢, which we
have to compute to obtain  (p1,...,ps) = {G1,.-.,8x) - In general, this amounts to
the solution of a polynomial system for the ¢, which may be more complicated then
the system of the p,. Only in near-trivial cases, like the preceeding example, the ¢

may be determined without serious computation.

Therefore, we resort to a tool which is well-established in many parts of mathema-
tics, viz. first order perturbation analysis: We compute ¢, such that the associated
residuals for the p, w.r.t. G, are O(]|e||?). Similarly, we require the multiplication
tables to represent the multiplicative structure of IP* /(p1,...,p;) correctly up to
terms of O(||c||?). The remainder of the paper will establish that this first order
perturbation analysis reduces to simple linear computations and that its results are
meaningful under the assumption of this paper.

6 Manipulations in Perturbed Groebner Bases
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