
doi:10.1006/jsco.2001.0504
Available online at http://www.idealibrary.com on

J. Symbolic Computation (2002) 33, 183–208

A New Algorithm for Discussing Gröbner Bases with
Parameters

ANTONIO MONTES†

Department of Matemàtica Aplicada 2, Universitat Politècnica de Catalunya, Spain

Let F be a set of polynomials in the variables x = x1, . . . , xn with coefficients in

R[a], where R is a UFD and a = a1, . . . , am a set of parameters. In this paper we
present a new algorithm for discussing Gröbner bases with parameters. The algorithm

obtains all the cases over the parameters leading to different reduced Gröbner basis,

when the parameters in F are substituted in an extension field K of R. This new algo-
rithm improves Weispfenning’s comprehensive Gröbner basis CGB algorithm, obtaining
a reduced complete set of compatible and disjoint cases. A final improvement determines

the minimal singular variety outside of which the Gröbner basis of the generic case spe-
cializes properly. These constructive methods provide a very satisfactory discussion and
rich geometrical interpretation in the applications.

c© 2002 Academic Press

1. Introduction

In many practical applications it is necessary to determine a Gröbner basis of an ideal
of polynomials whose coefficients depend on some parameters. The main problem in this
context is to obtain the distinct reduced Gröbner basis for all possible values of the
parameters.

Examples of this situation can be found, for instance, in constructive algebraic geometry
when determining conditions for a family of curves to have singular points (see Sec-
tion 11.2); in robotics, in order to determine conditions on the magnitudes of a robot
configuration with certain degrees of freedom and to solve the inverse kinematics problem
(see Section 11.3); in the load-flow problem for a given electrical network (Montes, 1995,
1998), (see Section 11.4); in automatic theorem proving, and so on.

A direct approach to this problem can be derived applying the comprehensive Gröbner
basis (CGB) algorithm of Weispfenning (1992) (see also Becker and Weispfenning, 1993).
The goal of Weispfenning’s algorithm is to obtain a CGB that specializes for all possible
values of the parameters. For this purpose it constructs a Gröbner system, i.e. a complete
set of constructible sets over the parameters, in order to add new polynomials to the ini-
tial basis and achieve the CGB. Nevertheless, the Gröbner system derived from CGB is,
in general, not simple enough for applications, as it generates more cases than necessary
and leads to a complex discussion. In this paper, we present an improved algorithm, called
DISPGB, that abandons the objective of obtaining a CGB and focuses its interest on the
essentially different reduced Gröbner basis (Gröbner system), simplifying the general dis-
cussion. A dichotomic tree discussion is carried out using quasi-canonical representations

†E-mail: montes@ma2.upc.es

0747–7171/02/020183 + 26 $35.00/0 c© 2002 Academic Press



184 A. Montes

of specialization. A further improvement of the output (GENCASE algorithm) provides
a minimal singular variety, outside of which the Gröbner basis of the generic case is
specialization-invariant, and a reduced complete set of special cases inside the given min-
imal singular variety. This is an important point that is not obtained by Weispfenning’s
CGB algorithm. Although the question about the algorithm independence of the singular
variety remains open, its practical determination by the algorithm provides a satisfactory
discussion leading to a rich geometrical interpretation in applications (see Section 11).
All the algorithms described in this paper are implemented in Maple V, release 6.†

In the case of linear systems, Sit (1992) gives an algorithm for the discussion using
determinants. For this case, determinants provide the theoretical elements for defining
the minimal singular variety. Our algorithm does not use determinants at all, but provides
a polynomial in the parameters directly related to the value of the system determinant.
Moreover, this “discriminant” polynomial is also obtained for general nonlinear systems,
where no analogue of the system determinant is known.

In order to state precisely the problem, let F = {f1, . . . , fs} ⊆ R[x, a] be a set of
polynomials in the variables x = x1, . . . , xn and the parameters a = a1, . . . , am, where R
is a unique factorization domain (UFD). We can consider F as a polynomial set in the
variables x with coefficients in R[a].

The goal of DISPGB is to obtain the distinct reduced Gröbner basis for all possible
values of the parameters. Under this perspective, a case is a set of polynomial equalities
and inequalities over the parameters a accepting the same expression for the reduced
Gröbner basis. It would be desirable to distinguish cases only when their corresponding
reduced Gröbner bases have different leading power product sets in the variables x. This
is a very demanding requirement. Nevertheless, using GENCASE, this objective is always
reached for the generic case, and usually we get very close to it for the special cases as
it will become clear in the examples.

The problem of specialization of Gröbner bases has been actually studied by many
authors. The general basic problem can be formulated in the following way. Let R,R′ be
Noetherian commutative rings with identity, and σ : R → R′ be a ring homomorphism.
When does a Gröbner basis G of an ideal I ⊆ R[x] map to a Gröbner basis of 〈σ(I)〉 ⊂
R′[x] under the natural extension σ : R[x] → R′[x]?

In Kalkbrener (1997) conditions obtained by different authors for this question are
reviewed (see Gianni, 1987; Kalkbrenner, 1987; Adams and Boyle, 1992; Pauer, 1992;
Gräbe, 1993; Assi, 1994; Becker, 1994). Kalkbrener (1997) also proves a necessary and
sufficient condition when R′ is a field.

We restrict ourselves to the case where the original ring R is a polynomial ring R[a]
over a UFD R and R′ some extension field K of the quotient field Quot(R). The variables
a are considered as parameters. In this case R[a] can be embedded in the quotient field
R(a) and we do not need the general algorithm for computing Gröbner basis over rings
(Möller, 1988), but only the classical (Buchberger, 1965, 1985; Gebauer and Möller, 1987;
Gianni and Mora, 1987) algorithm over fields.

The structure of this paper is as follows:
Sections 3 and 4 are devoted to the study of how specialization acts on the pseudo-

division and Gröbner basis algorithms. It is proved that they specialize to the correspond-

†The program and help libraries implementing the algorithms and a tutorial containing all the ap-
plications given in this paper with its corresponding time evaluation are available at the author’s url
http://www-ma2.upc.es/∼montes. Identification JSC3091.



A New Algorithm for Gröbner Bases with Parameters 185

ing algorithms inK[x] except for anm−1 dimensional variety (hypersurface). Any hyper-
surface outside which Buchberger’s algorithm specializes will be called a singular variety .
It is not difficult to complete the algorithm in order to obtain a singular variety.

Nevertheless, the singular variety computed by Buchberger’s algorithm is in general
larger than is strictly necessary, and is algorithm dependent. In order to minimize
it we introduce a generalized Gaussian elimination (GGE) algorithm. This algorithm
produces a new basis specializing properly for any specialization and is a good input for
Buchberger’s algorithm. It is also directly useful in applications, because it is able to sim-
plify problems. Section 5 is devoted to the study of the GGE algorithm (Montes, 1999).

In Section 6 we describe how specializations can be specified in a quasi-canonical form
in order to obtain a dichotomic discussion, that is a central point of DISPGB.

We are now ready to deal with the general DISPGB algorithm. Section 7 provides a
general description of DISPGB that tries to make it understandable. Section 8 is devoted
to two essential sub-algorithms. Section 9 is devoted to the control flow sub-algorithms;
the final theorem describing DISPGB is also given there.

In Section 10 the algorithm GENCASE, designed to improve the output of DISPGB is
described, and the theorem allowing definition and determination of the unique generic
case and the associated minimal singular variety is proved.

Finally some classical applications are given in the last section, showing both the
elegance and power of DISPGB.

2. Some Notations

In what follows we assume that �x is a given monomial order for the variables x.
We use the following notations. A power product in the variables x is denoted xα. A
monomial is a product of a coefficient in the coefficient ring or field and a power product
of the variables. The leading monomial, coefficient and power product are denoted:

lm(f,�x) = c xα, lc(f,�x) = c, lpp(f,�x) = xα.

We will also need a monomial order �a involving the parameters a and the compatible
elimination product order �x a (see Bayer and Stillman, 1987). It is defined by:

For all α, γ ∈ Zn
≥0 and β, δ ∈ Zm

≥0

xαaβ �x a x
γaδ ⇐⇒

{
xα �x x

γ or
(
xα = xγ and aβ �a a

δ
)}
. (1)

In order to avoid denominators and unnecessary factors in S-polynomials we define
them as follows:

S(f, g) =
Γxγ

lm(f)
f − Γxγ

lm(g)
g (2)

where Γ = lcm(lc(f), lc(g)) and xγ = lcm(lpp(f), lpp(g)), with a slightly different nor-
malization than in Weispfenning (1992).

For specializations coming from replacement of parameters, the corresponding ring
homomorphism is:

σ : R[a] −→ K (3)
where K is any field extension of R and σ|R = Id. The discussion is complete when
we consider the algebraic closure K of K. Providing a specialization is equivalent to
choosing a0 ∈ Km, and setting σ(a) = a0. We will also denote by σ the natural extension
σ′ : R[a][x] −→ K[x] which is the identity on x.



