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1. Introduction

It is well known that the complexity of Gröbner bases computation strongly depends
on the term ordering, moreover, elimination orderings often yield a greater complexity.
This remark led to the so-called FGLM conversion problem, i.e. given a Gröbner basis
w.r.t. a certain term ordering,‖ find a Gröbner basis of the same ideal w.r.t. another term
ordering. One of the efficient approaches for solving this problem, in the zero-dimensional
case, is the FGLM algorithm (see Faugère et al., 1993).

The key ideas of this algorithm were successfully generalized in Marinari et al. (1993)
with the objective of computing Gröbner bases of zero-dimensional ideals that are deter-
mined by functionals (in the sense that they are kernels of finite sets of linear morphisms
from the polynomial ring to the base field). In fact Buchberger and Möller (1982) pio-
neered the work of FGLM and these algorithms.

The main goal of this paper is to generalize the FGLM algorithm to non-commutative
polynomial rings.∗∗ Before giving a brief summary of the sections of this paper, let us
introduce some familiar notation.

X := {x1, . . . , xn} finite alphabet
〈X〉 free monoid on X
1 the empty word in 〈X〉
K〈X〉 free associative K algebra on X (K a field)
I two-sided ideal of K〈X〉

§E-mail: {mborges, mijail}@csd.uo.edu.cu
¶E-mail: theomora@dima.unige.it
‖Usually, it is a total degree ordering, where computing complexity is lower.
∗∗The theory presented here in the case of two-sided ideals can be generalized to left-modules of non-
commutative polynomial rings (see Alonso et al., 1995).
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Ideal(F ) two-sided ideal of K〈X〉 generated by F ⊂ K〈X〉
K〈X〉/I residue class algebra of K〈X〉 modulo I
L(s) length of the word s ∈ 〈X〉
Card(C) cardinal of the set C

1.1. overview

Section 2 deals with basic Gröbner theory. The partition of 〈X〉 in different regions
which is induced by a a semigroup ideal is characterized. In particular, the notion of
Border bases is generalized from Marinari et al. (1993); these are specific Gröbner bases
that allow us to compute canonical forms in polynomial time. In Section 3 we introduce
our main algorithm (Algorithm 10); it is presented in such a fashion that makes essential
ideas of algorithms like FGLM clear and, at the same time, allows us to specialize it on
several particular settings. Section 4 generalizes the pattern, introduced in Marinari et al.
(1993), of computing Gröbner bases for ideals that are determined by functionals. Three
cases are shown that are compatible with this approach. Section 5 shows that the view-
point of Section 4 is not general enough, that is, there are instances where Algorithm 10
can be itemized in a better way than the one given in Section 4, covering finite monoids
given by concrete representation that allow word multiplication by generators and re-
covering the ideas introduced in Labontè (1990). All the algorithms that are designed
thus far turn out to be polynomial in their input (number of variables, dimension of the
corresponding residue class vector space, maximal length of the words in canonical form,
etc.). Lastly, in Section 6, some considerations are given in order to design algorithms like
FGLM for (twisted) semigroup rings. Almost everywhere in this paper I is considered to
be zero-dimensional; consequently, K〈X〉/I will have finite dimension in that case.

2. Border Bases for Two-sided Ideals

The main objective of this section is to introduce non-commutative Gröbner bases
techniques for algorithms like FGLM and, in particular, generalize the notion of border
bases on that setting. This notion appears for the first time in Faugère et al. (1993) where
its information is essentially contained in the so-called Matphi function; subsequently, its
formal definition was given in Marinari et al. (1993). The new results that are included in
this section are Proposition 1 and from Definition 6 on. Proposition 1 is outside Gröbner
bases theory, but contributes to it because the set of the maximal terms of an ideal is a
semigroup ideal. Definition 6 and the subsequent results deal with border bases. On the
other hand, from Theorem 2 to Definition 5, the reader will just find well known Gröbner
bases tools.

Let τ ⊂ 〈X〉 be a semigroup ideal of 〈X〉, i.e. for s, u ∈ 〈X〉 and t ∈ τ , stu ∈ τ . Then, it
is well known that τ has a unique set G(τ) of irredundant generators (probably infinite).
We are going to introduce for τ some notation and terminology, which are similar to
those introduced in Marinari et al. (1993). The difference, in the non-commutative case,
is that the border of τ is divided into two one-sided borders, each of them is enough in
order to generate τ and their intersection is G(τ).

For s := xi1 · · · xim ∈ 〈X〉 we set:

rr(s) : =


1 for m = 1

(right rest of s),
xi2 · · · xim otherwise
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lr(s) : =


1 for m = 1

(left rest of s).
xi1 · · · xim−1 otherwise

Then, let

N(τ) := {s ∈ 〈X〉 | s /∈ τ} (outside of τ),

rB(τ) := {t ∈ τ | rr(t) ∈ N(τ)} (right border of τ),

lB(τ) := {t ∈ τ | lr(t) ∈ N(τ)} (left border of τ),

B(τ) := rB(τ) ∪ lB(τ) (border of τ),

I(τ) := τ \B(τ) (interior of τ).

We remark that t ∈ τ lies in G(τ) if all its proper divisors are in N(τ). In the following
proposition, some basic results concerning τ and its regions are summarized. Although
they are very easy to prove, their importance is crucial for non-commutative FGLM
techniques.

Proposition 1. (Properties of the Semigroup Ideal Regions) (i) For each u
∈ τ there exist s1 ∈ 〈X〉 (s2 ∈ 〈X〉) and t1 ∈ rB(τ) (t2 ∈ lB(τ)) such that u = s1t1
(u = t2s2).

(ii) For x ∈ X:

• If s ∈ N(τ), then xs ∈ N(τ) ∪ rB(τ) and sx ∈ N(τ) ∪ lB(τ).
• If s ∈ rB(τ) (s ∈ lB(τ)), then sx ∈ rB(τ) ∪ I(τ) (xs ∈ lB(τ) ∪ I(τ)).
• If s ∈ I(τ), then xs, sx ∈ I(τ).

(iii) N(τ), N(τ) ∪ G(τ), N(τ) ∪ B(τ) are order ideals, i.e. if u belongs in one of these
subsets and s divides u, then s also belongs to those sets.

(iv) G(τ) = rB(τ) ∩ lB(τ).

Now let < be a semigroup total well ordering on 〈X〉 (such an ordering is also called
admissible), then the following notations are quite familiar: For f ∈ K〈X〉\{0}, T<(f) is
the maximal term of f w.r.t. <, LC<(f) is the leading coefficient of f w.r.t. <. Similarly,
for F ⊂ K〈X〉, T<{F} is the set of maximal terms of non-zero polynomials in F , T<(F ) is
the semigroup two-sided ideal generated by T{F}. Moreover, for the sake of simplicity in
notation, U<(F ) will be used instead of U(T<(F )), where U lies in {G,N, rB, lB,B, I}.†

Theorem 2. (The Vector Space of Canonical Forms Modulo an Ideal) Let
SpanK(N<(I)) be the K-vector space whose basis is N<(I). Then the following holds:

(i) K〈X〉 = I⊕SpanK(N<(I)) (this sum is considered as a direct sum of vector spaces).
(ii) For each f ∈ K〈X〉 there is a unique polynomial of SpanK(N<(I)), denoted by

Can(f, I,<) = Can(f, I), such that f − Can(f, I,<) ∈ I; moreover:

• Can(f, I,<) = Can(g, I,<) iff f − g ∈ I.

