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Abstract

This paper presents characterizations of border bases of zero-dimensional polyno-
mial ideals that are analogous to the known characterizations of Gröbner bases.
Based on a Border Division Algorithm, a variant of the usual Division Algorithm,
we characterize border bases as border prebases with one of the following equivalent
properties: special generation, generation of the border form ideal, confluence of the
corresponding rewrite relation, reduction of S-polynomials to zero, and lifting of
syzygies. The last characterization relies on a detailed study of the relative position
of the border terms and their syzygy module. In particular, a border prebasis is a
border basis if and only if all fundamental syzygies of neighboring border terms lift;
these liftings are easy to compute.
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1 Introduction

Auzinger and Stetter [1], Möller [5], and Mourrain [6], for instance, used border
bases successfully to solve zero-dimensional polynomial systems of equations.
One of the attractive features of border bases is that they behave numerically
better than Gröbner bases. Their key role in numerical polynomial algebra is
emphasized in, for example, the new book by Hans Stetter [7]. Recently, border
bases have also been applied to statistics, cf. Caboara and Robbiano [2].

Kehrein, Kreuzer, and Robbiano [3] started to lay solid algebraic foundations
of the theory of border bases. In the present paper we commence the brick-
work and characterize border bases analogously to known characterizations
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of Gröbner bases; the latter are collected, for example, in Kreuzer and Rob-
biano [4, Theorem 2.4.1]. Our basic tool is the Border Division Algorithm,
which we present in Section 2; it divides a polynomial by a list of polynomi-
als. Unlike the usual Division Algorithm, it does not require a term ordering;
instead, the divisor polynomials must constitute a border prebasis with re-
spect to an order ideal of terms. Accordingly, the familiar reduction of leading
terms is substituted by a reduction of terms with largest index, where the in-
dex measures a distance from the order ideal. This adapted reduction process
is carefully designed to avoid infinite loops.

In Section 3, we apply the Border Division Algorithm and, thus, obtain im-
mediately two characterizing properties of border bases: special generation
of the ideal (see Proposition 9) and generation of the border form ideal (see
Proposition 11). Another characterization of border bases uses the rewrite re-
lation generated by the border prebasis. This is a trickier subject, because the
rewrite relation is in general not Noetherian. In other words, we consider a
reduction process with infinite loops (see Example 12). Surprisingly, conflu-
ence of this rewrite relation still is equivalent to the border basis property (see
Proposition 14).

Section 4 presents a border basis analogue of Buchberger’s criterion. Its proof
uses Mourrain’s characterization of border bases in terms of formal multiplica-
tion matrices (see Proposition 16) and a lengthy, but straightforward compu-
tation. This computation reveals that the border basis property is equivalent
to the condition that the S-polynomials of neighboring border terms reduce
to zero (see Proposition 18); here, two distinct border terms b and b′ will be
called neighbors, if b = xb′ or xb = yb′ for some indeterminates x, y .

The topic of the final section is the lifting of border syzygies. First, we study
the relative position of the border terms and their syzygy module. In partic-
ular, we show that the border is connected with respect to the neighborhood
relation (see Proposition 19) and that the neighbor syzygies generate the mod-
ule of border syzygies (see Proposition 21). Next, we introduce the concept of
a lifting of a border syzygy (see Definition 22) and show that, if liftings exist,
then they will be computed easily for neighbor syzygies (see Example 23).
Then, we characterize border bases as border prebases, for which all border
syzygies lift or, equivalently, all neighbor syzygies lift. (see Proposition 25).
After discussing possible border bases analogues of homogeneous syzygies, we
conjecture that the liftings of the neighbor syzygies generate the syzygy mod-
ule of a border basis. We close the paper with a partial result to support this
conjecture (see Proposition 30).

Acknowledgements: The authors would like to thank Lorenzo Robbiano and
Hans J. Stetter for helpful discussions.
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2 Border Division

In the following we use the notation and definitions introduced in [3]. In par-
ticular, we work in the polynomial ring P = K[x1, . . . , xn] over a field K . The
monoid of terms (or monomials or power products) of P is denoted by Tn .
For every d ≥ 0, we let Tn

d be the set of terms of degree d.

Definition 1 A non-empty set of terms O ⊆ Tn is called an order ideal if
t ∈ O implies t′ ∈ O for every term t′ dividing t. The border of O is the
set of terms

∂O = Tn
1 · O \ O = (x1O ∪ · · · ∪ xnO) \ O

and the first border closure of O is ∂O = O ∪ ∂O . For every k ≥ 1, we
inductively define the (k + 1)st border ∂k+1O = ∂(∂kO) and the (k + 1)st

border closure ∂k+1O = ∂kO ∪ ∂k+1O . Finally, we let ∂0O = ∂0O = O .

The following proposition is shown in [3, Proposition 3.4]. It contains three
ubiquitous consequences of this definition.

Proposition 2 Let O be an order ideal.

a) For every k ≥ 1, we have ∂kO = Tn
k · O \ Tn

<k · O .

b) For every k ≥ 1, we have a disjoint union ∂kO =
⋃k
i=0 ∂

iO . In particular,
we have a disjoint union Tn =

⋃∞
i=0 ∂

iO .

c) A term t ∈ Tn is divisible by a term in ∂O if and only if t ∈ Tn \ O .

In view of this result, we define indO(t) = min{k ≥ 0 | t ∈ ∂kO} for every
term t ∈ Tn and call it the index of t with respect to O . Given a non-
zero polynomial f = c1t1 + · · · + csts ∈ P , where c1, . . . , cs ∈ K \ {0} and
t1, . . . , ts ∈ Tn , we order the terms in the support of f such that indO(t1) ≥
indO(t2) ≥ · · · ≥ indO(ts). Then we call indO(f) = indO(t1) the index of f .
The following basic properties of the index were shown in [3, Proposition 3.6].
Note how the two concepts index and degree are complementing one another.

Proposition 3 Let O be an order ideal, let t, t′ ∈ Tn , and let f, g ∈ P \{0}.

a) The index indO(t) is the smallest natural number k such that t = t1t2
with t1 ∈ O and t2 ∈ Tn

k .

b) indO(t t′) ≤ deg(t) + indO(t′)

c) If f + g 6= 0, then indO(f + g) ≤ max{indO(f), indO(g)}.

d) indO(fg) ≤ max{deg(f) + indO(g), deg(g) + indO(f)}

The index and the border form possess properties resembling those of term
orderings and leading terms. However, index inequalities need not be preserved
under multiplication.
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Example 4 Let P = Q[x, y] and O = {1, x, x2, x3, y, y2}. Clearly, the set O
is an order ideal. Its border is ∂O = {x4, x3y, x2y, xy, xy2, y3}. Hence we have
indO(y2) = 0 < 1 = indO(xy), but, multiplying both sides by x, we get
indO(xy2) = 1 = indO(x2y).