186 A. Montes

We can identify σa0 with a0, and extend σ for certain elements of R(a) (more precisely
to the local ring R[a]ker(σ)). When we say that σ(f) makes sense for f ∈ R(a)[x] it has
to be understood that f ∈ R[a]ker(σ)[x].

For obtaining k-quasi-canonical representations of the specification, as well as in other
parts of the algorithms in this paper, we need to decompose polynomials into irreducible
factors. We denote

FACVAR(W,�a) = {q1, . . . , qs}
the set of irreducible polynomials that are factors of the polynomials of W , normalized
in a canonical form in order to be recognized when compared.

Definition (2) is clearly specialization-invariant when the leading coefficients of f and
g are assumed different from zero.

The ideal generated by the set F in the polynomial ring R will be denoted 〈F 〉 or
explicitly 〈F 〉R, when some doubt about the polynomial ring can arise.

3. Pseudo-Division Algorithm and Specialization

We now study pseudo-division algorithm (see Cox et al., 1992) under specialization
and prove the following

Theorem 1. Let f, g1, . . . , gs ∈ R[a][x], W = FACVAR(lc(g1), . . . , lc(gs)) and σ a spe-
cialization satisfying σ(w) 6= 0, for all w ∈ W , so that σ(lc(gi)) 6= 0, for 1 ≤ i ≤ s.
Let q1, . . . , qs ∈ R(a)[x] and r ∈ R(a)[x] be the quotients and remainder of the pseudo-
division of f by g1, . . . , gs in R(a)[x]. Then σ(q1), . . . , σ(qs) and σ(r) make sense, and
they are the corresponding quotients and remainders for the pseudo-division of σ(f) by
σ(g1), . . . , σ(gs) in K[x].

Proof. We prove the result by induction on the number of division steps. Call (p(j),
q1

(j), . . . , qs
(j)) and (p′(k), q′1

(k)
, . . . , q′s

(k)) the partial (remainders, quotients) at steps j
and k, respectively of the divisions in R(a)[x] and in K[x]. We want to prove that for
each j there is some k so that σ(p(j)) = p′(k) and σ(q(j)i ) = q

′(k)
i for i = 1, . . . , s. It is true,

by construction, for j = 0 by picking k = 0. Suppose we are at step j in the division in
R(a)[x], and let us assume the induction hypothesis. Let ij be the first index for which
lpp(gij ) divides lpp(p(j)). The new partial quotient and the new partial remainder will be

ψij
=

lm(p(j))
lm(gij

)

p(j+1) = p(j) − ψij
gij
. (4)

Observe that by hypothesis, σ makes sense on ψij
and p(j+1). So, in specializing, two

cases can occur:
Case 1: σ(lc(p(j))) = 0. In this case σ(ψij ) = 0 and σ(p(j+1)) = σ(p(j)), and the same

is true for the partial quotients. So the same k applies to j + 1.
Case 2: σ(lc(p(j))) 6= 0. Then σ(ψij

) 6= 0. As by hypothesis all lpp(gi) remain stable
under specialization, ij is the first index for which lpp(σ(gij

)) divides lpp(p′(k)), so

ψ′ij
=

lm(p′(k))
lm(σ(gij

))



A New Algorithm for Gröbner Bases with Parameters 187

p′(k+1) = p′(k) − ψ′ij
σ(gij ).

Using the induction hypothesis for j and specializing equations (4) yields:

σ(ψij ) =
σ(lm(p(j)))
σ(lm(gij ))

=
lm(p′(k))

lm(σ(gij ))
= ψ′ij

σ(p(j+1)) = p′(k) − ψ′ij
σ(gij ) = p′(k+1),

so in this case we pick k + 1. Note that the partial quotients also remain stable. 2

The pseudo-division in R(a)[x] introduces coefficients with denominators in R[a]. But
these denominators arise only from leading coefficients of the divisors g1, . . . , gs, and are
divisors of a product of powers of them. Under the hypothesis of Theorem 1, we can still
multiply f by a convenient factor µ in R[a] to eliminate non-vanishing denominators for
the specification.† This will only change the normalization of f .

Writing q′i = µ qi and r′ = µ r, we have

µ f =
s∑

i=1

q′igi + r′. (5)

The result will be a division with quotients q′i, (1 ≤ i ≤ s) and remainder r′ in R[a][x]. If
the condition on the leading monomials is satisfied, Theorem 1 guarantees that the result
specializes properly except for the not-null factor σ(µ) 6= 0. We denote this algorithm
PDIV and the remainder

r′ = f
[g1,...,gs]

.

4. Buchberger’s Algorithm and Specialization

We denote GB0 the ordinary Buchberger’s algorithm (see Cox et al., 1992), that only
adds remainders of S-polynomials, acting on k[x], where k is any field (in particular it
can be R(a) or K).

We define PGB0 as the version of GB0 that uses equation (2) for computing
S-polynomials and the normalization of the divisions described in Section 3 to avoid
denominators when computing in R(a)[x]. We have:

Theorem 2. Let F ⊂ K[a][x], G0 = PGB0(F,�x) and

W = FACVAR({lc(g) : g ∈ G0},�a).

Then

(i) G0 is a Gröbner basis of 〈F 〉R(a)[x] whose polynomials belong to R[a][x].
(ii) If σ(w) 6= 0, for all w ∈W , then σ(G0) is a Gröbner basis of 〈σ(F )〉K[x].
(iii) G0 can be minimized and reduced to a new basis G whose elements are in R[a][x].

Furthermore, under the above conditions on σ, σ(G) is the reduced Gröbner basis
of 〈σ(F )〉K[x] (apart from normalization).

†There are several possible definitions of µ depending on the ring, field and implementation.



188 A. Montes

We write down the algorithm PGB outlined in Theorem 2 (iii). The procedures MIN-
IMIZE and REDUCE to be used are those described in Cox et al. (1992) (with PDIV as
division algorithm). The goal of NORMALIZE is ensuring the uniqueness of the reduced
Gröbner basis. It takes the primitive part and chooses in a unique form the R-factor
unity in the leading coefficient. The choice depends on the ring and the implementation.

PGB (Parametric Gröbner Basis)

Input: F = {f1, . . . , fs} ⊂ R[x, a], and �xa

Output: G the unique reduced Gröbner basis of 〈F 〉, with respect to [x].
W : A singular variety outside of which the basis specializes.

G1 := PGB0(F,�x)
W := FACVAR({lc(g,�x) : g ∈ G1})
G := NORMALIZE(REDUCE(MINIMIZE(G1,�x),�x),�xa).

Using Definition 2 and Theorem 1 the proof of the theorem above is easy.
The output of PGB is G and W . Nevertheless, W is a sufficient singular variety but

not a minimal one. It is important to obtain a minimal solution. This objective will be
approached in the next section and solved in Section 10.

5. GGE: Generalized Gaussian Elimination Algorithm

Using PGB produces the unique reduced Gröbner basis. Instead, the computed singular
variety is algorithm depending on the development of PGB0 (see Example 5.1).

To reduce the variety as much as possible we introduce a GGE to transform the initial
basis F of the ideal into a more convenient basis F ′ and use it as a pre-processor for
PGB0.

The idea of the algorithm comes from ordinary Gaussian elimination, and produces a
triangulation of the leading terms with respect to the order �xa.

GGE (Generalized Gaussian Elimination)

Input: F = [f1, . . . , fs] ⊂ R[x, a], (x and a as variables)
�x a the product elimination order.

Output: F ′ a new basis of 〈F 〉 that specializes for any σ.

G := F ; G′ = φ
WHILE G 6= G′

FOR i from 1 to #G DO
G′ := G
G := φ
FOR k from 1 to #G’ DO

IF k 6= i THEN

f := g′k
[g′

i] respect to the order �x a.
IF f 6= 0 THEN G := G ∪ {f}

ELSE G := G ∪ {g′i}
F ′ := primpart(G).



A New Algorithm for Gröbner Bases with Parameters 189

Proposition 3. Let F ⊂ R[a][x], and F ′ := GGE (F,�xa). Then

(i) F ′ is a new basis of 〈F 〉Quot(R)[x, a] that has less or equal number of elements
than F .

(ii) 〈lpp(F,�xa)〉 ⊆ 〈lpp(F ′,�xa)〉, and also 〈lpp(F,�x)〉 ⊆ 〈lpp(F ′,�x)〉.
(iii) F ′ specializes, i.e. σ(F ′) is also a basis of 〈σ(F )〉.
(iv) The algorithm terminates.
(v) Each p ∈ F ′, is the remainder of dividing p by F ′ − {p} with respect to the given

order �xa. We say that F ′ is reduced for this order.