†Of course, given an ideal I and two different admissible orderings < and ≺, in general we have
U(T<(I)) 6= U(T≺(I)) for all U . Notwithstanding this strong dependence on <, while a single admissible
ordering < is considered, so that no confusion can arise, we will often simply write U(F ) for U<(F ).
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• Can(f, I,<) = 0 iff f ∈ I.

(iii) There is a K-vector space isomorphism between K〈X〉/I and SpanK(N<(I)) (the
isomorphism associates the class of f modulo I with the canonical form Can(f, I,<)
of f modulo I).

Can(f, I,<) = Can(f, I) is called the canonical (normal) form of f modulo I (and the
dependence on < is omitted if no confusion arises).

The following definitions and results (Theorem 3, Proposition 4, and Definition 5) be-
long to the non-commutative Gröbner bases theory on free algebras (cf. Mora, 1994).

Theorem 3. (Some Characterizations of Gröbner Bases) Let F ⊂ I \ {0}.
Then, the following properties are equivalent:

(i) T<(F ) = T<(I).
(ii) N<(F ) is a K-basis of SpanK(N<(I)).
(iii) {π(s) | s ∈ N<(F )} is a K-basis of K〈X〉/I, where π : K〈X〉 → K〈X〉/I is the

canonical projection.

A subset F with the above properties is called a Gröbner basis of I w.r.t. the given term
ordering <.

Proposition 4. (Characterization of Zero-dimensional Ideals) Let F be a
Gröbner basis of I w.r.t. <. Then, I is a zero-dimensional ideal (i.e. dimK K〈X〉/I <∞)
iff N<(F ) is finite. Moreover, in such a case, dimK K〈X〉/I = Card(N<(F )).

We will set, for the zero dimensional case, d := dimK K〈X〉/I.

Definition 5. (Reduced Gröbner Basis) A subset F ∈ I \{0} is called the reduced
Gröbner basis of I w.r.t. < if the following holds.

(i) T<{F} = G<(I) (i.e. T<{F} is the set of irredundant generators of T<(I)).
(ii) For f ∈ F , f = T<(f)− Can(T (f), I, <).

We will denote by rGb(F,<) the reduced Gröbner basis of Ideal(F ) with respect the <,
and by rGb(F ) when there is no reason to specify <.

The computation of Can(f, Ideal(F ), <), where F is a finite Gröbner basis, may be
carried out by means of a reduction procedure; however, this method has proved to be
inefficient (cf. Faugère et al., 1993). In a commutative polynomial ring a more efficient
approach was proposed in Faugère et al. (1993) and formalized via the notion of border
basis (B-basis) of an ideal in Marinari et al. (1993, Definition 3.9).† Shortly, the B-basis
of an ideal I is a certain Gröbner basis of I, which contains rGb(I,<) and whose set

†In the non-commutative case, the notion of (left) Border basis essentially coincides with the one of
prefix Gröbner basis introduced in Madlener and Reinert (1998) and Reinert (1995). In the commutative
case, it is strictly related with the notion of Janet basis introduced by Zharkov (1996) and the papers
cited there and also Apel (1998), as a generalization of Janet’s (1929) theory of partial differential
equations.
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of maximal terms is the border of T<(I); it allows the user to compute Can(f, I,<) in
polynomial time. Border bases can be successfully generalized to non-commutative free
algebras as is shown from Definition 6 to Remark 9.

Definition 6. (Right (Left) Border Basis) The right (left) border basis of I w.r.t.
< is the subset rB(I,<) ⊂ I (lB(I,<) ⊂ I) defined by :

rB(I,<) := {s− Can(s, I,<) | s ∈ rB<(I)} (rB-basis of I),
lB(I,<) := {s− Can(s, I,<) | s ∈ lB<(I)} (lB-basis of I).

The following results, Theorem 7 to Remark 9, are equally valid (of course) if one replaces
rB by lB.

Theorem 7. (Border Bases Properties) (i) rB(I,<) is a Gröbner basis of I.
(ii) rGb(I,<) = rB(I,<) ∩ lB(I,<).
(iii) If I is a zero dimensional ideal, then rB(I,<) is finite and Card(rB(I,<)) � nd.
(iv) If I is a zero dimensional ideal, then rGb(I,<) is finite and its cardinal is bounded

by nd.

Proof. (i) Let us see that rB(I,<) satisfies the Gröbner basis characterization The-
orem 3(i): On one side, by Theorem 2(ii), rB(I,<) ⊂ I \ {0}. On the other side,
by Proposition 1(i) 〈X〉T<{rB(I,<)} = T<(I).

(ii) See Proposition 1(iv) and the structure of the polynomials in rGb(I,<) (Defini-
tion 5).

(iii) As N<(I) is finite and d = Card(N<(I)) (see in Proposition 4 the characterization
of zero-dimensional ideals), one gets the result from the structure of the words in
T<{rB(I,<)}.

(iv) It is a consequence of (ii) and (iii). 2

Proposition 8. (Complexity Analysis of Computing Normal Forms by Means

of Border Bases) Let I be a zero dimensional ideal, then rB(I,<) can be used to
compute canonical forms with the following complexity (where d = Card(N<(I))):

(i) If u ∈ 〈X〉 and s ∈ N<(I), then Can(us, I,<) is computed in O(L(u)d2) arithmeti-
cal operations.

(ii) If u ∈ 〈X〉, then Can(u, I,<) is computed in O(L(u)d2) arithmetical operations.
(iii) If f :=

∑k
i=1 ciui, where, for i ∈ [1, k], ci ∈ K \{0} and ui ∈ 〈X〉, then Can(f, I,<)

is computed in O(kmd2) arithmetical operations, where m := max{L(ui) | i ∈
[1, k]}.

Proof. Following Faugère et al. (1993), we store the information of rB(I,<) as a func-
tion of three arguments, denoting for each x ∈ X, and s, t ∈ N<(I), Φr[x, s, t] the
coefficient of t in the expression of Can(xs, I,<) as a linear combination of vectors in
N<(I) so that Can(xs, I,<) =

∑
t∈N<(I) Φr[x, s, t]t.

With this representation in mind, it is easy to see that the size of rB(I,<) is bounded
by dM + nd2 (denoting n := Card(X) and considering size 1 for elements of the field of
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coefficients),† where M is the maximum of the set {L(u) | u ∈ N<(I)}.‡ Nevertheless, in
an efficient implementation, Φr requires to be defined only for those arguments whose
images are different from zero.

(i) Let u = u1x, where u1 ∈ 〈X〉 and x ∈ X; then,

Can(us, I,<) = Can(u1Can(xs, I,<), I, <) = Can

(
u1

d∑
i=1

Φr[x, s, ti]ti, I, <

)
.