This example also shows that the decomposition P =
⊕

i≥0(
⊕

{t|indO(t)=i}K ·
t) does not endow P with the structure of a graded ring. Nevertheless the
index provides a distance of a term from the order ideal as well as a partial
ordering of terms. It allows us to substitute the usual Division Algorithm using
a term ordering (see, for instance, [4, Theorem 1.6.4]) by a border version using
a partial ordering. For this purpose we introduce the following preliminary
notion of a border basis.

Definition 5 Given an order ideal O ⊆ Tn with border ∂O = {b1, . . . , bν},
a set of polynomials {g1, . . . , gν} ⊆ P is called an O -border prebasis if the
polynomials have the form gi = bi+hi such that hi ∈ P satisfies Supp(hi) ⊆ O
for i = 1, . . . , ν .

Proposition 6 (The Border Division Algorithm)
Let O = {t1, . . . , tµ} be an order ideal, let ∂O = {b1, . . . , bν} be its border, and
let {g1, . . . , gν} be an O -border prebasis. Given a polynomial f ∈ P , consider
the following instructions.

D1. Let f1 = · · · = fν = 0, c1 = · · · = cµ = 0, and h = f .

D2. If h = 0, then return (f1, . . . , fν, c1, . . . , cµ) and stop.

D3. If indO(h) = 0, then find c1, . . . , cµ ∈ K such that h = c1t1 + · · ·+ cµtµ .
Return (f1, . . . , fν, c1, . . . , cµ) and stop.

D4. If indO(h) > 0, then let h = a1h1+· · ·+ashs with a1, . . . , as ∈ K\{0} and
h1, . . . , hs ∈ Tn such that indO(h1) = indO(h). Determine the smallest
index i ∈ {1, . . . , ν} such that h1 factors as h1 = t′ bi with a term t′ of
degree indO(h)− 1. Subtract a1t

′gi from h, add a1t
′ to fi , and continue

with step D2.

This is an algorithm that returns a tuple (f1, . . . , fν, c1, . . . , cµ) ∈ P ν × Kµ

such that

f = f1g1 + · · ·+ fνgν + c1t1 + · · ·+ cµtµ

and deg(fi) ≤ indO(f) − 1 for all i ∈ {1, . . . , ν} with figi 6= 0. This repre-
sentation does not depend on the choice of the term h1 in Step D4.

Proof. First we show that the instructions can be executed. In Step D3 the fact
that indO(h) = 0 implies that all terms in the support of h have index zero,
i.e. that they are all in O . In Step D4 we write h as a K -linear combination
of terms and note that at least one of them, say h1 , has to have index k =
indO(h). By Proposition 3.a, there is a factorization h1 = t̃ ti for some term t̃
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of degree k and some ti ∈ O , and there is no such factorization with a term t̃
of smaller degree. Since k > 0, we can write t̃ = t′ xj for some t′ ∈ Tn and
j ∈ {1, . . . , n}. Then we have deg(t′) = k − 1, and the fact that t̃ has the
smallest possible degree implies xj ti ∈ ∂O . Thus we have h1 = t′ (xj ti) = t′ bk
for some bk ∈ ∂O .

Next we prove termination. We show that Step D4 is performed only finitely
many times. Let us investigate the subtraction h − a1t

′gi in Step D4. Using
Definition 5, we find a representation gi = bi −

∑µ
k=1 αkitk such that αki ∈ K

for k = 1, . . . , µ. Hence the subtraction becomes

h− a1t
′gi = a1h1 + . . .+ ashs − a1t

′bi + a1t
′
µ
∑

k=1
αkitk.

Now a1h1 = a1t
′bi shows that a term of index indO(h) is removed from h and

replaced by terms of the form t′ t` ∈ ∂k−1O which have strictly smaller index.
The algorithm terminates after finitely many steps because, for a given term,
there are only finitely many terms of smaller or equal index.

Finally, we prove correctness. To do so, we show that the equation

f = h + f1g1 + · · ·+ fνgν + c1t1 + · · ·+ cµtµ

is an invariant of the algorithm. It is satisfied at the end of Step D1. A poly-
nomial fi is only changed in Step D4. There the subtraction h − a1t

′gi is
compensated by the addition (fi + a1t

′)gi . The constants c1, . . . , cµ are only
changed in Step D3 in which h is replaced by the expression c1t1 + . . .+ cµtµ .
When the algorithm stops, we have h = 0. This proves the stated representa-
tion of f .

The additional claim that this representation does not depend on the choice
of h1 in Step D4 follows from the observation that h1 is replaced by terms of
strictly smaller index. Thus the different executions of Step D4 corresponding
to the reduction of several terms of a given index in h do not interfere with
one another, and the final result – after all those terms have been rewritten –
is independent of the order in which they are taken care of. ut

Notice that in Step D4 the algorithm uses a representation of h that is not
necessarily unique due to the partial aspect of the ordering. Also there may be
several factorizations h1 = t̃ ti . We choose the index i minimally to determine
this step of the algorithm uniquely, but this particular choice is not forced
upon us. Finally, the result of the division depends on the numbering of the
elements of ∂O , as the next example shows.

Example 7 Let P = Q[x, y] and let O = {1, x}. The border of O is
∂O = {b1, b2, b3} with b1 = y , b2 = xy , and b3 = x2 . We apply the Border
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Division Algorithm to divide f = x2y+x2 +2xy by (g1, g2, g3), where g1 = y ,
g2 = xy − 1, and g3 = x2 − 1. The step by step computations are:

D1. Let f1 = f2 = f3 = 0 and c1 = c2 = 0 as well as h = f .

D4. Since indO(h) = 2, we have h1 = x2y = x2 b1 . Thus we put h = x2 +2xy
and f1 = xy .

D4. Since indO(h) = 1, we choose h1 = x2 = b3 and put h = 2xy + 1 as well
as f3 = 1.

D4. Since indO(h) = 1, we have h1 = xy = b2 and put h = 3 as well as
f2 = 2.

D3. The algorithm returns (xy, 2, 1, 3, 0).

Therefore, there is a representation

f = x2 (y) + 2 (xy − 1) + (x2 − 1) + 3 = x2 g1 + 2 g2 + g3 + 3.

However, when we apply the algorithm to the shuffled tuple (g ′1, g
′
2, g3) where

g′1 = g2 and g′2 = g1 , it computes the representation

f = (x + 2) (xy − 1) + (x2 − 1) + 3 + x = (x + 2) g′1 + 0 · g′2 + g3 + 3 + x.

If we fix the tuple G = (g1, . . . , gν), the result of the Border Division Algorithm
is uniquely determined. This we do. Given an order ideal O = {t1, . . . , tµ}
and a polynomial f ∈ P , let f = f1g1 + · · · + fνgν + c1t1 + · · · + cµtµ be a
representation computed by the Border Division Algorithm. Then NRO,G(f) =
c1t1 + · · ·+ csts is called the normal O-remainder of f . As we saw in the
example, the normal O -remainder sometimes depends on the order of the
elements in G .