Proof. (i) At each division in the algorithm we substitute, in a given F -basis, two
polynomials in R[a][x], say {f, g} by {g, r}, where f = g h + r. As f and g can be
expressed as a linear combination of g and r with coefficients in Quot(R), then {g, r} is
a new basis of 〈f, g〉Quot(R)[x, a] and, consequently, {g, r} can replace {f, g} to form a
new basis of F . This is the only repeated action in computing the GGE. Observe also,
that the final number of polynomials is less than or equal to the number of polynomials
in F , as we replace at each step two polynomials by two or one (when the remainder is
0) polynomials.

(ii) The first part is obvious, as the new polynomials are remainders with respect to
the order �x a . When only x are taken as variables, the proposition is a consequence of
�x a being a compatible elimination order.

(iii) As σ is a homomorphism, we have σ(f) = σ(g)σ(h)+σ(r) and the argument given
in (i) can be translated to {σ(f), σ(g)} for any specialization. It must be noted that in
specializing F ′, any coefficient (even the leading one) can become zero. Nevertheless the
specialized basis σ(F ′) is still a basis of 〈σ(F )〉.

(iv) We have to prove that the algorithm terminates. Let Fi be the base after the ith
loop. Define

di =
∑
f∈Fi

multideg(f,�xa),

where multideg(f,�) is the list of the exponents of the variables of lpp(f,�). As #Fi ≤
#Fi−1 and for every division in the algorithm, whenever the leading term is divisible,
the multideg of the remainder is strictly smaller then that of the dividend: necessarily
di �xa di−1. If di = di−1 then no leading monomial has changed in loop i. So, no
monomial of a f ∈ Fi is divisible by any leading monomial of an element of Fi (with
constant leading coefficient, when we only consider the x as variables), as all possible
divisions have been performed in loop i. The algorithm stops in this case. As �xa is a well-
order, di necessarily stabilize, and the algorithm effectively terminates. GGE works in
the direction of the reduced Gröbner basis, but may not reach it, as not all S-polynomials
are considered and tested.

(v) As all leading coefficients are constants of R, all polynomials in F ′ have been
considered as divisors of the others, and no polynomial will be divisible by the remainder.
This property is the triangulation property of GGE. 2

We include GGE as a pre-processing step for the PGB algorithm, before calling PGB0,
in order to transform the initial basis. The resulting singular variety becomes smaller and,
in simple examples, it suffices to obtain the minimal singular variety.

The GGE algorithm is remarkable for linear systems with parameters. Applying it
by dividing only with respect to the x variables and divisors with constant leading



190 A. Montes

coefficients, it reduces to the ordinary Gaussian elimination. But applying it, as de-
fined, dividing with respect to variables and parameters, there is no restriction about the
leading coefficients of the divisors, and then it provides a perfect first step for a reduced
case discussion, as can be seen in the following example.

This algorithm is used in our general DISPGB algorithm. Nevertheless it is interesting
by itself, as it provides a triangulation of the basis that is useful in applications.

5.1. example

Consider the following linear system in the variables (x, y, z, u) with the parameters
(a, b):

F := [a x+ 2 y + 3 z + u− 6, x+ 3 y − z + 2u− b,
3x− a y + z − 2, 5x+ 4 y + 3 z + 3u− 9].

We take F to be the basis of an ideal in Z[x, y, z, u, a, b] and compute a new basis with
the GGE algorithm, relative to the order lex(x, y, z, u, a, b). The result is:

F ′ := GGE(F, lex(x, y, z, u, a, b))
= [756x− 39 a b− 4 b− 155− 117 a+ (117 a+ 51)u,

189 y + 6 a b− 107− 43 b+ 18 a− (18 a− 123)u,
756 z − 1439 + 236 b+ 99 a+ 33 a b− (99 a− 15)u,
(9 a2 − 30 a+ 21)u− 9 a2 − 3 a2 b+ 11 a b+ 22 a− 49 + 28 b].

As we see, the new basis is completely Gaussian reduced:

1. The new basis is triangular: each leading monomial is different when we consider
as variables all x, y, z, u, a, b. In this case, it is also true if we consider only x, y, z, u
as variables.

2. The three first pivots (leading coefficients) of the variables x, y, z are constants, and
only the last leading coefficient in the variable u is a polynomial in the parameters.
It is essentially the singular variety: 9 a2 − 30 a+ 21 = 3 (a− 1) (3 a− 7), precisely
the value of the determinant.

3. Instead, the variable u is not eliminated in the equations giving x, y, z.
4. In this form, the system is very simple to discuss and to solve.
5. The result is, in this case, a minimal Gröbner basis, but not the reduced one.
6. Moreover, in this example, F ′ is itself a comprehensive Gröbner basis.

Now we compute PGB(F ′, lex(x, y, z, u), lex(a, b)) to obtain the reduced Gröbner basis
and the singular variety. We obtain:

G = (9 a2 − 30 a+ 21)x− 6 a b+ 9 a− 2 b− 1,
(9 a2 − 30 a+ 21) y + 3 a b+ 20− 23 b,
(9 a2 − 30 a+ 21) z + 53 a− 5 a b− 18 a2 + 3 a2 b− 39 + 6 b,
(9 a2 − 30 a+ 21)u− 9 a2 − 3 a2 b+ 11 a b+ 22 a− 49 + 28 b]

W = {a− 1, 3 a− 7}.

In this example, W determines the minimal singular variety, as it includes just the factors
of the determinant of the system, which we know by linear algebra to be the singular
condition. The general discussion of all cases can be done with DISPGB described in the



A New Algorithm for Gröbner Bases with Parameters 191

next sections. The complete output provided by DISPGB for this example can be found
in Section 11.5.

If we compute the Gröbner basis using the PGB algorithm without previous reduction
of F to F ′ by GGE, the basis G turns out to be the same, but the variety becomes
W1 = {a, a2 + 35, 3 a− 2, a− 1, 3 a− 7}, showing the reduction obtained by GGE.

6. Specification of Specializations

Following Weispfenning (1992), we consider the following families of specializations
(conditions in the paper of reference):

Definition 4. Let σ be a specialization and N = {p1, . . . , ps} ⊂ R[a] and W = {q1, . . .,
qr} ⊂ R[a] be sets of polynomials. We say that σ ∈ Σ(N,W ), or that (N,W ) is the actual
specification of σ if

(i) All the pi’s specialize to zero: σ(pi) = 0, for pi ∈ N .
(ii) All the qi’s specialize to non-zero: σ(qi) 6= 0, for qi ∈W .

We say that N are the null conditions and W the not-null conditions of the specification
of all σ ∈ Σ(N,W ).

Proposition 5. Let σ ∈ Σ(N,W ) be a specialization. If f ∈
√
〈N〉, (the radical of the

ideal 〈N〉), then σ(f) = 0. Equivalently:

σ ∈ Σ(N,W ) =⇒ σ ∈ Σ(
√
〈N〉,W ).

Proof. Let σ ∈ Σ(N,W ) and f ∈ 〈
√
N〉. Then for some n ∈ N is fn ∈ 〈N〉. Thus

σ(fn) = (σ(f))n = 0, and the result follows. 2

Proposition 6. Let K be an algebraically closed field and Λ = Σ(N,W ). Set h =∏
q∈W q. Then Λ 6= φ iff 〈N〉 6= K[a] and h 6∈

√
〈N〉.

Proof. [⇒]: By Proposition 5.
[⇐]: By Hilbert’s Nullstellensatz, IV(N) =

√
〈N〉, and if h 6∈

√
〈N〉, it exists that

a0 ∈ V(N) for which h(a0) 6= 0. Thus σa0 ∈ Λ, and Λ 6= φ. 2

The set of values of the parameters described by Σ(N,W ) is given by

V(N)− [V(N) ∩ [∪q∈W V(q)]] .

Proposition 7. Let W = {q1, . . . , qr}, N be a Gröbner basis relative to the order �a

and W ′ = FACVAR({q1N , . . . , qr
N}. Then

Σ(N,W ) = Σ(N,W ′).

Proof. We have qi = ni + qi
N , where ni ∈ 〈N〉 and qiN is the remainder of the division

of qi by the basis N . As σ is a homomorphism,

σ(qi) = σ(ni) + σ(qiN ) = σ(qiN ).

So σ(qi) 6= 0 iff σ(qiN ) 6= 0, and we can finally decompose into irreducible factors. 2



192 A. Montes

Definition 8. (Quasi-canonical representation of a specification) Areprese-
ntation (N,W ) is said to be k-quasi-canonical, if it satisfies

(i) N is the reduced Gröbner basis in Quot(R)[a] for the order �a of the set of poly-
nomials that specialize to zero.