Now, if u1 6= 1, one can factor u1 as u2y, where u2 ∈ 〈X〉 and y ∈ X; hence,

Can(us, I,<) = Can

(
u2

d∑
i=1

Φr[x, s, ti]Can(yti, I, <), I, <

)

=
d∑
j=1

d∑
i=1

Φr[x, s, ti]Φr[y, ti, tj ]Can(u2tj , I, <).

For each of the d summands
∑d
i=1 Φr[x, s, ti]Φr[y, ti, tj ] requires d multiplications

in K at most; consequently, expressing Can(us, I,<) in terms of linear combinations
of Can(u2tj , I, <) needs O(d2) arithmetical operations. One can repeat this process
while the remainder word (now u2) is different from 1; and so, we are done.

(ii) In (i) above, set s := 1, which is a canonical form modulo I except in the trivial
case I = K〈X〉.

(iii) It follows from (ii) above and the additivity of the function Can. 2

Remark 9. (i) The assumption of unit cost for the field operations
has already been done by Marinari et al. (1993) and Faugère et al. (1993) and
requires a not entirely realistic computational model. More realistically, Faugère
et al. (1993) also considered the growth of the coefficients in the computation of
rGb when the term ordering is changed and the old ordering is a degree compatible
one. Briefly, they concluded in that paper that, for that case, the new basis may
be computed in a time which is exponential in n, but polynomial in d; they also
consider this exponential behaviour to be unavoidable and related to cases where
the result is too big to be useful. One cannot hope to produce a complexity analysis
like the one in Faugère et al. (1993) for the non-commutative case in a more realistic
computational model than the one assumed in Marinari et al. (1993). In that model,
instead, following the argument Marinari et al. (1993, p. 144), it is easy to deduce
that the computation of canonical forms, for the non-commutative case, requires a
similar number of arithmetical operations to its commutative predecessor.

(ii) On the other hand, for certain interesting classes of ideals the complexity behaviour
may be lower than the one in Proposition 8; that is, for example, the case for
ideals generated by binomials (binomial ideals).§ It is not difficult to see that for
a binomial ideal I and a word u ∈ 〈X〉, Can(u, I,<) = ct, where c ∈ K \ {0}

†Remark that it is sufficient to store an indexed list {t1, . . . , td} of the elements in N<(I) and the nd2

coefficients Φr[x, s, t] s.t. Can(xs, I,<) =
∑
t∈N<(I) Φr[x, s, t]t.

‡M may be computed directly once a Gröbner basis for I is known; a general bound is M ≤ d
(cf. Proposition 1(iii)), but often could be a too big bound.
§And so for term rewriting theory.
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and t ∈ N<(I) (the reader could consult Borges and Borges (1998, 4.4(ii)) for
details). Therefore, for binomial ideals, the function Φr that is mentioned in the
proof of Proposition 8(i) is no longer useful by representing rB(I,<); instead,
it is more practical to define, for x ∈ X, s ∈ N<(I), Φr[x, s] := (c, i), where
c ∈ K \ {0}, i ∈ {1, . . . , d} and Can(xs, I,<) = cti. With this representation,
the size of rB(I,<) is bounded by d(M + n). Thus, in this case, the number of
operations for computing Can(us, I,<) = Can(u1Φr[x, s], I, <) in Proposition 8(i)
is L(u) and, as a consequence, that number is O(km) to compute Can(f, I,<) in
Proposition 8(iii).
As another example in the same direction as above, we have that the computation
of Can(us, I,<) in Proposition 8(i) when the binomial ideal I is generated by
binomials having the form s − t, in fact does not involve arithmetical operations;
its complexity is rather characterized by L(u) reduction steps. This kind of ideal
is strongly related to monoid presentations (cf. Madlener and Reinert (1998) for
a recent study regarding this relation). We also remark that in the same mood
FGLM algorithm has been used in Reinert et al. (1998) in their interpretation of
the Todd-Coxeter Algorithm in terms of Gröbner techniques.

3. FGLM Algorithm for Free Associative Algebras

In this section we present our generalization, for free associative algebras, of the FGLM
algorithm. The procedure we are presenting is based on a sort of black-box pattern: in
fact the description of Steps 5 and 6 is only made in terms of their input and output. More
precisely, we are assuming that a term ordering ≺ is fixed on 〈X〉, I is a zero-dimensional
ideal,† and that the K-vector space SpanK(N≺(I)) is represented by giving

• a K-vector space E which is endowed of an effective function

LinearDependency[v, {v1, . . . , vr}]

which, for each finite set {v1, . . . , vr} ⊂ E of linearly independent vectors and for
each vector v ∈ E returns the value defined by{

{λ1, . . . , λr} ⊂ K if v =
∑r
i=1 λivi

False if v is not a linear combination of {v1, . . . , vr}

• a linear injective morphism ξ : SpanK(N≺(I)) 7→ E.

This informal approach allows a free choice of a suitable representation of the space
SpanK(N≺(I)) both to us in our complexity analysis and to the user in its efficient
implementation of these techniques. Moreover, as an aside effect, it enables us to present
this generalization in such a way that it can be applied on several more particular patterns
and helps to make key ideas behind the FGLM algorithm less obscure.
Let us start making some references to some subroutines of the algorithm.

InsertNexts[t, List] inserts properly the products xt (for x ∈ X) in List, and sorts it
by increasing ordering w.r.t. the ordering < (the reader should notice that InsertNexts,
unlike its commutative predecessor in Faugère et al. (1993), does not produce duplicates).

NextTerm[List] removes the first element from List and returns it.

†Without this restriction the algorithm does not terminate.
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Algorithm 10. (Non-commutative FGLM Algorithm)

Input: <, a term ordering on 〈X〉; ξ : SpanK(N≺(I)) 7→ E, a suitable representation
of SpanK(N≺(I)) as specified above.

Output: rGb(I,<).

1. G := ∅; List := {1}; N := ∅; r := 0;
2. While List 6= ∅ do
3. t := NextTerm[List];
4. If t /∈ T<(G) \ T<{G} then (it occurs iff t = 1 or lr(t) ∈ N);†

5. v := ξ(Can(t, I,≺));
6. Λ := LinearDependency[v, {v1, . . . , vr}];
7. If False 6= Λ then G := G ∪ {t−

∑r
i=1 λiti} (where Λ = (λ1, . . . , λr))

8. else r := r + 1;
9. vr := v;
10. tr := t; N := N ∪ {tr};
11. List := InsertNexts[tr, List];
12. Return[G]

Justification of the algorithm:
The proof of correctness follows the same idea as Marinari et al. (1993); however, we
include it here in order to highlight its main arguments, itemize the aspects concerning
the non-commutative case and clarify some obscure details in the proof given in Marinari
et al. (1993).

LinearDependency guarantees that N is a linearly independent set modulo I; on
the other hand, the words in Step 3 are taken into account in increasing order (thanks to
InsertNexts); hence, all things considered, N is a subset of N<(I). Now, we also have
to prove that G ⊂ I, but:

t−
r∑
i=1

λiti ∈ I ⇐⇒ Can(t, I,≺) =
r∑
i=1

λiCan(ti, I,≺) (3.1)

and, by the construction of v1, . . . , vr and v, the right side of (3.1) holds iff v =
∑r
i=1 λivi.

