Europ. J. Combinatoric€2000)21, 431-439
Article No. 10.1006/eujc.1999.0358 @
Available online at http://www.idealibrary.com cbllikIL

Finite Lattices and Lexicographic Grobner Bases

ANNETTA ARAMOVA, JURGENHERZOG AND TAKAYUKI HIBI

By means of combinatorics on finite distributive lattices, lexicographic quadrabier@er bases of
certain kinds of subrings of an affine semigroup ring arising from a finite distributive lattice will be
studied.
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INTRODUCTION

Recently, quadratic @bner bases have been studied by many papers on combinatorial
commutative algebra, e.g11-14]. One of the reasons why commutative algebraists are in-
terested in quadratic @bner bases is because the existence of a quadrdtimér basis of a
homogeneous idedl C A, whereA is a polynomial ring, guarantees that the homogeneous
K-algebraR = A/l is Koszul [1]. Here, we do not state the details about Koszul algebras.
Note, however, that to show that a given homogendottalgebraR is Koszul is, in general,
quite difficult unlessR admits a quadratic ®bner basis. We refer the reader to, e.g], [
and ] for fundamental information about Gbner bases.

Let K be a field,L a finite lattice, andK [{Xy}ocL] the polynomial ring oveK. Consider
the ideal

L = (XaXg — XanpXavp @, B € L)

of K[{Xs}«eL]- The quotient algebra
Rk [L] = K[{Xa}aeLl/IL

is called theHibi ring of L overK.

In the case wheréd is a distributive lattice, the third author has shovéh that R [L]
is an algebra with straightening laws3([Chapter 7], 7] and [10, Part Ill]). In particular, it
follows thatl| has a quadratic ®bner basis for any term order which selects, for any two
incomparable elements g € L, the monomiak,xg as the initial term ok, Xg — XgrpXavg-

Such aterm order is, for example, given by a rank reverse lexicographic term order, that is, the
reverse lexicographic term order induced by a total ordering of the variables satigfyi#g

Xg if rank(er) > rank(g). If we instead choose the lexicographic term order induced by the
same total ordering of the variables, then very simple examples show that the corresponding
Grobner basis is, in generalpt quadratic. However, a rank lexicographic term order has the
advantage that its ®@bner basis is restricted to interesting subrings of a Hibi ring, for example,

to rank boundedsubrings of a Hibi ring. As a consequence we find that these subrings have
guadratic Gobner bases, and hence are Koszul, provided the whole Hibi ring has a rank
lexicographic quadratic @bner basis.

The natural problem arises as how to classify all finite distributive lattices which possess
rank lexicographic quadratic @Gloner bases. Such a classification seems to be rather compli-
cated. In the latter half of Sectid?) however, a complete classification of the finite simple
planar distributive lattices whose Hibi rings have rank lexicographic quadrabicrér bases
will be obtained. See Theore®bs. It turns out that these lattices are exactly the chain ladders.
The concept of chain ladders first appearedin [

In the former half of Sectio2, it will be proved that the so-called trivial Hibi rings, first
considered in§], possess lexicographic quadraticdBner bases. The proof depends essen-
tially on the fact (Theorenm.2) that the Segre produd® = S of a homogeneouk -algebra
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R which admits a lexicographic quadraticd@ner basis and a polynomial rirghas a lexi-
cographic quadratic ®bner basis. Even though the lexicographic term order presented for a
trivial Hibi ring is not necessarily compatible with the rank of its lattice, again the restriction
technique enables us to find certain kinds of subrings, which weesakgmensubrings, of

a trivial Hibi ring which possess quadratic@mner bases. See Theorem.

1. SEGREPRODUCTS ANDLEXICOGRAPHIC TERM ORDERS

In this section we show that the Segre prodRet S of a homogeneouK -algebraR which
admits a lexicographic quadratic @mer basis and a polynomial rirgjhas a lexicographic
guadratic Gbbner basis.