(ii) The polynomials in W specializing to non-zero are reduced modulo N and are ir-
reducible over k[a], where k is some intermediate field between Quot(R) and the
algebraic closure K. They are normalized in a canonical form in order to be recog-
nized when compared. (Normalization depends on the field k, but is easy to define
for Q,R and C.)

(iii)
∏

q∈W

q 6∈
√
〈N〉.

(iv) The polynomials in N are square-free.
(v) If some p ∈ N factors, then no factor of p belongs to W .

Proposition 9. Any specification that is non-empty in the algebraic closure has a
k-quasi-canonical representation (N,W ).

It seems that imposing N to be a Gröbner basis of
√
〈N〉, can provide a unique rep-

resentation. Nevertheless, for practical computation reasons, we do not impose N to be
radical.

Proof. (i) We can choose a Gröbner basis to define the ideal 〈N〉. This will report
benefits in the algorithms.

(ii) By Proposition 7 we can reduce the polynomials in W modulo N , decompose into
irreducible factors and normalize them (depending on the field).

(iii) By Proposition 6,
∏

q∈W q 6∈
√
〈N〉 is a necessary and sufficient condition for N

and W to be compatible conditions in the algebraic closure, i.e. to determine a
non-empty Σ(N,W ).

(iv) We can drop any multiple factor in N as a consequence of Proposition 5.
(v) We can also drop any factor of a polynomial p ∈ N belonging to W as p = gh and

g ∈W imply σ(p) = 0 and σ(g) 6= 0, which leads to σ(h) = 0.

If in the development of the algorithms a polynomial p′ ∈ R[a] such that p′ ∈
√
〈N〉 and

p′ 6∈ 〈N〉 is detected, we can refine the representation of the specification adding p′ to
the base N , and re-computing the new Gröbner basis N ′. We then have:

〈N〉 ⊆ 〈N ′〉 ⊆
√
〈N〉.

Then (N ′,W ), (N,W ) and (
√
〈N〉,W ) are representations of the same specification

Σ(
√
〈N〉,W ), but (N ′,W ) is a finer representation than (N,W ). Even if some p ∈ N ′

has a factor in W , it can also be dropped, as it specializes to non-zero.

Definition 10. Let f1, f2 ∈ R[a][x]. We say that f1 ≈σ f2 (are σ-equivalents) iff
σ(f1) = σ(f2).

When a specification is assumed, then we can substitute the polynomials in a set by
σ-equivalent polynomials. This will be done all along the algorithm. It must be noticed,
that doing so, the new σ-equivalent set is no more a basis of the original F ⊂ R[a][x]. This



A New Algorithm for Gröbner Bases with Parameters 193

is an important observation for the understanding of the algorithm. Doing so, we abandon
computing a CGB, but the algorithm is simplified towards our objective. Observe that
by doing so, unnecessary polynomials specializing to zero in the actual specification are
also dropped.

Definition 11. Given two specifications (N1,W1) and (N2,W2) we say that (N2,W2) ≥
(N1,W1), if

√
〈N1〉 ⊆

√
〈N2〉 and W1 ⊆W2.

If (N2,W2) ≥ (N1,W1) and
√
〈N1〉 6=

√
〈N2〉 or W1 6= W2, then we say that (N2,W2) >

(N1,W1).

Definition 12. The specifications where N = {0} are denoted generic, in the sense
that Σ({0},W ) contains all specializations except a set in the m− 1 dimensional variety
∪q∈W V(q) defined by W .

6.1. canspec algorithm

The algorithms will only use quasi-canonical representations of specifications.

Proposition 13. Given the specification (N,W ), the algorithm CANSPEC produces a
k-quasi-canonical representation (N ′,W ′) if test = true. If test = false then (N,W ) are
incompatible, i.e. Σ(N,W ) = φ.

CANSPEC
Input: (N,W ): The specification of σ.

�a: Monomial order for the parameters.
Output: test: Has the value true if Σ(N,W ) 6= φ in the algebraic closure

and false if they are incompatible.
(N ′,W ′): A k-quasi-canonical representation of the specification.

W ′ := FACVAR({qN : q ∈W})
test := true; t := true; N ′ := N
h :=

∏
q∈W q

IF h ∈
√
〈N ′〉 THEN test := false; N ′ := {1}; STOP

WHILE t DO
t := false
N ′′ := Drop any factor of a polynomial in N ′ that belongs

to W ′, as well as multiple factors.
IF N ′′ 6= N ′ THEN

t := true
N ′ := GB(N ′′,�a)
W ′ := FACVAR({qN : q ∈W ′}).

Proof. The first step reduces W ′ modulo N using Proposition 7. Then one uses Propo-
sition 6 to test compatibility. It is sufficient to test it only once as no transformation to
a new representation (N ′,W ′) will alter it.



194 A. Montes

Then the loop intends to simplify N ′ eliminating any factor in N ′ belonging to W ′. If
one factor is found then we recompute the Gröbner basis for N ′ and reduces W ′ modulo
N ′. The loop is finite by the ascending chain condition (ACC).

Thus all the conditions for (N ′,W ′) to be a quasi-canonical representation are met. 2

7. DISPGB Discussion Algorithm

We are now ready to give the general description of the main algorithm DISPGB (dis-
cussing parametric Gröbner bases), which is very similar to Weispfenning’s construction
of a Gröbner system. Its goal is to build up a binary tree structure beginning at the root.
Let us give the algorithm:

DISPGB
Input: F ⊂ R[x][a], and the orders �x and �a.
Output: The table T [v] having tree structure.

B := GGE(F,�xa)
T [φ] := (φ,B, φ, φ) (Creates and stores the root vertex)
BRANCH(φ,B, φ, φ) (Begins the recursive building of the tree).

At each vertex v the following objects are stored in the table variable

T [v] = (cv, Bv, Nv,Wv).

1. The new condition cv of the form p(a) = 0 (for type 0 vertices), or p(a) 6= 0 (for
type 1 vertices), that is assumed when the algorithm gains access to vertex v in
order to increase the specification of σ.

2. The pair (Nv,Wv) determining a quasi-canonical representation of the specification
of σ at this vertex (see Definition 8).

3. Bv ⊂ R[a][x], a set of polynomials that specializes to a basis of the ideal 〈σ(F )〉 for
any σ ∈ Σ(Nv,Wv).

DISPGB begins by computing GGE(F ). As discussed in Section 5 this reduces the
number of cases to be discussed, reducing at the same time the singular variety.

At the root, the initial basis transformed by GGE is stored, and the remaining argu-
ments are empty. So T [φ] := (φ,B, φ, φ).

Then the recursive algorithm BRANCH, described in Section 9, is called: bifurcation
takes place making the dichotomic decision about some leading coefficient of a polynomial
in the actual basis to become zero or not-zero in the specialization, as in dynamical evalu-
ation (Duval, 1995). The recursive algorithm BRANCH, combined with NEWVERTEX,
also described in Section 9, will be responsible for the control flow of the procedure. As
the algorithm progresses in depth, the specification of the specialization is refined at the
branches, allowing the algorithm CONDPGB, described in Section 8, to advance in the
computation of the specializing Gröbner basis.

A vertex is terminal whenever Bv becomes a set of polynomials specializing to a
Gröbner basis of 〈σ(F )〉 for σ ∈ Σ(〈Nv〉,Wv). Specialization of σ is then finished. The
algorithm terminates when all branches arrive at terminal vertices.



A New Algorithm for Gröbner Bases with Parameters 195

Figure 1. Tree structure of the algorithm in the example of Section 11.4.

Terminal vertices contain the complete information about the distinct specialized
Gröbner basis and specifications. Tracing the tree provides a dichotomic discussion of
the decisions leading to the corresponding cases.

Even though a unique canonical discussion does not exist—as it depends on the order
in which the decisions are taken—a minimum disjoint set of cases is obtained.

To clarify the description, we give in Figure 1 the tree corresponding to the example
in Section 11.4, with four variables, four parameters and four equations (second degree
in the variables). It is a typical discussion and gives seven distinct final cases.

An important observation is that DISPGB can be completely parallelized. When a
decision at some vertex is taken, producing a branching of the algorithm, only the in-
formation of the actual vertex is needed to follow the branches below it, and no other
information about the upper or lateral vertices is needed. So the algorithm can be par-
allelized.† In the example four processors would be useful as that is the maximal width
of the tree.

In order to arrive at a terminal vertex following the direct path, only some more lateral
computations than for the generic case are needed. This is the reason why the parallelized
algorithm has the same time-complexity.

We now need to describe two kinds of algorithms that are used by the main DISPGB
algorithm: the conditional algorithms and the control algorithms.