Moreover, after termination, G is a subset of rGb(I,<) (compare the property of
border bases Theorem 7(ii) with Step 4 and note that, for t ∈ N , Can(t, I,<) = t).‡

Therefore, 〈X〉 = N ∪ T<(G) ⊂ N<(I) ∪ T<(I) = 〈X〉 and, since T<(G) ⊂ T<(I), one
infers T<(G) = T<(I) and N = N<(I); consequently, G = rGb(I,<).

This proves the correctness of the algorithm; termination is guaranteed by the finiteness
of N<(I).

Remark 11. (i) A key idea in algorithms like FGLM is to use the relationship between
membership to an ideal I and linear dependency modulo I, namely ∀ci ∈ K, si ∈
K〈X〉:

r∑
i=1

cisi ∈ I \ {0} ⇐⇒ {s1, . . . , sr} is linearly dependent modulo I.

†Since the function InsertNexts produces only elements in N<(I) ∪ rB<(I) and because of Theo-
rem 7(ii).
‡Note that (by the way N is being built) each term t is considered after the corresponding term lr(t).
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This connection with linear algebra was used for the first time in Gröbner bases
theory as early as Buchberger (1970).

ii. It is clear that one can compute rB(I,<) just by eliminating the performance of
Step 4 in Algorithm 10.

iii. With the presentation of the algorithm given above, one can do only a complexity
analysis of the management of List in InsertNexts and the test of Step 4. It is
an easy exercise to prove, on the basis of the proof given in Faugère et al. (1993,
Theorem 5.1), that the former complexity is O(nd2M), where M was defined in
the proof of Proposition 8, and the latter one is also dominated by nd2M (this
test is a searching in the set N , which has d elements at most, each search needs
to compare with each word in N , which has a cost bounded by M; moreover, the
number of searches is nd).

4. FGLM Algorithm for Ideals that are Defined by Functionals:
Non-commutative Case

An algorithm to compute Gröbner bases of ideals that are defined by linear forms,
which is based on the FGLM algorithm, has proved to be successful in the commutative
case and turned out to be general enough for being applicable on several interesting
instances (see, Marinari et al., 1993, Algorithm 1).

The main goal of this section is to generalize that algorithm for computing Gröbner
bases in free associative algebras. In order to do so, we are going to state first some
generalizations of concepts and results that are given in Marinari et al. (1993) for the
specific case of commutative polynomial rings. As a matter of fact, several considerations,
in Marinari et al. (1993, Section 1) rather depend on relations between a vector space
and its dual than on properties of polynomial rings.

Thus, the structure of this section is as follows. Section 4.1 extends to any vector
space the duality theory that is given in Marinari et al. (1993) for the specific case
of commutative polynomial vector spaces. Proofs are really the same as those given in
Marinari et al. (1993), so our contribution is to present these results in a more general
context than its predecessor; besides, we summarize in Theorem 12 some results that
appeared dispersed (and sometimes not connected) in Marinari et al. (1993). Section 4.2
characterizes when a finite set of functionals on a (twisted) semigroup ring determines a
two-sided ideal of this ring and, if so, the type of ideal that is determined. Section 4.3
presents our algorithm for computing the reduced Gröbner basis of an ideal I ⊂ K〈X〉,
when this ideal is given by a set of functionals on K〈X〉. We prove, in this section,
that the designed algorithm is as efficient as its commutative predecessor in Marinari
et al. (1993). Section 4.4 shows how Algorithm 15 is applied when the functionals are
determined by the coefficients of Can(·, I, <) w.r.t. a given N<(I). Section 4.5 exemplifies
Algorithm 16, which computes the right border basis starting from the reduced Gröbner
basis.

4.1. some relations between a vector space and its dual

Let P be a K-vector space and P ∗ its dual, i.e. the vector space over K of functionals
(linear forms) on P .
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4.1.1. biorthogonal and triangular sequences

We say that {q1, . . . , qs} ⊂ P is a biorthogonal sequence (b.o.s.) for L1, . . . , Ls ∈ P ∗
if Li(qj) = δji , for i, j ∈ [1, s], where δji is the Kronecker symbol. Similarly, {q1, . . . , qs}
is a triangular sequence (t.s.) for L1, . . . , Ls if Li(qj) = 0 for i < j and Lj(qj) = 1.
By the same argument as Marinari et al. (1993, Remark 1.5), it can be constructively
proved that, given a t.s., it is also possible to get a b.o.s. through a sort of Gram–Schmidt
orthogonalization process.

4.1.2. orthogonality relations between subspaces of P and P ∗

Let Q (respectively V ) be a K-vector subspace of P (P ∗). Let us denote, as Marinari
et al. (1993) did, by L(Q) (Z(V )) the subspace of P ∗ (P ) that is defined as follows:

L(Q) := {L ∈ P ∗| ∀f ∈ Q L(f) = 0} (Z(V ) := {f ∈ P | ∀L ∈ V L(f) = 0}).

The reader is able to find in Marinari et al. (1993, Lemma 1.1, Corollary 1.7) a proof
of the following facts: Z(L(Q)) = Q (if V is a finite dimensional K-subspace, then
L(Z(V )) = V ). Proofs in Marinari et al. (1993) are given under the hypothesis of P
being a vector space of commutative polynomials, but this condition is not really used
in the proofs, so the results are valid for any P whatsoever.

The proof for the statement inside the last parenthesis, given in Marinari et al. (1993),
used an equivalent form of the linear independency property for a set {L1, . . . , Ls} ⊂ P ∗;
this characterization is based on the existence of a b.o.s. for L1, . . . , Ls. In fact, there
are interesting characterizations of the linear independency for subsets of P ∗; we collect
some of them in the following theorem.

Theorem 12. (Some Characterizations of Linear Independency in P ∗) Let
L := {L1, . . . , Ls} be a subset of P ∗. Then the following statements are equivalent:

(i) L is linear independent in P ∗.
(ii) There exists a b.o.s. for L1, . . . , Ls.
(iii) There exists a t.s. for L1, . . . , Ls.
(iv) The linear mapping Ψ : P → Ks that transforms each f ∈ P into (L1(f), . . . , Ls(f))

is surjective.

Proof. (ii)⇒ (iii)⇒ (iv)⇒ (i) have a straightforward verification. For (i)⇒ (ii), the
reader is able to consult the proof in Marinari et al. (1993, Lemma 1.6). 2

Surjectiveness of Ψ and b.o.s. are related to polynomial interpolation problems. Con-
nection between Gröbner bases and Interpolation Theory is given in Buchberger and
Möller (1982) and Marinari et al. (1993), and more recently in Möller (1998), Sauer
(1998) and other papers quoted there. In fact, it may be possible to extend basic results
of this connection to the setting of this paper, but while it would be interesting to have
examples of generalized interpolation problems on non-commutative algebras, we do not
have any so far.
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4.2. ideals defined by functionals

Now let S be a semigroup, K[S] the free K-vector space on S (i.e. the vectors of K[S]
are the finite formal linear combinations of elements of S); let ∗ be a binary operation
on K[S] that behaves properly with field multiplication† endows this set with a ring
structure which will be denoted by K[S, ∗] (∗ is not necessarily the natural extension of
the multiplication of S, in which particular case one would get the classical semigroup
ring K[S] of S with coefficients in K). When K[S, ∗] 6= K[S], K[S, ∗] is often called a
twisted semigroup ring.