By construction, a polynomial f and NRO,G(f) represent the same residue
class modulo (g1, . . . , gν). This shows that the residue classes of the terms in O
generate P/(g1, . . . , gν) as a K -vector space. However, they do not necessarily
constitute a K -basis of this vector space.

In particular, if O consists of finitely many terms, then the ideal (g1, . . . , gν)
generated by an O -border prebasis is zero-dimensional.

3 Characterizations of Border Bases

First we prescribe the setting that is used throughout the remainder of this
paper. Let O = {t1, . . . , tµ} be an order ideal consisting of finitely many
terms. We let ∂O = {b1, . . . , bν} be its border, G = {g1, . . . , gν} an O -border
prebasis, and I a zero-dimensional ideal of P containing G. In this setting, a
border basis is defined as follows.
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Definition 8 The O -border prebasis {g1, . . . , gν} is called an O -border basis
of I if the residue classes of the elements of O form a K -vector space basis
of P/I .

If I has an O -border basis G, then it is uniquely determined by O and
G generates I [3, Section 4.1]. According to the remarks at the end of the
previous section a border prebasis is a border basis if and only if the residue
classes of t1, . . . , tµ modulo I are K -linearly independent or, equivalently,
I ∩ 〈O〉K = 0.

We are going to develop the theory of border bases in analogy with the de-
velopment of the theory of Gröbner bases in [4, Chapter 2]. Hence, we shall
prove characterizations of border bases which imitate the characterizations of
Gröbner bases given there. Our first result is a border basis version of the
so-called special generation property.

Proposition 9 (Border Bases and Special Generation)
In the prescribed setting, the set G is an O -border basis of I if and only if
one of the following equivalent conditions is satisfied.

A1. For every f ∈ I \ {0}, there exist polynomials f1, . . . , fν ∈ P such that
f = f1g1 + · · ·+ fνgν and deg(fi) ≤ indO(f)− 1 whenever figi 6= 0.

A2. For every f ∈ I \ {0}, there exist polynomials f1, . . . , fν ∈ P such that
f = f1g1 + · · · + fνgν and max{deg(fi) | i ∈ {1, . . . , ν}, figi 6= 0} =
indO(f)− 1.

Proof. First we show that A1 holds if G is an O -border basis. The Border
Division Algorithm computes a representation f = f1g1+· · ·+fνgν+c1t1+· · ·+
cµtµ with f1, . . . , fν ∈ P and c1, . . . , cµ ∈ K such that deg(fi) ≤ indO(f)− 1
for i = 1, . . . , ν . Then c1t1 + · · · + cµtµ ≡ 0 (mod I), and the hypothesis
implies c1 = · · · = cµ = 0.

Next we prove that A1 implies A2 . If deg(fi) < indO(f) − 1, then Proposi-
tion 3.b yields indO(figi) ≤ deg(fi) + indO(gi) = deg(fi) + 1 < indO(f). By
Proposition 3.c, there has to be at least one number i ∈ {1, . . . , ν} such that
deg(fi) = indO(f)− 1.

Finally, assume A2 and let c1, . . . , cµ ∈ K satisfy c1t1 + · · ·+ cµtµ ∈ I . Then
either f = c1t1+· · ·+cµtµ equals the zero polynomial or not. In the latter case
we apply the first part of A2 to obtain a representation f = f1g1 + · · ·+ fνgν
with f1, . . . , fν ∈ P . Since f 6= 0, we have max{deg(fi) | i ∈ {1, . . . , ν}, figi 6=
0} ≥ 0. But indO(f)−1 = −1, which contradicts the second part of A2 . Hence,
f is zero, I ∩ 〈O〉K = 0, and the set G is an O -border basis. ut

Commonly, Gröbner bases are defined as sets of polynomials whose leading
terms generate the leading term ideal. In the theory of border bases, leading
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terms have to be replaced with more general border forms which are defined
as follows.

Definition 10 Given a polynomial f ∈ P , there is a representation f =
a1u1 + · · · + asus with a1, . . . , as ∈ K \ {0} and u1, . . . , us ∈ Tn such that
indO(u1) ≥ · · · ≥ indO(us).

a) The polynomial
BFO(f) =

∑

{i|ind(ui)=ind(f)}
aiui

is called the border form of f with respect to O . For f = 0, we let
BFO(f) = 0.

b) Given an ideal I ⊆ P , the ideal BFO(I) = (BFO(f) | f ∈ I) is called
the border form ideal of I with respect to O .

The definition is independent of the chosen representation. As an important
example, the elements of the O -border prebasis G have the border form
BFO(gi) = bi ; in particular, they consist of only one term. Now we char-
acterize border bases by their border form ideal.

Proposition 11 (Border Bases and the Border Form Ideal)
In the prescribed setting, the set G is an O -border basis of I if and only if
one of the following equivalent conditions is satisfied.

B1. For every f ∈ I , the support of BFO(f) is contained in Tn \ O .

B2. We have BFO(I) = (b1, . . . , bν).

Proof. First we show that a border basis satisfies condition B1 . Suppose that
the border form of a polynomial f ∈ I \ {0} contains a term of O in its
support. Then all terms in the support of f are contained in O , i.e. f =
c1t1 + · · · + cµtµ for suitable c1, . . . , cµ ∈ K . The border basis hypothesis
implies c1 = · · · = cµ = 0, which contradicts f 6= 0.

Next we prove that B1 implies B2 . Since gi ∈ I , we have bi = BFO(gi) ∈
BFO(I) for i = 1, . . . , ν . To prove the reverse inclusion, let f ∈ I \ {0}.
By B1 and Proposition 2.c, every term in the support of BFO(f) is divisible
by a term in ∂O . Hence the border form of f is contained in (b1, . . . , bν).

Finally, we show that B2 implies that G is a border basis. Let c1, . . . , cµ ∈ K
be elements such that f = c1t1 + · · ·+ cµtµ ∈ I . Then all terms in the support
of f have index zero, and thus f = BFO(f). So, B2 and Proposition 2.c imply
c1 = · · · = cµ = 0. ut

To characterize border bases in analogy with conditions C1) – C4) of [4, Sec-
tion 2.2] we define the rewrite relation associated to G. Let f ∈ P be a
polynomial such that t ∈ Supp(f) is a multiple of a border term t = t′ bi .