For the proof of the main result of this section we shall use the following simple and well-
known

LEMMA 1.1. Let R= K[X1, ..., Xy] be the polynomial ring, IC R a graded ideal and
G a finite subset of homogeneous elements of |. Given a term erdbere exists a unique
monomial K-basis B of Rin_(G)) (which we call a ‘standard basis’ with respect toand
G). If B is a K-basis of RI, then G is a Gbbner basis of | with respect ta.

PrRoOOFE By definition of Gibbner bases there is an epimorphism of gradedlgebras
®: R/(in.(G)) — R/in_(l). On the other hand, there is an isomorphism of graled
vector space¥ : R/in_(l) — R/I. Note thatG is a Gibner basis with respect to if and
only if ® is an isomorphism, which is the case if and onlyifo ® is an isomorphism. The
last condition is guaranteed by our hypothesis. O

THEOREM 1.2. Let R be ahomogeneous K-algebra which admits a lexicographic quadratic
Grobner basis, and let & K[yy, ..., ym] be the polynomial ring. Then the Segre product
R x S has a lexicographic quadratic Gbner basis.

PrROOF Let R = A/I, where A = K|[X4,..., Xn] is the polynomial ring. LeilC =
K[{zij}i=1...n,j=1,...m] be the polynomial ring im - m variables, andb:C — R Sbe
the homomorphism defined (z;) = xjyj. ThenC/Ker® = Rx S.

We now introduce the lexicographic term ordegy on C induced by the following order
of the variables:

Zij <lexZx <= either i >KkK or i=k and j=>1).

Given a homogeneous polynomiil= ) ; _, & kXi Xk of A, and 1< j,| < m, we define the
following homogeneous polynomial

fii=>akzjz

inC.LetG = {f®, ..., (P} pe aquadratic Gbner basis of with respect to the lexico-
graphic term ordek induced byx; > --- > Xp. Set

Glz{fj(,i|)3m213' >11<i<p}h
Go={zjza —Zizj:1<i<k=nl<j<l<m}

We will prove thatG1 U G is a Gibbner basis of Ked with respect to<jex. Let B be the set
of all monomials

Zigjs - Zigjg with 1<ii<---<ig<n and m>j;>--->jg>1
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such thai;, - - - Xi, is a standard monomial with respecttcandG.

It follows from the definition of the Segre product and from the fact tAas a Gibner
basis ofl, that®(B) is a K-basis ofR x S. Therefore the seB is a K-basis ofC/Ker ®.
On the other hand, it is clear th&; U G» c Ker®. We will show thatB is a K -basis of
C/(in. (G1U G2)). Then, by Lemmd..1, we are done.

Itis enough to show that for every monomial¢ (in, (G1UG»)), one hasv € B. Write
W = Zj,Ziyj, - - Zgjg Where we can assume that< i; < --- < iq. Moreover, sincev ¢
(in<,.,(G2)), we can assume thgt > j» > --- > jq. So, it remains to show that, - - - xj,
is a standard monomial with respect4oandG. Suppose thak;, - - - xi; € (in<(G)). Then
Xi, - - - Xiq IS divided by in(f) for somef € G. Say f = > _, & kXX and inc(f) = xXs,
t <'s. Thenz;jzs dividesw for somej > I. We claim that ir.f,ex(f“) = 7j Zg). This will give
us the desired contradiction.

In order to check the last claim, I&§ z # zjzs1,i < k, be aterm infj;. Sincex; X« occurs

in f, one has¢xs > Xjxk. Thereforet <i.Ift =i, thens < k, thuszg] > 7. If t < i, then
zj > zj and, sincé < K, one hasyj > z¢. Thuszjzg > zjzq. This completes the proof
of the theorem. O

The above proof is no longer valid when the second &1ig not a polynomial ring. For
example, ifR = K[x1, X2, X3l and S = K[y1. Y2, y3. Yal/(Y2, y1Va + Y2y3), thenR * S
does not have a quadratic @mer basis with respect to the lexicographic term ordgg
introduced in the proof of Theorefn2

Even though the following result is almost obvious, it will play an essential role in the next
section.