Our intention is now to compute Gröbner bases of a two-sided ideal I ⊂ K〈X〉‡ that
is defined by functionals, that is to say, input is not (as usual in Gröbner bases theory)
a generating set of I but a finite set V of functionals on K〈X〉 that “characterize” I by

I := {f ∈ K〈X〉| ∀L ∈ V L(f) = 0}.

For doing so, we begin by exhibiting some results that are valid in a more general context
than K〈X〉, i.e. K[S, ∗].

Taking into consideration Section 4.1.2, we have that if L1, . . . , Ls are functionals on
K[S, ∗], then Q := Z(SpanK(L1, . . . , Ls)) is uniquely determined by the set {L1, . . . , Ls}:

∀q ∈ K[S, ∗] q ∈ Q⇐⇒ L1(q) = · · · = Ls(q) = 0⇐⇒ q ∈ Ker(Ψ).§

Moreover, L(Q) = SpanK(L1, . . . , Ls). Thus, a natural question arises:

Given {L1, . . . , Ls} ⊂ K[S, ∗]∗:
Is Q := Z(SpanK(L1, . . . , Ls)) a two-sided ideal of K[S, ∗]?
An answer is given in Theorem 13.§

Theorem 13. (Characterization of Ideals that are Defined by Function-

als) Let {L1, . . . , Ls} ⊂ K[S, ∗]∗. Then Q := Z(SpanK(L1, . . . , Ls)) is a two-sided
ideal of K[S, ∗] iff, for i ∈ [1, s], t1, t2 ∈ S, the linear forms L{i,t1,t2} (L{i,t1,t2}(f) :=
Li(t1 ∗ f ∗ t2)) are linear combinations of L1, . . . , Ls.
Proof. ⇒ As Q is a two-sided ideal, for each f ∈ Q, t1, t2 ∈ S, t1 ∗ f ∗ t2 ∈ Q so that
L{i,t1,t2} ∈ L(Q) for all i ∈ [1, s], t1, t2 ∈ S. Since, by the orthogonality relations between
subspaces of P and P ∗ (4.1.2),

L(Q) = L(Z(SpanK(L1, . . . , Ls))) = SpanK(L1, . . . , Ls),

every L{i,t1,t2} lies in SpanK(L1, . . . , Ls).

⇐ The point is that every h ∈ K[S, ∗] is a linear combination
∑
αiti (where αi ∈ K \{0}

and ti ∈ S) and so, the two-sided ideal condition w.r.t. the product is equivalent to:

∀ t1, t2 ∈ S, f ∈ Q t1 ∗ f ∗ t2 ∈ Q.2 (4.2)

Remark 14. (i) At any rate, dimK K[S, ∗]/Q ≤ s (since Q = Ker(Ψ)) and equality
holds iff {L1, . . . , Ls} is linearly independent (see the characterization 12(iv) of

†i.e. (as) ∗ (bt) = ab(s ∗ t), ∀a, b ∈ K, s, t ∈ S.
‡K〈X〉 is, of course, equal to K[S] for S = 〈X〉.
§See definition of Ψ in Theorem 12(iv).
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linear dependency at P ∗). In addition, by the rank theorem,

dimK K[S, ∗]/Q = dimK SpanK(L1, . . . , Ls).

(ii) When K[S, ∗] is K〈X〉, condition (4.2) amounts to a property that can be verified
in a finite number of steps, namely:

For xj , xk ∈ X,L{i,xj ,xk} ∈ SpanK(L1, . . . , Ls).

It may be also possible to get, starting from (4.2), practical criteria for another
specific (twisted or not) semigroup rings.

(iii) Similar conclusions to Theorem 13 and (i) and (ii) above are contained in Marinari
et al. (1993, Proposition 1.3, Remark 1.9). We have wished here, in addition to
present generalizations of these results to twisted semigroup rings, to highlight
related problems, like, given a finite set of functionals

• how to verify that they determine an ideal?
• what kind of ideal they determine? and, consequently:
• when they can be taken as an input for computing Gröbner bases?

4.3. an algorithm to compute Gröbner bases of ideals that are defined

by functionals

The procedure we are going to discuss in this section is the non-commutative FGLM
algorithm for the case in which the input is a finite set of functionals defining an ideal.

Algorithm 15. (Non-commutative FGLM Algorithm for Ideals Defined by

Functionals)

Input: <, a term ordering on 〈X〉; L1, . . . , Ls, functionals on K〈X〉 such that Q :=
Z(SpanK(L1, . . . , Ls)) is a two-sided ideal of K〈X〉. (By Remark 14(i), Q is
zero-dimensional.)

Output: rGb(Q,<); {q1, . . . , qm}, a t.s. for L′1, . . . , L
′
m, where the L′is are a maximal

l.i. subset of {L1, . . . , Ls}.

1. G := ∅; List := {1}; N := ∅; r := 0;
2. While List 6= ∅ do
3. t := NextTerm[List];
4. If t /∈ T<(G) \ T<{G} then (it occurs iff t = 1 or lr(t) ∈ N)
5. v := (L1(t), . . . , Ls(t));
6. (p, v) := Gauss-reduce[t, v, q1, . . . , qr, v1, . . . , vr];
7. If v = 0 then G := G ∪ {p}
8. else r := r + 1;
8.1. j := min{i | Li(p) 6= 0};
8.2. L′r := Lj ;
9. vr := Lj(p)−1v;
9.1. qr := Lj(p)−1p;

10. tr := t; N := N ∪ {tr};
11. List := InsertNexts[tr, List];
12. Return[G]

Gauss-reduce was already defined in Marinari et al. (1993); we rewrite it here with the
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aim of self containment:

Gauss-reduce [p, v, q1, . . . , qr, v1, . . . , vr]
For i = 1 · · · r do v := v − L′i(p)vi; p := p− L′i(p)qi.

Justification:
The key is that the representation of SpanK(N<(Q)) by a linear injective morphism

ξ : SpanK(N<(Q)) 7→ E

which we choose in Algorithm 10 is the morphism ξ : SpanK(N<(Q))
7→ Ks defined by

∀f ∈ SpanK(N<(Q)) ξ(f) := Ψ(f) = (L1(f), . . . , Ls(f)).

This justifies Step 5; moreover, Gauss-reduce plays in essence the same role as Linear
Dependency of Algorithm 10. The reader can easily see that the set of vectors vi’s
that is built in Algorithm 10 is equivalent to the set of vi’s that is built in the present
algorithm, but the latter is built as an echelon set (see also Step 9), in order to influence
the efficiency of testing linear dependency. Moreover, Gauss-reduce, and Steps 8.1, 8.2,
and 9.1, guarantee that the qi’s form a triangular sequence for a permutation of the Li’s,
in case the functionals are l.i., otherwise, there will be functionals out of selection in
Step 8.1 (see Remark 14(i)).