8



Let c ∈ K be the coefficient of t in f . Then h = f − ct′gi does not contain
the term t anymore. We say that f reduces to h in one step using gi
and write f

gi−→h. (Instead one may consider the more restrictive rewrite
rule that, in addition, the factorization t = t′bi must be optimal in the sense
ind(t) = deg(t′) + 1. For instance, the reduction steps used in the Border Di-
vision Algorithm satisfy this additional condition. However, the results below
indicate that our less restrictive rewrite rule is an appropriate choice.) The

reflexive, transitive closure of the relations
gi−→, i ∈ {1, . . . , ν}, is called the

rewrite relation associated to G and is denoted by
G
−→. The equivalence

relation generated by
G
−→ is denoted by

G
←→. In stark contrast to Gröbner

basis theory, rewrite relations associated to border prebasis are, in general,
not Noetherian; this is demonstrated by the following example.

Example 12 Let P = Q[x, y] and O = {1, x, y, x2, y2}. Then O is an order
ideal with border ∂O = {xy, x3, x2y, xy2, y3}. Consider the O -border preba-
sis G = {g1, . . . , g5}, where g1 = xy − x2 − y2 , g2 = x3 , g3 = x2y , g4 = xy2 ,
and g5 = y3 . The chain of reductions

x2y
g1−→ x3 + xy2 g2−→ xy2 g1−→ x2y + y3 g5−→ x2y

can be repeated indefinitely, and hence
G
−→ is not Noetherian.

The following properties of the equivalence relation
G
←→ can be proved in

exactly the same way as the corresponding properties in Gröbner basis theory
(cf. [4, Proposition 2.2.2]).

Proposition 13 Let
G
←→ be the rewrite equivalence relation associated to an

O -border prebasis G = {g1, . . . , gν}, and let f1, f2, f3, f4 ∈ P .

a) If f1
G
←→ f2 and f3

G
←→ f4 , then f1 + f3

G
←→ f2 + f4 .

b) If f1
G
←→ f2 , then f1f3

G
←→ f2f3 .

c) We have f1
G
←→ f2 if and only if f1 − f2 ∈ (g1, . . . , gν).

According to property c) the rewrite equivalence relation
G
←→ is in fact the

congruence relation modulo the ideal (g1, . . . , gν). In other words, applying
reduction steps forwards as well as backwards to a polynomial, we can move
through the complete congruence class modulo (g1, . . . , gν) in search for a
“good” representative.

Regardless of their lack of Noetherianity, rewrite relations
G
−→ characterize

border bases by the confluence property. In this respect
G
−→ is called con-

fluent if for any two co-initial reductions f1
G
−→ f2 and f1

G
−→ f3 there exist

co-terminal reductions f2
G
−→ f4 and f3

G
−→ f4 . Finally, a polynomial f ∈ P
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is called G-reduced if f
G
−→h implies h = f .

For example, any polynomial f with support in O is G-reduced; by Propo-
sition 2.c, it cannot contain a term that can be reduced. In particular, the
normal remainder NRO,G(f) computed by the Border Division Algorithm is
G-reduced.

Proposition 14 (Border Bases and Rewrite Relations)
In the prescribed setting, the set G is an O -border basis of I if and only if
one of the following equivalent conditions is satisfied.

C1. For f ∈ P , we have f
G
−→ 0 if and only if f ∈ I .

C2. If f ∈ I is G-reduced, then f = 0.

C3. For every f ∈ P , there exists a G-reduced element h ∈ P such that

f
G
−→h and h is unique.

C4. The rewrite relation
G
−→ is confluent.

Proof. First we show that a border basis has property C1 . If a polynomial

f ∈ P satisfies f
G
−→ 0, then it is enough to collect the subtractions per-

formed by the individual reduction steps on the right-hand side to obtain
f ∈ (g1, . . . , gν). Conversely, let f ∈ I . We apply the Border Division Algo-
rithm to f ; it performs reduction steps using elements of G to compute the
normal remainder NRO,G(f) ∈ 〈O〉K . Since f ∈ I , we also have NRO,G(f) ∈ I .
The hypothesis that G is a border basis yields NRO,G(f) ∈ I ∩ 〈O〉K = 0, i.e.

f
G
−→ 0.

To prove that C1 implies C2 , note that C1 shows f
G
−→ 0 for f ∈ I . Thus

a G-reduced polynomial f ∈ I has to be zero. Next we prove that C2 im-
plies C3 . Let f ∈ P . The Border Division Algorithm performs a reduction

f
G
−→NRO,G(f), i.e. there exists a reduction to a G-reduced polynomial. Sup-

pose that f
G
−→ h and h is G-reduced. Then h − NRO,G(f) ∈ I and the

support of this difference is contained in O . Thus it is G-reduced and C2

yields h = NRO,G(f). Altogether, the normal remainder of f has the proper-
ties required by C3 .

Now we show that C3 implies C4 . Let f1
G
−→ f2 and f1

G
−→ f3 be co-initial

reductions. The Border Division Algorithm produces f1
G
−→NRO,G(f2) and

f1
G
−→NRO,G(f3). Since normal remainders are G-reduced, condition C3 im-

plies NRO,G(f2) = NRO,G(f3). Therefore, there are co-terminal reductions

f2
G
−→ f4 and f3

G
−→ f4 with f4 = NRO,G(f2) = NRO,G(f3).

Finally, to show that G is a border basis if it satisfies C4 , we can use Propo-
sition 13.c and proceed as in the proof of C4)⇒ C1) in [4, Proposition 2.2.5].

ut
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Given an O -border basis G = {g1, . . . , gν} and f ∈ P , the unique G-reduced

polynomial h such that f
G
−→h is the normal remainder NRO,G(f). Hence it

is effectively computed by the Border Division Algorithm and it agrees with
the normal form NFO,I(f) with respect to the ideal I = (g1, . . . , gν). The
properties of the normal form are studied in [3, Section 4.2].

4 A Buchberger Criterion for Border Bases

Instead of examining a polynomial ideal I directly, one can consider its quo-
tient algebra P/I . The K -vector space structure of P/I suffices to single out
the zero-dimensional ideals, as they are precisely those ideals with a finite-
dimensional quotient. Now each multiplication by an element of P/I defines
a K -linear map and thus we obtain a P -module structure on P/I . This P -
module structure determines the ideal I as its annihilator. In particular, the
indeterminates x1 ,. . . xn define so-called mutliplication matrices which com-
mute. This procdure can be reversed in the following sense. For each border
prebasis we define formal multiplication matrices. Then the border prebasis is
a border basis if and only if the formal multiplication matrices commute. A
detailed account of these remarks is given in [3].

Definition 15 Let O = {t1, . . . , tµ} be an order ideal, ∂O = {b1, . . . , bν} its
border, and G = {g1, . . . , gν} an O -border prebasis with

gj = bj −
µ

∑

m=1

αmjtm , 1 ≤ j ≤ ν

For 1 ≤ r ≤ n, define the r-th formal multiplication matrix Xr := (ξ
(r)
k` )

by

ξ
(r)
k` =

{

δki , if ti = xr t`
αkj , if bj = xr t`

.