8. Conditional Algorithms

DISPGB uses two conditional algorithms: NEWCOND and CONDPGB. The goal of
NEWCOND is, given f ∈ R[a][x] and a specification (N,W ) of σ, to test if a new unde-
cided condition must be assumed in order to be able to decide about the specialization
of the leading coefficient to zero or not. The goal of CONDPGB is, given the specifica-
tion and B ⊂ R[a][x], where σ(B) is a basis of 〈σ(F )〉, to advance in the direction of a
specializing Gröbner basis as much as possible.

8.1. newcond algorithm

Proposition 14. Let (N,W ) be the specification of σ, and f ∈ R[a][x]. Then the fol-
lowing algorithm NEWCOND determines the quadruplet (cd, f ′, N ′,W ′) where f ′ ≈σ f .

If cd = φ, then σ(lc(f ′,�x)) 6= 0 for σ ∈ Σ(N,W ). If cd 6= φ, set c =
∏

w∈cd w. Then
σ(lc(f ′,�x)) vanishes or not depending on the nullity or not of σ(c).

†Maple V, release 6 does not allow parallel computations at yet. But a parallel implementation is
desirable as, even if no theoretical proof is provided that the generic case is the almost complex case, it
is reasonable and in practice observed. Thus the parallel algorithm will present essentially the complexity
of the generic case, plus the vertex computations of quasi-canonical representations and reductions.



196 A. Montes

(N ′,W ′) is a refinement of (N,W ), when some polynomial in
√
〈N〉 is detected.

NEWCOND
Input: f : ∈ R[a][x]

(N,W ): Null and not-null conditions of the specification of σ.
Output: cd: The new conditional set.

f ′: The σ-equivalent to f with deciding leading coefficient.
(N ′,W ′): A specialization refinement of (N,W ).

f ′ := f ;
test := true
N ′ := N
WHILE test DO

IF lc(f ′) ∈
√
〈N ′〉 THEN

f ′ := f ′ − lm(f ′)
N ′ := GB(N ′ ∪ lc(f ′),�a)
W ′ := {wN ′

: w ∈W}
ELSE test := false

f ′ := f ′
N ′

cd := FACVAR(lc(f ′))−W ′.

Proof. If the specification of σ implies that σ(lc(f)) = 0, NEWCOND begins eliminat-
ing iteratively the leading term of f . In this process, some polynomial in

√
〈N〉 can be

detected. This is used to improve N and a new Gröbner basis N ′ is recomputed. This is
then used to also improve W . When no more leading monomials of f ′ can be dropped,
then f ′ is reduced with respect to N ′ by dividing by it. (N ′,W ′) is now insufficient to
decide if the actual lc(f ′) specialize to zero as a consequence of the null condition N ′.

The algorithm now computes cd := FACVAR(lc(f ′))−W ′. Obviously, if cd = φ then
σ(lc(f ′)) 6= 0 for σ ∈ Σ(N ′,W ′). If not, σ(lc(f ′,�x)) vanishes or not depending on the
nullity or not of σ(c). 2

When NEWCOND has concluded and has detected a new condition, in order to con-
tinue the specification of σ, DISPGB will have to decide either

(0) The product of all polynomials in cd become zero by specialization (c = 0).
(1) All polynomials in cd become different from zero by specialization (c 6= 0).

8.2. condpgb: conditional parametric Gröbner basis algorithm

At a given point DISPGB needs to use a Buchberger’s type algorithm that takes
into account the specification and intends to determine a specializing Gröbner basis. We
denote it CONDPGB (conditional parametric Gröbner basis).†

†A new release of the implementation is in the process of development. It introduces improvements in
the algorithm CONDPGB, to accelerate Buchberger’s algorithm, that are not described here.



A New Algorithm for Gröbner Bases with Parameters 197

CONDPGB
Input: B: The actual specializing basis.

(N,W ): The actual specification of σ.
Output: test: If test = true then σ(B′) is yet the Gröbner basis.

B′: The new completed specializing basis.
(N ′,W ′): The specification (N,W ) can be refined in the process.

test := true; s := #B; J := {(i, j) : 1 ≤ i < j ≤ s}
B′ := B; N ′ := N ; W ′ := W ; t := s
WHILE J 6= φ and test DO

Select (i, j) ∈ J
J := J − {(i, j)}
IF Buchberger’s reductibility criterions are false THEN

S := SPOL(B′[i], B′[j],�x)
B′

�x

S := S
N ′

�xa

IF S 6= 0 THEN
(cdec, S,N

′,W ′) := NEWCOND(S,N ′,W ′)
IF cdec = φ THEN

IF S 6= 0 THEN
t := t+ 1
B′ := B′ ∪ {S}
J := J ∪ {(i, t) : 1 ≤ i < t}

ELSE
test := false
B′ := B′ ∪ {S}

IF test THEN
B′ := REDGB(MINGB(B′,�x),�x,�a).

Proposition 15. Let (N,W ) be the specification of σ and let B ⊂ R[a][x] be a set of
polynomials for which:

(i) σ(B) is a basis of 〈σ(F )〉.
(ii) σ(lc(g,�x)) 6= 0 for g ∈ B and σ ∈ Σ(N,W ).

The algorithm CONDPGB determines the quadruplet (test, B′, N ′,W ′).
If test = true, then σ(B′) is (except for normalization), the reduced Gröbner basis of

〈σ(F )〉 for σ ∈ Σ(N ′,W ′).
If test = false, then B′ is an extended set of B for which 〈lpp(B,�x)〉 ⊆/ 〈lpp(B′,�x)〉,

and B′ contains at least one polynomial for which the actual specification (N ′,W ′) cannot
decide if its leading coefficient specializes to zero or not.

Proof. CONDPGB is essentially Buchberger’s algorithm (PGB0) with the following
differences:

(i) Step S := S
N ′

�xa
.

After computing the usual remainder of the S-polynomial, the result is reduced with



198 A. Montes

respect to N ′ for the order �xa. Obviously, both polynomials are σ-equivalents, as
the difference is a polynomial with coefficients in 〈N ′〉 that specializes to 0.

(ii) Step (cdec, S,N
′,W ′) := NEWCOND(S,N ′,W ′).

If S 6= 0 then, before continuing PGB0, CONDPGB applies NEWCOND to test if
lc(S,�x) specializes to zero or not. This can reduce S to a σ-equivalent polynomial,
say S′, that can eventually be 0. Three cases can occur:

(a) If S′ = 0 then there is nothing new to do and the algorithm continues with
PGB0.

(b) If S′ 6= 0 and σ(lc(S, x)) 6= 0 then S′ is adjoined to the base and PGB0
continues.

(c) If S′ 6= 0 and cdec 6= φ then S′ is adjoined to the base and CONDPGB stops,
returning the new base B′. It is important to note that, in that case, at least one
new polynomial has been adjoined to the base, whose leading power product
cannot be divided by the others in B′. Thus the ideal of leading power products
is strictly greater than before.

If CONDPGB never go through the sub-case (c), then it continues until a Gröbner
basis with non-zero specializing leading coefficients is reached. In this case,
CONDPGB determines first the minimal and then the reduced Gröbner base. Then
cdec = φ is returned. 2

9. Control Algorithms

We now give the algorithms BRANCH and NEWVERTEX that are recursive proce-
dures calling one another. The control flow of the main DISPGB algorithm is governed
by them.

BRANCH
Input: v: Label of the vertex.

B: Specializing basis at the vertex v.
(N,W ): Specification of σ at vertex v (not necessarily canonical).

Output: Recursive algorithm. It stores the refined (B′, N ′,W ′) (basis
and quasi- canonical representation) at the vertex v, creating
two new hanging vertices when necessary or marking the vertex
as terminal. It manages the control flow.

cd := φ
FOR i TO #B WHILE cd = φ DO

f := B[i]
(cd, f ′, N ′,W ′) := NEWCOND(f,N,W )
Substitute the i-th element f of B′ by f ′

pivot := i− 1
T [v] := (−, B,N ′,W ′) (cond is already stored in T (v). Refinement of data)
IF cd = φ THEN

(test, B′, N ′,W ′) := CONDPGB(B,N ′,W ′) G.B.)
IF test THEN

T [v] = (−, B′, N ′,W ′, terminal vertex)
STOP (B′ is already the Gröbner basis)



A New Algorithm for Gröbner Bases with Parameters 199

ELSE
BRANCH(v,B′, N ′,W ′) (Further refinement is needed)

ELSE (A pair of new hanging vertices is created)
NEWVERTEX(1, v, cd,B′, N ′,W ′, pivot)
NEWVERTEX(0, v, cd,B′, N ′,W ′, pivot).

BRANCH begins by testing the polynomials in B using NEWCOND. This can refine
the data at the vertex.

If all have leading coefficients specializing to non-zero (cd = φ), then CONDPGB
is called in order to find the specializing Gröbner basis. If this objective is reached,
the results are stored at the vertex and the procedure stops. Else, at least one new
polynomial with non-decided leading coefficient has been adjoined by CONDPGB (see
Proposition 15). Thus BRANCH is recursively called in order to increase the refinement
and advance in the Gröbner basis direction.