Finally, Gauss-reduce again decides, at the same time, whether the vis are linearly
dependent (in case v = 0) and builds, in that case, the corresponding new polynomial p
of G (note that T<(p) = t, and, for i ∈ [1, s], qi ∈ SpanK(N<(Q)), Li(p) = 0).

For a better understanding of the above algorithm, it might be helpful to take into
account the following, easy to verify, facts. In every step of the Gauss-reduce algo-
rithm Can(p, I,<) = ξ−1(v); accordingly, for every i, qi = ξ−1(vi) and Li(p) is the ith
component of v.

4.3.1. number of arithmetical operations in algorithm 15

Step 5 of the algorithm requires us to evaluate s functionals on a set of words that
has cardinality ns at most (equality is reached when the functionals are l.i.). Thus if f
denotes the average cost of evaluating any of the functionals in any of the words that
needs to be considered, the number of functional evaluations is O(fns2). Moreover, it is
also clear that the cost of Gauss-reduce is the same as the one given in Marinari et
al. (1993), i.e. O( 1

2s
3 + ns3). Note, on the other hand, that Steps 9 and 9.1 only add 2s

multiplications. Consequently, the number of arithmetical operations in Algorithm 15 is
O(ns3 + fns2), hence, there is no difference between this algorithm and its predecessor,
(Marinari et al., 1993, Algorithm 1).

4.4. cost of evaluating the functionals when they are determined by

Gröbner bases

There is a natural way to give a zero-dimensional ideal by a finite set of linearly
independent functionals: Let Li(f) be the ith coefficient of Can(f, I,<) as a linear com-
bination of elements in N<(I), i.e. Can(f, I,<) =

∑s
i=1 Li(f)ti. In this section we also

assume I to be zero-dimensional and we write L(t) := (L1(t), . . . , Ls(t)),∀t ∈ 〈X〉. There
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are at least three cases where an ideal can be given by functionals; we are going to
describe them now by setting their input and output.

• Functionals given by border bases.
Input: The right border basis of I w.r.t. <1.
Output: The reduced Gröbner basis of I w.r.t. <2.
This is the starting point of Faugère et al. (1993), i.e. the basis conversion algorithm.
• Functionals given by reduced Gröbner bases.

Input: rGb(I,<).
Output: rB(I,<).
The corresponding algorithm has a similar goal as procedure Matphi of Faugère et
al. (1993).

• Functionals given by linear changes of coordinates.
Input: C, a linear change of coordinates (C(xj) :=

∑
k cjkxk + cj); rB(I,<1).

Output: rGb(C−1(I), <2).
In this case, the functionals are given by Can(C(f), I) =

∑s
i Li(f)ti, where s =

dimK K〈X〉/I and the ti’s are the elements of N(I,<1). This problem was tackled
in Gianni and Mora (1989) and was one of the starting points of the results in
Faugère et al. (1993).

In fact, complexity analysis are quite similar to those given in Marinari et al. (1993, 7.3,
7.4). However, the second case (4.4.2) is not detailed in Marinari et al. (1993) and has
some differences with Matphi of Faugère et al. (1993).

4.4.1. functionals given by border bases

One can realize† that O(ns3) is the number of arithmetical operations required for
evaluations of functionals, which is the same result as Marinari et al. (1993, 7.3); conse-
quently, f = O(s).

4.4.2. Functionals given by reduced Gröbner bases. Border basis algo-

rithm

In this case, one only needs to compute rB(I,<) \ rGb(I,<) (see the border bases
property Theorem 7(ii)), so we will do some slight modifications on Algorithm 10:‡

Algorithm 16.

Input: rGb(I,<).
Output: rB(I,<) and the function Φr[x, s, t], x ∈ 〈X〉, s, t ∈ N(I).

1. G := ∅; List := {1}; N := ∅; r := 0;
1.1 Gaux := rGb(I,<);§ p := NextTerm[Gaux];
2. While List 6= ∅ do

†See Proposition 8 above and Marinari et al. (1993, 7.3).
‡In this setting and under these modifications Algorithm 2.1 becomes essentially a rewording of the

one introduced by Labontè in Labontè (1990).
§We assume Gaux is ordered in increasing order of its maximal terms.
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3. t := NextTerm[List];
3.1 If t 6= T<(p)
4. then If t 6= 1 and lr(t) /∈ N
5. then Λ := (L1(t), . . . , Ls(t));†

6. G := G ∪ {t−
∑s
i=1 Li(t)ti};

7. For i = 1 · · · r do Φr[x, s, ti] := Li(t)
(where x ∈ X, s = rr(t), and xs = t);

8. else r := r + 1;
9. tr := t; N := N ∪ {tr};
10. List := InsertNexts[tr, List];

11 For i = 1 · · · r do Φr[x, s, ti] :=
{ 1 if i = r

0 otherwise
11.1 If T<(p) 6= 0 then

Φr[x, s, tr] := “The coefficient of tr in Can(T<(p), I, <)”
(where x ∈ X, s = rr(T<(p)), and xs = T<(p));

11.2 else G := G ∪ {p};
11.3 p := NextTerm[Gaux]

( If Gaux were empty p would be only a flag and T<(p) could be,
for instance, equal to 0);

11.4 Φr[x, s, ti] := “The coefficient of ti in Can(T<(p), I, <)”
( where x ∈ X, s = rr(T<(p)), and xs = T<(p));

12. Return[rGb(I,<) ∪G]

Justification:
The words of List belong to the following union of disjoint sets: T<{rGb(I,<)}∪N<(I)∪
(T<{rB(I,<)} \ T<{rGb(I,<)}).

If the new t lies in the first set, which is verified in Step 3.1, then one can include
directly the next p in G (Step 11.2) and consider the following polynomial of rGb(I,<)
(Step 11.3). Using NextTerm in Steps 1.1 and 11.3 is possible because the words of List
are taken in increasing order; NextTerm helps simplifying the algorithm.

If t is now in N<(I), which is decided (after Step 3.1) in Step 4‡ then t can be entered
into the set N .§

Lastly, one can infer (after Steps 3.1 and 4) that t ∈ T<{rB(I,<)}\T<{rGb(I,<)}, in
which case (and only in it) computing L(t) is necessary. It is clear that t−

∑s
i=1 Li(t)ti ∈

I; moreover, this polynomial is an element of rB(I,<) (see the definition of border bases
in Definition 6), justifying Step 6.

On the other hand, Φr is simultaneously built in order to use it for the computation
of L(t) in Step 5 (see Steps 7, 11, and 11.4)¶ and so is a free bonus of the algorithm. Φr

is obviously equal to zero when it is evaluated on arguments that are not considered in
those steps.2

Complexity analysis for Algorithm 16.

†Recall that Can(t, I, <) =
∑s
i=1 Li(t)ti.