The formal multiplication matrices encode the following procedure. First, we
multiply an element of 〈O〉K by the indeterminate xr and, second, whenever
xr ti = bj is a border term, we reduce by the corresponding border polyno-
mial gj . The reduction guarantees that the result stays in 〈O〉K . More con-
cretely, the elements c1 t1 + . . .+ cµ tµ ∈ 〈O〉K are encoded as column vectors
c1 e1 + . . .+ cµ eµ ∈ K

µ . For example, xr ti corresponds to Xr (c1, . . . , cµ)
T .

Bernard Mourrain [6] showed the following result. A proof using our notation
and terminology is contained in [3].
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Proposition 16 (Border Bases and Formal Multiplication Matrices)
In the setting of Definition 15, the border prebasis G is a border basis if and
only if the formal multiplication matrices commute, i.e. if and only if Xr Xs =
XsXr for all r, s ∈ {1, . . . , n}.

Next we want to analyze these commutativity conditions in more detail by
considering their effect on an arbitrary base vector ei . For each i ∈ {1, . . . , µ}
we compare Xr Xs ei with XsXr ei . Translating the comparision back into the
language of 〈O〉K , we shall find that the resulting description depends on the
position of ti relative to the border. The following case by case discussion
reveals the details.

To lighten the index load we abbreviate x = xr and y = xs .

tk tl

ti tj
First case: Let x y ti ∈ O .

Since O is an order ideal, we also have x ti, y ti ∈ O , say x ti = tj , y ti = tk ,
and x y ti = t` . Then X Y ei = X ek = e` = Y ej = Y X ti , i.e., the commuta-
tivity condition holds by definition of the formal multiplication matrices.

tk bl

ti tj
Second case: Let x y ti ∈ ∂O and x ti, y ti ∈ O .

Say x ti = tj , y ti = tk , and x y ti = b` . Then

X Y ei = X ek =







α1`
...
αµ`





 = Y ej = Y X ei

Again, commutativity follows immediately from the definition of the formal
multiplication matrices.

bk bl

ti tj
Third case: Let x ti ∈ O and y ti ∈ ∂O .

Since ∂O and O are order ideals, this case implies x y ti ∈ ∂O . Say x ti = tj ,
y ti = bk , and x y ti = b` . The commutativity condition becomes

X







α1k
...
αµk





 =







α1`
...
αµ`







i.e.,
∑µ
m=1 ξpmαmk = αp` for all p ∈ {1, . . . , µ}. According to the definition of
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the formal multiplication matrices, this condition can be rewritten as follows.

∑

m
x tm=tϕ(m)

δp,ϕ(m)αmk +
∑

m
xtm=bψ(m)

αp,ψ(m)αmk = αp` , 1 ≤ p ≤ µ (1)

The first sum stretches over all indices m for which x tm ∈ O . For such an
index m, let ϕ(m) be the index with x ti = tϕ(m) . The notation in the second
sum is chosen analogously.

bk ∗

ti bj
Fourth case: Let x ti, y ti ∈ ∂O .

Say x ti = bj and y ti = bk . The commutativity condition becomes

X







α1k
...
αµk





 = Y







α1j
...
αµj







i.e.,
∑µ
m=1 ξpmαmk =

∑µ
m=1 ηpmαmj for all p ∈ {1, . . . , µ}. This condition can

be rewritten as

∑

m
xtm=tϕ(m)

δp,ϕ(m)αmk +
∑

m
x tm=bψ(m)

αp,ψ(m)αmk =

∑

m
xtm=t%(m)

δp,%(m)αmj +
∑

m
xtm=bσ(m)

αp,σ(m)αmj , 1 ≤ p ≤ µ (2)

This covers all cases. The two cases with non-trivial commutativity conditions
motivate the following definition.

Definition 17 Let bi, bj ∈ ∂O be two distinct border terms.

a) The border terms bi and bj are called next-door neighbors if bi = x bj
for some x ∈ {x1, . . . , xn}.

b) The border terms bi and bj are called across-the-street neighbors if
x bi = y bj for some x, y ∈ {x1, . . . , xn}.

c) The border terms bi and bj are called neighbors if they are next-door
neighbors or across-the-street neighbors.

This definition comprises slightly more than the above case distinction. In a
polynomial ring with at least three indeterminates there are order ideals that
allow a constellation of border terms bj = x bi and bk = y bi ,

13



bk ∗

bi bj
,

which, correctly, is absent from the above cases. The above case by case discus-
sion considers at most the relations bj = x bi and bk = y bi , while it disregards
x bk = y bj . Our definition also acknowledges bk and bj as neighbors.

In the remainder of this section we interpret the commutativity conditions in
terms of rewrite rules.

Consider the next-door neighbor relation b` − x bk = 0. The corresponding
combination of border polynomials is

g` − x gk = (b` −
µ

∑

m=1

αm`tm)− x(bk −
µ

∑

m=1

αmktm)

= −
µ

∑

m=1

αm`tm +
µ

∑

m=1

αmk(x tm)

= −
µ

∑

m=1

αm`tm +
∑

x tm=tϕ(m)

αmktϕ(m) +
∑

x tm=bψ(m)

αmkbψ(m)

= −
µ

∑

m=1

αm`tm +
∑

x tm=tϕ(m)

αmktϕ(m) +
∑

x tm=bψ(m)

αmkgψ(m)

+
∑

x tm=bψ(m)

(αmk

µ
∑

s=1

αs,ψ(m)ts)

Since (g1, . . . , gν) ⊆ I , we obtain the congruence

0 ≡ −
µ

∑

m=1

αm`tm +
∑

x tm=tϕ(m)

αmktϕ(m) +
∑

x tm=bψ(m)

(αmk

µ
∑

s=1

αs,ψ(m)ts) (mod I).

For a border basis the coefficient of each tp , 1 ≤ p ≤ µ, on the right-hand
side must vanish. This vanishing condition is exactly the commutativity con-
dition (1).

Across-the-street neighbor combinations x gk − y gj are treated analogously.
The corresponding combination of border polynomials is

x gk − y gj = x(bk −
µ

∑

m=1

αmktm)− y(bj −
µ

∑

m=1

αmjtm)

= −
µ

∑

m=1

αmk(x tm) +
µ

∑

m=1

αmj(y tm)
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= −
∑

x tm=tϕ(m)

αmktϕ(m) −
∑

x tm=bψ(m)

αmkbψ(m)

+
∑

y tm=t%(m)

αmjt%(m) +
∑

y tm=bσ(m)

αmjbσ(m)

= −
∑

x tm=tϕ(m)

αmktϕ(m) −
∑

x tm=bψ(m)

αmkgψ(m)

−
∑

x tm=bψ(m)

αmk

µ
∑

s=1

αsψ(m)ts

+
∑

y tm=t%(m)

αmjt%(m) +
∑

y tm=bσ(m)

αmjgσ(m)

+
∑

y tm=bσ(m)

αmj

µ
∑

s=1

αsσ(m)ts

We obtain the congruence

0 ≡ −
∑

x tm=tϕ(m)

αmktϕ(m) −
∑

x tm=bψ(m)

αmk

µ
∑

s=1

αsψ(m)ts

+
∑

y tm=t%(m)

αmjt%(m) +
∑

y tm=bσ(m)

αmj

µ
∑

s=1

αsσ(m)ts (mod I)

Considering the coefficients individually produces the commutativity condi-
tion (2).