Otherwise some polynomial in B with non-decided leading coefficient is detected (cd 6=
0). Then it is taken as pivot and is used to bifurcate the tree (NEWVERTEX) with two
new branches of type 0 and 1, increasing the specification.

NEWVERTEX

Input: n 0 or 1. If n = 1, the new condition is taken not-null. If n = 0
then it is taken null.

u: Label of previous vertex. Current vertex becomes v := (u, n).
cd: Irreducible factors of the new condition.
B: The current base at previous vertex.
(N,W ): Specification of σ at previous vertex.
pivot: The index of pivot polynomial of B whose leading coefficient

is responsible for the new condition.
Output: NEWVERTEX creates the new vertex with label v and stores

the new values of (condv, Bv, Nv,Wv) in T (v). Then it calls
BRANCH to continue the process.

v := (u, n)
c :=

∏
cd

IF n = 0 THEN
cond := (c = 0)
W ′ := W

N ′ := GB(cd ∪N,�a)
ELSE (n = 1)

cond := (c 6= 0)
W ′ := W ∪ cd
N ′ := N

B′ := Substitute every polynomial g in B whose lpp(g,�x) can be
divided by lpp(gpivot,�x), by the S-polynomial of both.

(test,N ′,W ′) := CANSPEC(N ′,W ′)
IF test THEN (Specification is compatible)



200 A. Montes

B′ := GGE({gN ′
: g ∈ B′} − {0},�xa) (Optional†)

T [v] := (cond,B′, N ′,W ′) (Create vertex and store)
BRANCH(v,B′, N ′,W ′) (Begin the analysis)

ELSE STOP (Incompatible specification has been detected).

Theorem 16. Given F ⊂ R[a][x] and the monomial orders �x, �a, DISPGB constructs
a table T with binary tree structure that contains at each terminal vertex the quadruple

Tv = (cd,B,N,W )

where, either the vertex is marked as incompatible, or

(i) (N,W ) is a quasi-canonical specification of a specialization.
(ii) For σ ∈ Σ(N,W ), σ(B) is the reduced Gröbner basis of σ(F ) (except for normal-

ization).
(iii) Any specialization corresponds to one and only one of the specifications of the ter-

minal vertices.
(iv) The algorithm terminates.

Moreover, traversing the tree from the root and considering the condition cd at the ver-
tices, a dichotomic discussion of the cases is provided.

Proof. (i) Whenever an extended specialization is computed (in NEWVERTEX), the
algorithm CANSPEC is called, producing either a quasi-canonical representation of the
specification, or detecting incompatible conditions. In that case it marks the vertex as
terminal and with incompatible conditions. Thus, only quasi-canonical representations
of specializations are used.

(ii) A vertex is marked as terminal only if conditions are incompatible or if CONDPGB
has concluded with a basis specializing to the reduced Gröbner basis of σ(F ) (except for
normalization).

(iii) Is an immediate consequence of the dichotomic character of the decisions taken
at each vertex (σ(c) = 0 or σ(c) 6= 0).

(iv) Is a consequence of the ACC of the ideals in Noetherian rings. When BRANCH is
called, the leading coefficients in B are analysed. If all these leading coefficients specialize
to non-zero in the specification, then CONDPGB is called. Proposition 15 ensures that
〈lpp(B,�ox)〉 strictly increases in the call.

If the specialization to zero or not of some leading coefficient cannot be decided, then
bifurcation takes place calling NEWVERTEX twice. The branch for which the null-
condition is assumed, increases the ideal 〈N〉. The branch for which the not-null condition
is assumed increases the number of assumed not-null leading coefficients under special-
ization, without modifying the base. If in the next decisions none of the cited cases occur,
then a moment will arrive where all leading coefficients will be assumed not-null in the
specification, and then, CONDPGB will be called, increasing 〈lpp(B,�ox)〉.

So in any case we have ascending chains of ideals that stabilize. Consequently the
algorithm terminates. 2

†The use of GGE at this point of the algorithm is optional. Nevertheless we observed experimentally that
in some examples (like in 11.3) it can drastically reduce the size of the tree, intermediate computations
and the number of cases. See the footnote of Section 8.2.



A New Algorithm for Gröbner Bases with Parameters 201

10. Minimal Singular Variety: GENCASE Algorithm

In Section 4, we proved that PGB determines the unique reduced Gröbner basis G and
a singular variety W such that outside W , G is specialization-invariant. This is the only
m-dimensional case. All other cases are contained in the (m− 1)-dimensional variety W .

Let us describe a case C obtained by DISPGB by the 5-tuple C = (l, p, B,N,W ),
where l is the label, p is the the list of inequalities and equalities in the order that they
have been taken (i.e. the path of the case), B is the reduced Gröbner basis, and (N,W )
the quasi-canonical representation of the specification. Let L be the list of cases obtained
by DISPGB in the form described earlier.

Except for the trivial problems where the reduced Gröbner basis specializes every-
where, DISPGB always obtains the case C0, labelled [1, . . . ,1], specified by (N0 = φ,W0),
corresponding to the PGB solution. The inequalities W0 are sufficient to ensure proper
specialization of B0. But not all the conditions in W0 are always necessary: some other
cases can also specialize properly.

A case C = (l, p, B,N,W ) in L is said to be special if lpp(B) 6= lpp(B0) and normal if
lpp(B) = lpp(B0). Let Ls denote the set of special cases in L and Ln the set of normal
cases in L (including C0). Using these notations we can define the minimal variety and
state a theorem about it.

Definition 17. Given a set of polynomials F ⊂ R[a][x], the minimal singular variety
Vmin is the minimal variety of Km containing all special cases Ls provided by DISPGB.

Theorem 18. Given F ⊂ R[a][x], let L be the list of cases determined by DISPGB, C0

the case corresponding to the label [1, . . . , 1], Ln ⊆ L the set of normal cases, Ls ⊆ L the
set of special cases and

W0m = FACVAR(lc(B0,�x)).

Then

(i) The minimal singular variety Vmin =
⋃

w∈Wmin
V(w), determined by its irreducible

components, verifies: W0m ⊆Wmin ⊆W0.
(ii) For all normal cases, the Gröbner basis is specialization-invariant.

Proof. (i) Conditions W0 are sufficient for proper specialization of the algorithms,
but some of them may be unnecessary. On the other hand, the conditions in W0m

are obviously necessary in order to have a normal case. Thus the components of
Vmin are those of W0m plus, at most, some of the irreducible components in W0 not
in W0m.

(ii) Let G be the reduced Gröbner basis of the ideal I = 〈F 〉R(a)[x]. Under the
hypothesis W0, we have σ0(G) = B0 (except for normalization) as all steps of
the computation of G specialize properly to B0. So

〈lpp(I)〉 = 〈lpp(G)〉 = 〈lpp(B0)〉 = 〈lpp(〈σ0(F )〉)〉.

But by the definition, 〈lpp(BLni
)〉 = 〈lpp(B0)〉 for all cases in Ln. As BLni

is the
reduced Gröbner basis for the case Lni, we have 〈lpp(BLni

)〉 = 〈lpp(〈σLni
(F )〉)〉.

Thus 〈lpp(I)〉 = 〈lpp(〈σLni
(F )〉)〉, so that, for all cases in Ln, proper specialization

holds. 2



202 A. Montes

Using part (ii) of Theorem 18 we define the generic case Cg by the specification (Ng,Wg) =
(φ,Wmin). It contains all the normal cases Ln that are completely outside Vmin. There
can exist cases in Ln that have a non-empty intersection with Vmin. The parts of these
cases outside Vmin are in the generic case, and the parts inside Vmin are considered as
special cases, even if they specialize properly.

This theorem does not determine completely Wg, although it limits quite strictly the
candidates. In practice, we observe that in most examples Wmin = W0m, as was pointed
out by V. Weispfenning in the discussions. Nevertheless there are examples where Wmin

is strictly greater than W0m.†

This induces the GENCASE algorithm to improve the output of DISPGB.

GENCASE
Input: T The table constructed by DISPGB.

�x: x-termorder.
�a: a-termorder

Output: L′ The list of cases containing:
the generic case Cg = (‘Generic case’, pg, Bg, Ng = φ,Wg),
and the normal and special cases inside Wg.

L := {C(l) : l ∈ terminal vertices of T}
C0 := Select from L the case labelled [1..1] specified by (N0 = φ,W0)
L1 := L− C0

lp0 := {lpp(f) : f ∈ B0}
L0 := Select from L1 the cases having lp0 as set of lpp(f)
Ls := L1 − L0

Wg := FACVAR(lc(B0,�x))
Vg = ∪w∈Wg

V(w)
WHILE not all cases in Ls belong to Vg DO

Warning!
Add convenient elements of W0 −Wg to Vg

Cg := (‘Generic case’, {w 6= 0 : w ∈Wg}, B0, φ,Wg)
Lns := Select all cases in L0 with non-empty intersection with Vg and

intersect them with Vg

L′ := Cg ∪ Lns ∪ Ls.