‡Setting t = xlr(t), lr(t) ∈ N<(I) implies t ∈ N<(I) ∪ T<{rB(I,<)}; the conclusion follows since
t ∈ T<(I) has been ruled out in Steps 3.1 or 4.
§In this case, for ti ∈ N , Lj(ti) = δij .
¶More details can be found in the complexity analysis below.
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L(1) := (1, 0, . . . , 0)︸ ︷︷ ︸
s

, let us then see how to compute L(t): to do so we start factoring t

as xwy, where x, y ∈ X, and w ∈ N (t ∈ X in Step 5 is not possible because of Steps 3.1
and 4). This factorization can be made by the property of the semigroup ideal regions of
Proposition 1(iii). Hence:

Can(t, I,<) =
r∑
i=1

Φr[x,w, ti]Can(tiy, I,<).

As xw < t and tiy < t, for every ti ∈ N , we already have enough information, on the
function Φr, for computing each factor Φr[x,w, ti]Can(tiy, I,<) in O(Ms2) arithmetical
operations (see Proposition 8(ii)). Consequently, the number of operations for the sum is
also bounded by the same quantity as above and the total cost is O(nMs3); moreover,
f = O(Ms). As a consequence, Algorithm 16 has a complexity that is a little greater than
its predecessor Matphi in Faugère et al. (1993), which has a complexity bounded by ns3.
Note, however, that Step 5 is only applied on words of T<{rB(I,<)} \ T<{rGb(I,<)}
and so the total number of evaluations is really bounded by cMs2, where c is the quantity
of polynomials in the above difference set.

4.4.3. functionals given by linear changes of coordinates

The analysis here does not differ from the one given in the commutative case (see
Marinari et al., 1993, 7.4), thus, in this case one has an algorithm that is O(n2s3).

Example 16. We are going to consider K to be a field of characteristic zero.

An application of Algorithm 16.

Let rGb(I,<TD) := {p1, p2, p3, p4, p5, p6}, where <TD is the total-degree term orde-
ring and p1 := x2

2 + x2x1 + x1x2 + x2
1 − 1, p2 := x3

1 − 1, p3 := x2
1x2 − x2x1 − x2

1 + 1,
p4 := x1x2x1−x2−x1 +1, p5 := x2x

2
1−x1x2−x2

1 +1, p6 := x2x1x2 +x2x1 +x1x2 +x2
1−1.

It is easy to see that N(I,<TD) = {1, x1, x2, x
2
1, x1x2, x2x1}. The latter condition guar-

antees the finite dimensionality. Note that, in order to apply Algorithm 16, one does not
need to know dimK〈X〉/I, it suffices to know in advance that this K-vector space has
finite dimension.
p := p1; t1 := 1; Φr[x2, x2, 1] := 1; List := {x1, x2};

t2 := x1; Φr[x1, 1, 1] := 0; Φr[x1, 1, x1] := 1; Φr[x2, x2, x1] := 0, List := {x2, x
2
1, x2x1};

t3 := x2; Φr[x2, 1, 1] := Φr[x2, 1, x1] := 0; Φr[x2, 1, x2] := 1; Φr[x2, x2, x2] := 0; List :=

{x2
1, x1x2, x2x1, x

2
2}.
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We can continue in a similar way until x2
2, in which case: G := {p1}; p := p2;

Φr[x1, x
2
1, 1] := 1; Φr[x1, x

2
1, x1] := Φr[x1, x

2
1, x2] := Φr[x1, x

2
1, x

2
1] := Φr[x1, x

2
1, x1x2] :=

Φr[x1, x
2
1, x2x1] := 0. The reader can verify thereby that the unique word in T{rB(I)} \

T{rGb(I)} is x2
2x1; when it is reached we have:

Can(x2
2x1, I) = Can

((
6∑
i=1

Φr[x2, x2, ti]ti

)
x1, I

)
= Can(x1, I)− Can(x3

1, I)−

Can(x1x2x1, I)− Can(x2x
2
1, I) = −x1x2 − x2

1 − x2 + 1; accordingly:

rB(I,<TD) = {p1, . . . , p6} ∪ {x2
2x1 + x1x2 + x2

1 + x2 − 1}.

5. FGLM Algorithm for Monoid and Group Rings

Let M be a finite monoid that is generated by g1, . . . , gn; φ : 〈X〉 →M , the canonical
morphism that sends xi to gi; σ ⊂ 〈X〉 x 〈X〉, a presentation of M defined by φ. Then,
it is known that the monoid ring K[M ] is isomorphic to K〈X〉/I(σ), where I(σ) is the
two-sided ideal generated by P (σ) := {s − t|(s, t) ∈ σ}; moreover, any Gröbner basis
G of I(σ) is also formed by binomials of the above form. In addition, it can be proved
that {(s, t)|s− t ∈ G} is another presentation of M (cf. Madlener and Reinert, 1998,
Theorem 1).

We are going to show that in order to compute rGb(I(σ), <)† one only needs to have M
given by a concrete representation that allows the user to multiply words in its generators;
for instance: M may be given by permutations, matrices over a finite field, or by a
more abstract way (a complete or convergent presentation). Accordingly, we are going to
do the necessary modifications on Algorithm 10 for this case. First of all, we represent
SpanK(N<(I(σ))) by the linear injective morphism ξ : SpanK(N<(I(σ))) 7→ K[M ] which
is the natural extension of φ. Hence, Step 5 will be

v := miξ(s), where s = rr(t) and xis = t.

Moreover, LinearDependency[v, {v1, . . . , vr}] can be computed as{
ξ−1(v) if v ∈ {v1, . . . , vr}
False otherwise.

Finally, Step 7 changes into:

If False 6= Λ then G := G ∪ {t− ξ−1(v)}.

Remark 17. (i) This example shows that the capability of the K-vector space E,
w.r.t. LinearDependency, that is demanded in Algorithm 10 is required only on
those sets of vectors {v1, . . . , vr, v} that are built in the algorithm.

(ii) It is clear that the cost of repeated applications of Step 5 is O(c1ns), where c1 is
the cost of multiplying two elements of M and s = Card(M). Also the complexity
of LinearDependency is bounded by c2ns

2, where c2 is the cost of comparing
two elements of M .

†Note that M is finite iff I(σ) is zero-dimensional.
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Let us see an example where M is the alternating group A4, which is generated by
g1 := (1, 2)(2, 3), g2 := (1, 2)(3, 4).

For group presentations, one needs to take into consideration the inverses, that is,
σ ⊂ 〈X ∪ X−1〉 × 〈X ∪ X−1〉 (where X−1 satisfies the conditions X ∩ X−1 = ∅ and
Card(X) = Card(X−1)), and σ contains at least the relations xx−1 = x−1x = 1, for
every x ∈ X.

We will use as the term ordering the following one that is defined in Mora (1988):
Let u,w be two words in 〈X〉 and let xk, xm be the maximal elements of X (w.r.t.
<L) that divide respectively u and w. If xk <L xm then u <L w; if xk were equal to
xm, then the comparison would be made by recursion: First, write u and w as: u =
t1xkt2 . . . tm1xktm1+1, w = v1xkv2 . . . vm2xkvm2+1 (where the ti’s and vj ’s belong to
〈x1, . . . , xk−1〉), then u <L w if{

m1 < m2 or m1 = m2 and tj <L vj
(where j = max {i ∈ [1,m1 + 1] | ti 6= vi}).