This computation allows us to characterize border bases analogously to Buch-
berger’s criterion for Gröbner bases. A similar result appears in [7, Theo-
rem 8.11].

In Gröbner basis theory the S-polynomials are obtained by applying a syzygy
of two leading terms to the corresponding polynomials. Analogously, we apply
the fundamental syzygy of the border terms bi and bj and get the correspond-
ing S-polynomial. More concretely, an S-polynomial has the form

S(gi, gj) = (lcm(bi, bj)/bi) gi − (lcm(bi, bj)/bj) gj.

Proposition 18 (Buchberger Criterion for Border Bases)
In the prescribed setting, the O -border prebasis G is an O -border basis of I
if and only if one of the following equivalent conditions is satisfied.

D1 . For all 1 ≤ i < j ≤ ν , the S-polynomial S(gi, gj) reduces to zero via
G
−→.

D2 . For all neighbors bi and bj , the S-polynomial S(gi, gj) reduces to zero

via
G
−→.
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Proof. Condition D1 holds if G is a border basis, since S(gi, gj) ∈ I and G
satisfies Condition C1 . Since D1 logically implies D2 , it remains to prove
that G is a border basis if D2 holds. Let gi − xgj or xgi − ygj be the S-
polynomial corresponding to a neighbor syzygy. The above calculation shows

that g`−x gk
G
−→ 0 or x gk−y gj

G
−→ 0 respectively implies the commutativity

of the formal multiplication matrices, and therefore that G is an O -border
basis. ut

Condition D2 can be rephrased as follows:

a) For all next-door neighbors b` = x bk , there are constant coefficients
c1 . . . , cν ∈ K such that g` − x gk =

∑ν
j=1 cj gj .

b) For all across-the-street neighbors x bk − y bj , there are constant coeffi-
cients d1 . . . , dν ∈ K such that x gk − y gj =

∑ν
j=1 dj gj .

This is the special generation condition restricted to all neighbor combinations.
By the preceding Buchberger criterion and the characterization of border bases
via special generation, this implies the special generation of all polynomials in
the ideal.

5 Border Syzygies

In this section we study the syzygy module

SyzP (b1, . . . , bν) = {(f, . . . , fν) ∈ P
ν | f1b1 + · · ·+ fνbν = 0}.

Its elements are called border syzygies.

As preliminary work, we consider the neighboring structure of the border ∂O .
Let ∼ denote the equivalence relation generated by the neighbor relation. The
following proposition states that ∂O is connected in the sense that there is
only one equivalence class with respect to ∼.

Proposition 19 For any two border terms bi, bj ∈ ∂O , there is a finite se-
quence bk0 , bk1 , . . . , bks of border terms from bi = bk0 to bj = bks such that
bk`−1

, bk` are neighbors for ` = 1, . . . , s.

Proof. Let bi, bj ∈ ∂O and g = gcd(bi, bj). Then we have bi = xα1
i1
· · ·x

αp
ip
g

and bj = xβ1
j1
· · ·x

βq
jq g with αk, β` ∈ N+ and {i1, . . . , ip}∩{j1, . . . , jq} = ∅. We

use induction on α1 + · · · + αp + β1 + . . . + βq . If β1 + . . . + βq = 0, i.e. if
g = bj , then

bi = bk0 = xα1
i1
· · ·x

αp
ip g = bi, xα1

i1
· · ·x

αp−1
ip g, . . . , xα1

i1
· · ·x

αp−1

ip−1
g,

xα1
i1
· · ·x

αp−1−1
ip−1

g, . . . , xi1 g, g = bks = bj
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is a sequence of border terms, since ∂O and O are order ideals. By construc-
tion, any two consecutive terms in this sequence are next-door neighbors.
Symmetrically, the case α1 + . . .+ αp = 0 is proved.

Now assume that α1 + . . .+αp, β1 + . . .+βq > 0. Then xj1 | bj , say bj = xj1t
with t ∈ Tn . Since ∂O is an order ideal, we have t ∈ ∂O . We finish the proof
by considering three cases.

Case 1: If t ∈ ∂O , then t is a next-door neighbor of bj and t ∼ bi by induction
hypothesis. Thus we have bi ∼ bj in this case.

Case 2: If t ∈ O and xi1 t ∈ ∂O , then xi1 t is an across-the-street neighbor
of bj . Since gcd(xi1 t, bi) = xi g , we have xi1 t ∼ bi by induction hypothesis.
Hence we obtain bi ∼ xi1 t ∼ xj1 t = bj .

Case 3: If t ∈ O and xi1 t ∈ O , then xj1xi1 t = xi1bj ∈ ∂O is a next-door
neighbor of bj . Since gcd(xi1bj, bi) = xi1 g , we have xi1bj ∼ bi by induction
hypothesis. Hence we obtain bi ∼ xi1bj ∼ bj . ut

Let {e1, . . . , eν} be the canonical basis of the free module P ν. The fundamen-
tal syzygies σij = (lcm(bi, bj)/bi) ei − (lcm(bi, bj)/bj) ej generate the border
syzygy module SyzP (b1, . . . , bν) (see, for instance, [4, Theorem 2.3.7.b]). We
are going to show that there exists a much more efficient set of generators for
this syzygy module.

Definition 20 Let O be an order ideal with border ∂O = {b1, . . . , bν}.

a) For two next-door neighbors bi, bj , i.e. for bi = xkbj , the fundamen-
tal syzygy σij has the form τij = ei − xkej and is called a next-door
neighbor syzygy.

b) For two across-the-street neighbors bi, bj , i.e. for xkbi = x`bj , the fun-
damental syzygy σij has the form υij = xkei − x`ej and is called an
across-the-street neighbor syzygy.

c) The set of all neighbor syzygies is the set of all next-door or across-the
street neighbor syzygies.

Proposition 21 The set of all neighbor syzygies generates SyzP (b1, . . . , bν).