GENCASE begins testing if all special cases obtained by DISPGB are inside W0m.
If so, the generic case substitutes all cases in Ln. Those being completely outside Vmin

will disappear from the list, and those having a non-empty intersection with Vmin will be
restricted to their intersection with Vmin and, consequently, this condition will be added
to their specification. Those cases will be considered special. If not, GENCASE gives a
warning and adds convenient polynomials of W0 −W0m to Vmin to reach the goal.

For linear systems the system determinant gives the generic case condition. The cor-
responding generalized value for general polynomial systems is thus

∆ =
∏

w∈Wg

w.

†At the end of the tutorial included in the implemented software, such an example is presented.



A New Algorithm for Gröbner Bases with Parameters 203

It must be pointed out that the given definition of minimal singular variety is algorithm
dependent. Although this concept seems to be an intrinsic object, no proof of its algorithm
independence is provided here. This remains an open question.

11. Applications

Many interesting applications can be examined using DISPGB and GENCASE with
very satisfactory results.

11.1. linear systems

A particularity of DISPGB is its exceptional behaviour for linear systems. Let us give
an example. Consider the following linear system with the variables (x, y, z) and the
parameters (a, b, c):

x+ cy + bz + a = 0
cx+ y + az + b = 0
bx+ ay + z + c = 0.

Applying DISPGB and GENCASE with respect to the monomial orders lex(x, y, z) and
lex(a, b, c), the following polynomial appears in the discussion:

∆ ≡ a2 + b2 + c2 − 2 a b c− 1,

that is nothing other than the value of the determinant of the system. Table 1 resumes
the discussion of the cases.

GENCASE summarizes the [1,1] case and the [0,1] cases obtained by DISPGB into
the generic case ∆ 6= 0, as it corresponds to the discussion by determinants. The [1,1]
case corresponds to a larger singular variety, namely V(∆)∪V(c2− 1), and the [0,1] case
corresponds to c2−1 = 0, a− bc 6= 0. But the final use of GENCASE, reduces both cases
to only one, and the singular variety to the minimal one. All the others are special cases
corresponding to ∆ = 0.

One can see that the discussion provided by the algorithm cannot be improved: only
strictly different cases corresponding to different sets of leading power products of the
reduced Gröbner basis appear. It is hard to obtain such a reduced discussion using only
determinants.

11.2. singular points of a conic

We study the singular points of the conic

x2 + b y2 + 2 c x y + 2 d x+ 2 e y + f = 0.

The polynomial system is:

[x2 + b y2 + 2 c x y + 2 d x+ 2 e y + f, x+ c y + d, b y + c x+ e].

The following “discriminant” appears in the discussion

∆ = b d2 − b f + c2 f − 2 e c d+ e2.



204 A. Montes

Table 1. Discussion of the linear system. (Section 11.1)

Case Conditions Gröbner basis

Generic case ∆ 6= 0 [ ∆ z + c3 − b2c− a2c + 2 a b− c,
∆ y + b3 − c2b− a2b + 2 c a− b,
∆ x + a3 − c2a− b2a + 2 b c− a ]

Special cases ∆ = 0

[1, 0, 1] c2 − 1 6= 0, [ 1 ]
∆ = 0,
a b− c 6= 0

[1, 0, 0] c2 − 1 6= 0, [ (c2 − 1)y + (b c− a)z − b3 + c2b,
∆ = 0, (c2 − 1)x + (c a− b)z + cb3 − a + c2a− c3b ]
a b− c = 0

[0, 0, 1] c2 − 1 = 0, [ z + c,
a− b c = 0, x + c y ]
b2 − 1 6= 0

[0, 0, 0] c2 − 1 = 0, [ x + cy + bz + b c ]
a− b c = 0,
b2 − 1 = 0

Table 2. Discussion of singular points of a conic. (Section 11.2)

Case Conditions Gröbner basis

Generic case ∆ 6= 0 [1]

Special cases ∆ = 0

[0, 1] cd− e = 0, d2 − f 6= 0 [1]
[1, 0] cd− e 6= 0 [ d2 − f + (cd− e)y,−de + cf + (cd− e)x ]
[0, 0, 1] cd− e = 0, d2 − f = 0, [ y, x + d ]

b− c2 6= 0

[0, 0, 0] cd− e = 0, d2 − f = 0, [ x + cy + d ]
b− c2 = 0

Table 2 describes the discussion. The generic case corresponds to non-degenerate con-
ics. Case [0, 1] corresponds to two parallel lines. This is an interesting case, as even if the
Gröbner basis specializes properly, it is inside the singular variety, corresponding to a
special case (degenerate conic without singular points). Finally, cases [1, 0] and [0, 0, 1]
correspond to two incident lines, and case [0, 0, 0] to two coincident lines.

11.3. the inverse kinematics problem for a simple robot

We now consider the simple plane robot of Figure 2 with two arms of lengths 1 and l,
respectively.
The inverse kinematics problem is provided by the solution of the following system:

r − c1 + l(s1 s2 − c1 c2) = 0
z − s1 − l(s1 c2 + s2 c1) = 0
s21 + c21 − 1 = 0
s22 + c22 − 1 = 0.



A New Algorithm for Gröbner Bases with Parameters 205

Figure 2. Simple two arms robot. (Section 11.3)

Table 3. Discussion of the two arms robot.

Case Conditions Gröbner basis

Generic l 6= 0, [ 2lc2 + l2 − r2 − z2 + 1, l4 − 2r2l2 − 2z2l2 − 2l2

case r2 + z2 6= 0, +4l2s2
2 − 2r2 + r4 − 2z2 + 2r2z2 + z4 + 1,

rl2 − r − r3 − z2r + (2r2 + 2z2)c1 − 2lzs2,
zl2 − zr2 − z3 − z + (2r2 + 2z2)s1 + 2rls2 ]

Singular
cases

[1, 1, 0, 1, 1] l 6= 0, r 6= 0, [ 2lc2 + l2 + 1, 2zls2 + r − rl2,
r2 + z2 = 0, z 6= 0 4r(l2 − 1)c1 + l4 + 1− 4z2 − 2l2, −4z4 + z2 + 2r2

l2 − 1 6= 0 +4zr2(l2 − 1)s1 + l4z2 + 2r2l4 − 4r2l2 − 2l2z2 ]

[1, 1, 0, 1, 0] l 6= 0, r 6= 0, [ 1 ]
r2 + z2 = 0, z 6= 0
l2 − 1 = 0

[1, 0, 0, 1] l 6= 0, r = 0, [ 1 ]
z = 0, l2 − 1 6= 0

[1, 0, 0, 0] l 6= 0, r = 0, z = 0, [ lc2 + 1, s2, c21 + s2
1 − 1 ]

l2 − 1 = 0

[0, 1] l = 0, r2 + z2 − 1 6= 0 [ 1 ]

[0, 0] l = 0, r2 + z2 − 1 = 0 [ c22 + s2
2 − 1, c1 − r, s1 − z ].

where (s1, c1, s2, c2) are the sines and cosines of the two angles θ1 and θ2 defined in
Figure 2. In the inverse kinematics problem these are the variables to be determined for
the parameter values (r, z, l). Applying DISPGB plus GENCASE to this system, using
lex(s1, c1, s2, c2) and lex(r, z, l) orders, the discussion provided in Table 3 is obtained.

DISPGB provides V = V(l)∪V(r)∪V(r2 + z2)∪V(z)∪V(−l2 + r2 + 1) as a singular
variety, plus four other cases that are, in fact, special cases of the generic case. GENCASE
obtains the minimal singular variety Vg = V(l) ∪ V(r2 + z2) in only one generic case
containing all five previous cases.

Moreover, the minimal singular variety has a simple geometrical interpretation: the
special cases correspond either to the end of the robot being at the origin, or to the
length of the second arm being 0.



206 A. Montes

The special cases [1, 1, 0, 1, 1] and [1, 1, 0, 1, 0] are only compatible for complex values
of the parameters (r = ±i z 6= 0) and have no interest for the real configuration.

For the cases [1, 0, 0, 1] and [1, 0, 0, 0] the end of the robot is at the origin. For [1, 0,
0, 1] the system is inconsistent as the length of the second arm is different from ±1. For
[1, 0, 0, 0] the angle θ1 is free whether θ2 is π for l = 1 or 0 for l = −1, corresponding to
the same physical solution.