This term ordering has elimination properties (see Borges and Borges, 1998). Thus, in
particular, if one considers X <L X

−1, then it suffices to work with X and, at the end
of the calculus, add the corresponding relations for the inverses, i.e. x−1−Can(x−1) (see
details in Borges and Borges, 1998, Proposition 4.5).

Example 18. (An Application of Algorithm 10 on Group Rings) Calls to List
in the assignments (List := {·} ∪ List︸︷︷︸ ∪ {·}) assume that NextTerm has been applied
previously to this set.

t1 := 1; List := {x1, x2}; t2 := x1; List := {x2
1, x2, x2x1}; t3 := x2

1; List := {x3
1} ∪List∪

{x2x
2
1}; G := {x3

1 − 1}; t4 := x2; List := {x1x2} ∪ List ∪ {x2
2}; t5 := x1x2; List :=

{x2
1x2} ∪List∪ {x2x1x2}; t6 := x2

1x2; List := {x3
1x2} ∪List∪ {x2x

2
1x2}; (x3

1x2 ∈ T (G) \

T{G}); t7 := x2x1; List := {x1x2x1} ∪ List ∪ {x2
2x1}; t8 := x1x2x1; List := {x2

1x2x1} ∪

List ∪ {x2x1x2x1}; t9 := x2
1x2x1; List := {x3

1x2x1} ∪ List ∪ {x2x
2
1x2x1}; (x3

1x2x1 ∈

T (G) \ T{G}); t10 := x2x
2
1; List := {x1x2x

2
1} ∪ List ∪ {x2

2x
2
1}; t11 := x1x2x

2
1; List :=

{x2
1x2x

2
1} ∪ List ∪ {x2x1x2x

2
1}; t12 := x2

1x2x
2
1; List := {x3

1x2x
2
1} ∪ List ∪ {x2x

2
1x2x

2
1}.

At this point, there are no more elements for N and the set G is completed as follows:

G := G ∪ {x2
2 − 1, x2x1x2 − x2

1x2x
2
1, x2x

2
1x2 − x1x2x1}.

Now, in order to have rGb(I(σ), <L) ⊂ K〈x1, x2, x
−1
1 , x−1

2 〉, one only needs to add x−1
1 −

x2
1 and x−1

2 − x2 to the set G. On the other hand, it is not difficult to verify that

rB(I(σ), <L) = G ∪ {x3
1x2 − x2, x

3
1x2x1 − x2x1, x

2
2x1 − x1,

x2x1x2x1 − x2
1x2, x2x

2
1x2x1 − x1x2x

2
1, x

2
2x

2
1 − x2

1,

x2x1x2x
2
1 − x2

1x2x1, x2x
2
1x2x

2
1 − x1x2}.

Summarizing we can say that, with the procedure that is explained in this section, the
user can solve the following problem: Given a finite monoid M by means of a generating
set and an effective way to multiply words in these generators, find the reduced Gröbner
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basis (or the right border basis) for the two-sided ideal of K〈X〉 that determines K[M ];
consequently, a complete presentation for M .

If the generators were, for example, permutations of degree k and k > n, then c1, c2 ≤ k
and the time computing of the corresponding algorithm is ks2(k + M) (also take into
account Remark 11(iii)).

In the example of the alternating group, see above, the corresponding border basis
leads to an algorithm that allows us to multiply words in canonical form in 5 steps at
most (cf. Remark 9(ii)).

6. Further Generalization

6.1. FGLM algorithm for semigroup rings

In fact, when a semigroup S is given, it can be possible to build Gröbner basis tools
for K[S] (ref. Mora, 1994, Section 7). Therefore, we are going to discuss here key ideas
in order to design an algorithm like FGLM for two-sided ideals of K[S]:

There are some essential points in algorithms like FGLM, namely:

• Explore a certain finite subset T of S where all the heads of rGb(I) have to be
contained. Characterizations like Proposition 1 (properties of the semigroup ideal
regions) are crucial in order to choose right subsets of S.

• Decide, on the basis of characterizations of T<{rGb(I,<)} such as Theorem 7(ii)
and the linear dependency of N<(I), what elements of T give place to polynomials
of rGb(I,<).

There are some main problems for getting the above goal:

• How to build T .
• How to decide linear dependency (here a subproblem is: How to compute Can(t, ·, <),

for every t ∈ T ).

The solution for the first problem has been, up to now and from Faugère et al. (1993)
on, to move from the smallest words, beginning from 1, and forming, for each t ∈ N<(I)
that has been found, the new possible words of T<{rGb(I,<)} that are multiple of t.
Nevertheless, it may not be the best way for every case.

The solution for the second problem strongly depends on the particular algebraic
structure where one wanted to apply the algorithm.

6.2. FGLM algorithm for twisted semigroup rings

Gröbner bases theory has also been generalized to twisted semigroup rings K[S, ∗]
assuming the following conditions hold:

(i) S ∪ {0} is endowed with a well ordering such that:

∀l, r, t1, t2 ∈ S t1 < t2, lt1r 6= 0, lt2r 6= 0 =⇒ lt1r < lt2r.

(ii) ∀l, r ∈ S, ∀f ∈ K[S] either lT (f)r = 0 or T (l ∗ f ∗ r) = lT (f)r.
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On twisted semigroup rings, see Mora (1994, Section 9.1), G ⊂ I \ {0} is a Gröbner
basis of I if T<(I)∪ {0} is generated by T<{G} ∪ {0}(where the multiplication is that of
the semigroup S). It has the advantage that if we had already obtained a result such as
Proposition 1 for S, then that theorem would also be valid in K[S, ∗]; consequently, the
corresponding FGLM algorithm does not differ so much from the one designed for K[S].
The essential difference is that the valuable properties that relate Can with the product
continue being valid but for *, that is to say:

∀f, g ∈ K[S] Can(f ∗ g, I,<) = Can(Can(f, I,<) ∗ g, I,<) =

Can(f ∗ Can(g, I,<), I, <) =

Can(Can(f, I,<) ∗ Can(g, I,<), I) = Can(Can(f ∗ g, I,<), I, <).
As a consequence, if one needed to compute Can(fg, I,<) (as is usual in algorithms
like FGLM, for example, when computing Can(xs, I,<) is required), then one could
try to express Can(fg, I,<) algebraically in terms of Can(f ∗g, I,<). The corresponding
expressions that relate to the canonical forms of both products will depend on the specific
twisted semigroup ring and give place to specializations of the general FGLM algorithm.
Studying particular cases is out of the bounds of this paper. Having Gröbner bases
techniques and algorithms like FGLM for twisted semigroup rings is worth taking into
consideration because this sort of rings includes important instances, e.g., the so-called,
solvable polynomial rings (cf. Kandri-Rody and Weispfenning, 1987).
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