Proof. Since the module SyzP (b1, . . . , bν) is generated by the set of fundamen-
tal syzygies {σij | 1 ≤ i < j ≤ ν}, it suffices to show that every fundamental
syzygy is a P -linear combination of neighbor syzygies. For notational conve-
nience we let σji = −σij for 1 ≤ i < j ≤ n. Let bk0 , . . . , bks be a sequence of
border terms constructed in the proof of Proposition 19, i.e. such that bk0 = bi ,
bks = bj and bk`−1

, bk` are neighbors for ` = 1, . . . , s. We claim that there are
terms f1, . . . , fs ∈ Tn such that σij =

∑s
`=1 f`ϕ` , where ϕ` is the neighbor

17



syzygy between bk`−1
and bk` .

To prove this claim, we proceed by induction on s. For s = 1, the terms bi
and bj are neighbors and σij is the corresponding neighbor syzygy. For s > 1,

let bi = xα1
i1
· · ·x

αp
ip
· gcd(bi, bj) and bj = xβ1

j1
· · ·x

βq
jq
· gcd(bi, bj) as in the proof

of Proposition 19. If q = 0, i.e. if bi = xα1
i1
· · ·x

αp
ip
· bj , then bi = bk0 = xipbk1

and therefore σij − tijτk0k1 = tijxipek1 − tjieks = xipσk1ks is a syzygy of bk1
and bks . The claim follows by induction. If q ≥ 1, we write bj = xj1 t with
t ∈ Tn and check the same three cases as in the proof of Proposition 19.

Case 1: If t ∈ ∂O , then bks−1 = t and τksks−1 = eks − xj1eks−1 is a next-door
neighbor syzygy. Thus σij + tjiτksks−1 = tijek0 − tjixj1eks−1 = xj1σk0ks−1 is a
syzygy of bk0 and bks−1 . The claim follows by induction.

Case 2: If t ∈ O and bks−1 = xi1 t ∈ ∂O , then xi1bks = xi1xj1 t = xj1bks−1

and υksks−1 = xi1eks − xj1eks−1 is an across-the-street neighbor syzygy. Since
tksk0 = lcm(bks , bk0)/bks = xα1

i1
· · ·x

αp
ip

, and since xi1 | bks−1 implies αi1 ≥ 1,
we have a factorization tksk0 = xi1 · t

′ with t′ ∈ Tn . Then σij + t′υksks−1 =
tijek0 − t

′xj1eks−1 = xj1σk0ks−1 is a syzygy of bk0 and bks−1 . The claim follows
by induction.

Case 3: If xi1 t ∈ O and bks−1 = xi1bj ∈ ∂O , then τks−1ks = eks−1 − xi1eks is
a next-door neighbor syzygy. Again we write tksk0 = xi1t

′ with t′ ∈ Tn and
compute σij − t

′ τks−1ks = tijek0 − t
′eks−1 = σk0ks−1 . Again, the claim follows

by induction. ut

Notice that neighbor syzygies are particularly simple: They are binomials,
and their coefficients are either the constants ±1 or indeterminates. Now we
apply our knowledge of border syzygies to characterize border bases via the
lifting of syzygies; this corresponds to [4, Proposition 2.3.12]. We are especially
interested in the syzygy module

Syz(g1, . . . , gν) = {(f1, . . . , fν) ∈ P
ν | f1g1 + · · ·+ fνgν = 0}

and begin with defining a lifting of a border syzygy.

Definition 22 Let (f1, . . . , fν) ∈ SyzP (b1, . . . , bν) be a border syzygy. A
syzygy (F1, . . . , Fν) ∈ SyzP (g1, . . . , gν) is a lifting of (f1, . . . , fν) if one of
the following two cases occurs:

1.
∑ν
j=1 fjgj = 0 and Fi − fi = 0 for all i ∈ {1, . . . , ν}, or

2.
∑ν
j=1 fjgj 6= 0 and for all i ∈ {1, . . . , ν} such that Fi − fi 6= 0 we have

deg(Fi − fi) ≤ indO(
∑ν
j=1 fjgj)− 1.

In the second case the combination
∑

j(Fj − fj)gj cancels
∑

j fjgj , and the
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degree bound insures that there are no internal cancellations in the combina-
tion

∑

j(Fj−fj)gj beyond the index of
∑

j fjgj . The next example shows that
there are liftings and, moreover, that liftings of neighbor syzygies are very
easy to compute if G is a border basis.

Example 23 Assume that G is an O -border basis.

a) Given a next-door neighbor syzygy τij = ei − xkej , all terms appearing
in gi − xkgj have index ≤ 1. Therefore there exist c1, . . . , cm ∈ K such
that the support of gi−xkgj−

∑ν
m=1 cmgm is contained in O . Since G is

a border basis, it follows that ϕij = ei − xkej −
∑ν
m=1 cmem is a syzygy

of (g1, . . . , gν). This syzygy lifts τij , because gi− xkgj = 0 or deg(cm) =
0 < 1 = indO(gi − xkgj)

b) Given an across-the-street neighbor syzygy υij = xkei − x`ej , the only
terms of index two appearing in xkgi − x`gj are xkbi and x`bj . Since
these two terms cancel and all other terms have index ≤ 1, there exist
d1, . . . , dν ∈ K such that the support of xkgi − x`gj −

∑ν
m=1 dmgm is

contained in O . Again the border basis property of G implies that ψij =
xkei−x`ej−

∑ν
m=1 dmem is a syzygy of (g1, . . . , gν) which lifts υij , because

xkgi − x`gj = 0 or deg(dm) = 0 < 1 = indO(xkgi − x`gj).

Since the index need not be monotone with respect to multiplication by a
term, the index of

∑ν
j=1 fjgj can actually be larger than the index r of the

terms in f1b1 + · · ·+ fνbν . The following example is a case in point.

Example 24 Let O = {1, x, x2} ⊂ T2 . Then ∂O = {y, xy, x2y, x3}. The set
G = {g1, g2, g3, g4} where g1 = y − x2 , g2 = xy , g3 = x2y , and g4 = x3 is an
O -border basis of I = (g1, g2, g3, g4). We have indO(fb1) = 1 for f = x2 and
b1 = y , while the polynomial fg1 = x2y − x4 has O -index two.

The next proposition is the main result of this section. It characterizes border
bases via liftings of pure border syzygies.

Proposition 25 (Border Bases and Liftings of Border Syzygies)
In the prescribed setting, the set G is an O -border basis of I if and only if
one of the following equivalent conditions is satisfied.

E1 . Every border syzygy lifts to a syzygy of (g1, . . . , gν).

E2 . Every neighbor syzygy lifts to a syzygy of (g1, . . . , gν).

Proof. First we show that a border basis satisfies E1 . Let (f1, . . . , fν) be a
border syzygy, and let f = f1g1 + · · · + fνgν . Using the Border Division
Algorithm, we compute a representation f = h1g1 + · · ·+hνgν with deg(hi) ≤
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indO(f) − 1. The normal remainder is zero, since f ∈ I and G is a border
basis of I . Now (f1 − h1, . . . , fν − hν) is a syzygy of (g1, . . . , gν) that lifts
(f1, . . . , fν).