The cases [0, 1] and [0, 0] correspond to the degenerate robot of length l = 0. For [0, 1]
the system is inconsistent as the position of the end of the robot arm is not at distance
1 from the origin. For [0, 0] the angle θ1 is determined, whether θ2 is free, corresponding
to the degeneration of the configuration.

GENCASE reveals itself to be very useful for this problem.

11.4. load-flow problem for a three nodes electrical network

In Montes (1995, 1998) we studied the load-flow problem for electrical networks. The
equations are polynomial systems with parameters. The following system concerning a
concrete three nodes electrical network is considered:

14− 12 e2 − 110 f2 − 2 e3 − 10 f3 − P1 = 0,
2397− 2200 e2 + 240 f2 − 200 e3 + 40 f3 − 20Q1 = 0,
16 e22 − 4 e2 e3 − 20 e2 f3 + 20 e3 f2 + 16 f2

2 − 4 f2 f3 − 12 e2 + 110 f2 − P2 = 0,
2599 e22 − 400 e2 e3 + 80 e2 f3 − 80 e3 f2 + 2599 f2

2 − 400 f2 f3
− 2200 e2 − 240 f2 − 20Q2 = 0.

Here e2, f2, e3, f3 are the variables, representing real and imaginary parts of voltages,
and P1, Q1, P2, Q2 are the parameters representing the real and imaginary components
of power. We use the orders lex(e2, f2, e3, f3) and lex(P1, Q1, P2, Q2). As a result of the
application of DISPGB the following polynomials appear:

h1 = P1 − 20
h2 = 20Q1 − 3497,
h3 = 6999P2 − 800Q2

g1 = 7786876h1 − 79955h2,

g2 = 400h2
1 + h2

2,

g3 = 7995500h1 + 1946719h2

g4 = h2Q2 (1814947407168h2 + 20 778249588225h1) + 1392556035h2
3.

The discussion provided by DISPGB and GENCASE is given in Table 4.
In this example, DISPGB directly gives the generic case, and GENCASE does not need

to improve the result. We only give the sets of leading power products of the different
bases, in order to illustrate how the initial goal has been reached (the bases themselves
have large coefficients and would confuse the results). Except for the inconsistency cases
[1,0,0,1] and [0, 0, 1], all others have distinct sets of leading power products which cannot
be reduced. Obviously the minimal singular variety in this example is V(g1, g2).†

†In the tutorial, the analysis on how the conditions can be used to simplify the output is described.



A New Algorithm for Gröbner Bases with Parameters 207

Table 4. Discussion of the load-flow problem.

Case Conditions Leading power products

[1, 1] = Generic case g1 6= 0, g2 6= 0 f2
3 , e3, f2, e2

Special cases
[1, 0, 1] g1 6= 0, g2 = 0, g3 h3 6= 0 f3, e3, f2, e2

[1, 0, 0, 1] g1 6= 0, g2 = 0, g3 h3 = 0, g4 6= 0 1
[1, 0, 0, 0] g1 6= 0, g2 = 0, g3 h3 = 0, g4 = 0 e3, f2, e2

[0, 1] g1 = 0, h2 6= 0 f3, e2
3, f2, e2

[0, 0, 1] g1 = 0, h2 = 0, h3 6= 0 1
[0, 0, 0] g1 = 0, h2 = 0, h3 = 0 e2

3, f2, e2

Table 5. Discussion of Example 5.1.

Case Conditions Gröbner basis

[1] = Generic case ∆ 6= 0 G

Special cases ∆ = 0

[0,1] ∆ = 0, [ 1 ]
ba− 8a− 28 + 35b 6= 0

[0,0] ∆ = 0, [ −696 + 339b + (−176b + 148)u + 252z,
ba− 8a− 28 + 35b = 0 −75 + 33b + 63y + (−32b + 67)u,

−309b + 204 + 252x + (208b− 152)u ]

11.5. application to example 5.1

We present here the complete discussion for Example 5.1 (see Table 5) given by
DISPGB, where

∆ = (a− 1)(3a− 7) = 3a2 − 10a+ 7

and G is the basis of the generic case given there.
Finally, we give the time evaluation of applying DISPGB to the examples described

in the paper (and two others from the tutorial), using a PC with a Pentium(r) II, Intel
MMX(TM) tech., 128 MB.

Example Time(sec)

11.1 8.8
11.2 5.2
11.3 115.9
11.4 33.0

Example Time(sec)

5.1 8.4
Sing. points cubic 1.8
2× 2 gen. lin. sys. 8.2

Acknowledgements

I am very grateful to Volker Weispfenning for his remarks about the convenience of
using his algorithm for the load-flow problem (Montes, 1995), for the fruitful discussions
and suggestions and for his excellent and hard review work. His comments induced the
present work and helped me in the design. I extend my gratitude to the anonymous



208 A. Montes

referees of the paper. I am also grateful to Michael Pesch for his patience and interest in
the use of his software.

I am also highly indebted to Rafael Sendra for his critical and detailed lecture of the
preprint and accurate comments that I have carefully incorporated.

This research was partially supported by GEN. CAT. 1999SGR00356 and DGES-MEC
PB98-0933.

References

Adams, W. W., Boyle, A. K. (1992). Some results on Gröbner bases over commutative rings. J. Symb.
Comput., 13, 473–484.

Assi, A. (1994). On flatness of generic projections. J. Symb. Comput., 18, 447–462.
Bayer, D., Stillman, M. (1987). A theorem on refining division orders by the reverselexicographic order.

Duke J. Math., 55, 321–328.
Becker, T., Weispfenning, V. (1993). Gröbner Bases. A Computational Approach to Commutative Al-

gebra, New York, Springer.
Becker, T. (1994). On Gröbner bases under specialization. Appl. Algebra Eng. Commun. Comput., 5,

1–8.
Buchberger, B. (1965). Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach

einem nulldimensionalen Polynomialideal, Ph.D. Dissertation, Austria, University of Innsbruck.
Buchberger, B. (1985). Gröbner bases: An algorithmic method in polynomial ideal theory. In Bose,

N. K. ed., Recent Trends in Multidimensional System Theory, chap. 6. Reidel Publishing Company,
Dordrecht, The Netherlands.

Cox, D., Little, J., O’Shea, D. (1992). Ideals,Varieties and Algorithms. New York, Springer.

Duval, D. (1995). Évaluation dynamique et clôture algébriqueen en axiom. J. Pure Appl. Algebra, 99,
267–295.

Gebauer, R., Möller, H. M. (1987). On an Installation of Buchberger’s Algorithm. New York, Springer.
Gianni, P., Mora, T. (1987). Algebraic solutions of systems of polynomial equations using Gröbner bases.

In Applied Algebra, Algebraic Algorithms and Error-correcting Codes, LNCS 356, pp. 247–257. New
York, Springer.

Gianni, P. (1987). Properties of Gröbner bases under specializations. In Davenport, J. H. ed., EURO-
CAL’87, LNCS 378, pp. 293–297. New York, Springer.

Gräb, H. G. (1993). On lucky primes. J. Symb. Comput., 15, 199–209.
Kalkbrenner, M. (1987). Solving systems of algebraic equations by using Gröbner Bases. In Davenport,

J. H. ed., EUROCAL’87, European Conference on Computer Algebra., LNCS 378, pp. 282–292. New
York, Springer.

Kalkbrenner, M. (1997). On the stability of Gröbner bases under specializations. J. Symb. Comput., 24,
51–58.

Möller, H. M. (1988). On the construction of Gröbner bases using syzygies. J. Symb. Comput., 6, 345–
359.

Montes, A. (1995). Solving the load flow problem using Gröbner bases. SIGSAM Bull., 29, 1–13.
Montes, A. (1998). Algebraic solution of the load-flow problem for a 4-nodes electrical network. Math.

Comput. Simul., 45, 163–174.
Montes, A. (1999). Basic algorithm for Specialization in Gröbner basis. In Bermejo, I. ed., Actas de

EACA-99, pp. 215–228. Tenerife, Universidad de La Laguna.
Pauer, F. (1992). On lucky ideals for Gröbner basis computations. J. Symb. Comput., 14, 471–482.
Sit, W. Y. (1992). An algorithm for solving parametric linear systems. J. Symb. Comput., 13, 353–394.
Weispfenning, V. (1992). Comprehensive Gröbner bases. J. Symb. Comput., 14, 1–29.

Received 3 November 2000
Accepted 29 September 2001


	Introduction
	Some Notations
	Pseudo-Division Algorithm and Specialization
	Buchberger's Algorithm and Specialization
	GGE: Generalized Gaussian Elimination Algorithm
	Specification of Specializations
	DISPGB Discussion Algorithm
	Fig. 1

	Conditional Algorithms
	Control Algorithms
	Minimal Singular Variety: GENCASE Algorithm
	Applications
	Table 1
	Table 2
	Fig. 2
	Table 3
	Table 4
	Table 5

	References