Since E1 logically implies E2 , it remains to prove that G is a border basis
if E2 holds true. Given a next-door neighbor syzygy τij = ei − xkej , we have
gi − xkgj = 0 or the index of gi − xkgj is one. Therefore any lifting of τij has
the form τij −

∑ν
m=1 cmem with cm ∈ K . Given an across-the street neighbor

syzygy υij = xkei − x`ej , the polynomial xkgi − x`gj is zero or its index is
one. Therefore any lifting of υij has the form υij −

∑ν
m=1 cmem with cm ∈ K .

In both cases the S-polynomial has the shape S(gi, gj) =
∑ν
m=1 cmgm , and the

claim follows from the last part of the proof of Proposition 18. ut

There is an important difference between liftings in border basis and those in
Gröbner basis theory: condition E1 guarantees liftings for all border syzygies,
whereas in Gröbner basis theory we can only lift homogeneous syzygies of
leading terms. To examine which kind of border syzygies is the correct ana-
logue of homogeneous syzygies of leading terms, we introduce two particularly
nice kinds of border syzygies.

Definition 26 Let O be an order ideal with border ∂O = {b1, . . . , bν}, and
let k ∈ N.

a) A border syzygy (f1, . . . , fν) is called pure of index k if
⋃ν
i=1 Supp(fibi)

is contained in ∂kO . It is called pure if it is pure of some index.

b) A border syzygy (f1, . . . , fν) is called perfect of index k if it is pure
of index k and the polynomials fi are homogeneous of degree k − 1.

The following example amplifies the details of this definition.

Example 27

a) The next-door neighbor syzygy τij = ei − xrej is a pure syzygy of index
one. We note that τij is not perfect of index one, since deg(1) 6= deg(xr).

b) The across-the-street neighbor syzygy υij = xrei−xsej looks like a perfect
syzygy. It is indeed perfect of index two, if xrbi 6∈ ∂O . However, if xrbi ∈
∂O , then it is not a perfect syzygy: We have indO(xrbi) = indO(xrbj) = 1
and deg(xr) = deg(xs) = 1; the index and the degree fail the perfectness
condition ind = deg +1.

c) Let O = {1, x, y} with border ∂O = {x2, xy, y2}. Then (y,−x− y, x) is
a perfect syzygy of index two. Unlike the analogous situation in Gröbner
basis theory, perfect border syzygies can have components with several
terms in their support.
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Since neighbor syzygies are pure, a border prebasis G is an O -border basis
of I if and only if the following condition is satisfied:

E3 . Every pure border syzygy lifts to a syzygy of (g1, . . . , gν).

Pure border syzygies play a role analogous to homogeneous syzygies of the
tuple of leading terms in Gröbner basis theory.

Remark 28 Every syzygy s = (f1, . . . , fν) ∈ SyzP (b1, . . . , bν) decomposes
into pure syzygies, s =

∑

r≥1 sr , where sr collects all terms in the support of s
such that the corresponding summand in f1b1 + · · ·+ fνbν has index r . Since
P =

⊕

i≥0(
⊕

{t|indO(t)=i}K · t), the tuples sr are again syzygies of (b1, . . . , bν).
Therefore, the characterization of border bases via liftings restricts to pure
syzygies.

Can we restrict our characterization via liftings to the even simpler perfect
syzygies? If G is a border bases, then E1 implies that every perfect border
syzygy possesses a lifting in SyzP (g1, . . . , gν). However, the converse is not
true in general, as our next example shows.

Example 29 Let O = {1, x} ⊂ T2 . Then ∂O = {y, xy, x2}, and every perfect
border syzygy f1y + f2xy + f3x

2 = 0 is of the form (f1, f2, f3) = (0, fx,−fy)
with a homogeneous polynomial f ∈ K[x, y]. The O -border prebasis G =
{g1, g2, g3} with g1 = y − 1, g2 = xy , and g3 = x2 , is not a border basis,
because x = g2 − xg1 ∈ I . However, every perfect border syzygy (0, fx,−fy)
is its own lifting.

In Example 23 we lifted every next-door neighbor syzygy τij to ϕij and every
across-the-street neighbor syzygy υij to ψij .

Conjecture. The liftings ϕij, ψij of the neighbor syzygies generate the syzygy
module SyzP (g1, . . . , gν) of a border basis G = {g1, . . . , gν}.

This conjecture is motivated by the analogy with [4, Proposition 3.1.4] and
supported by several examples that we computed with CoCoA. As a further
indication, we show that the liftings ϕij, ψij generate at least the following
special syzygies of (g1, . . . , gν).

Proposition 30 Let G = {g1, . . . , gν} be an O -border basis. Every syzygy
(f1, . . . , fν) ∈ SyzP (g1, . . . , gν) such that f1b1 + · · ·+ fνbν = 0 is contained in
〈{ϕij | bi, bj next-door neighbors} ∪ {ψij | bi, bj across-the-street neighbors}〉.

Proof. Since (f1, . . . , fν) is a border syzygy, there exist polynomials hij, kij ∈
P such that (f1, . . . , fν) =

∑

i,j hijτij +
∑

i,j kijυij where the sums range over
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all i, j such that bi, bj are next-door or across-the-street neighbors, respec-
tively and such that each unordered pair of neighbors appears only once. For
these indices, we write ϕij = τij −

∑ν
m=1 c

(i,j)
m em and ψij = υij −

∑ν
m=1 d

(i,j)
m em

with c(i,j)m , d(i,j)
m ∈ K . Then we calculate

0 = f1g1 + · · ·+ fνgν =
∑

i,j
hijτij(g1, . . . , gν) +

∑

i,j
kijυij(g1, . . . , gν)

=
∑

i,j
hij(ϕij +

ν
∑

m=1
c(i,j)m em)(g1, . . . , gν) +

∑

i,j
kij(ψij +

ν
∑

m=1
d(i,j)
m em)(g1, . . . , gν)

=
ν
∑

m=1
(
∑

i,j
c(i,j)m +

∑

i,j
d(i,j)
m ) gm.

In the last step the other summands disappear, because they involve the lift-
ings ϕij and ψij , i.e. syzygies of (g1, . . . , gν). Since {g1, . . . , gν} is K -linearly
independent, we get

∑

i,j c
(i,j)
m +

∑

i,j d
(i,j)
m = 0 for every m ∈ {1, . . . , ν}, and,

therefore,

(f1, . . . , fν) =
∑

i,j
hij(ϕij +

ν
∑

m=1
c(i,j)m em) +

∑

i,j
kij(ψij +

∑

i,j
d(i,j)
m em)

=
∑

i,j
hijϕij +

∑

i,j
kijψij

is contained in the module generated by the syzgyies ϕij, ψij . ut
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