PROPOSITION1.3. Let R= K[X1, ..., Xn]/l and S= K[y, ..., Yym]/J be homogeneous
K-algebras, and assume that R (resp. S) has a quadratiib@er basis with respect to the
lexicographic term order induced by % --- > X, (resp. ¥ > --- > ym). Then the tensor
product R® S has a quadratic Gibner basis with respect to a lexicographic term order
induced by any ordering ofi)s and y;’s satisfying x > --- > xpand y{ > --- > yn.

PROOFE If G1 (resp.Gy) is a lexicographic quadratic @Gloner basis oR (resp.S), then it
follows immediately from the Buchberger criterion that U G, is a desired Gibner basis
of R® S. ]

2. SUBALGEBRAS OFHIBI RINGS

The purpose of this section is to show that certain subalgebras of Hibi Bhgegsess lex-
icographic quadratic Gbner bases. We will apply the technique of the restriction @Ber
bases discussed in, e.dl].[

First of all, we recall the definition of Hibi rings. Lét be a finite lattice K [{Xy }¢cL ] the
polynomial ring overK and

IL = (XaXg — XanpXavp ., B € L)
the ideal ofK [{X, }«cL]- The quotient algebra
Rk [L] = K[{Xe}aeLl/IL

is called theHibi ring of L over K. We are interested in Hibi rings associated with finite
distributive lattices.
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The fundamental structure theorem for finite distributive lattices guarantees that, for any
finite distributive latticeD, there exists a unique finite poset (partially ordered Betjich that
D is isomorphic to the latticeZ (P) consisting of all poset ideals &, ordered by inclusion.
Here, aposet ideabf P is a subsefQ of P (possibly empty) such that € Q andg € P
together with8 <« in P imply 8 € Q.

Let D = 7 (P) be afinite distributive lattice witl® = {x1, X2, ..., X4}, and letK[t, X1, X2,
..., Xq] be the polynomial ring oveK. If « € J(P), then we writeu, for the squarefree
monomialt ]—[Xi e Xi INKIt, X1, X2, ..., Xq]. It then follows from P] that the affine semigroup
ring K[{uy}ee7(p)] is isomorphic taRk [D]. In fact, the kernel of the canonical surjective
homomorphisnK [{Xy}eep] = K[{Ug}aes(p)] defined byx, — u, coincides withlp.

If P has an elemer which is comparable with any elementBfand if P, = {x € P:x <
p} andP, = {x € P:x > p}, thenP is the ordinal sum15, p. 100]P; @ {p} & P, and

Rk [T (P)] = Rk[T(PD]® Rk [T (P2)].
If Pisthe direct sum15, p. 100]P; + Py, then

R [T (P)] = R [T (PD] % R [T (P2)].

Let O denote the smallest class consisting of finite posets such that (i) any finite chain
(totally ordered set) belongs 10; (ii) if P and Q belong to®, then the ordinal sun® &
{p} ® Q belongs taD, where{ p} is the chain consisting of one element; and (iiiPibelongs
to O and ifC is a finite chain, then the direct suth+ C belongs ta0.

A Hibi ring Rk [D] with D = J(P) is calledtrivial if P belongs toO. Note that the
definition of trivial Hibi rings in the present paper is slightly different from thatGh [

A chain decompositionf a finite posefP is a set-theoretic decompositith= C; U C, U
---UCs, where eaclt; is a chain ofP and whereC;NCj = @ foralli # j. A canonical chain
decompositiorof a finite posetP belonging toO is defined as follows. I€ is a finite chain,
thenC itself is a canonical chain decomposition@fIf P andQ belong to© with canonical
chain decompositionB = C;UC,U- - -UCs andQ = C;UC,U- - -UC{, thenC/UCJUCZU. - -
with C]' = C1U{p}UCj andC/” = C; UC/ for eachi > 2, whereC; = #if i > sandC} =0
if j > t, is a canonical chain decomposition of the ordinal ser® {p} ® Q. If P belongs
to O with a canonical chain decompositiéh= C1 UC, U - -- U Cg and ifC is a finite chain,
thenC1 UC, U --- U Cg U C is a canonical chain decomposition of the direct s C.

Let P be a finite poset belonging t6 and fix a canonical chain decompositiGa U Cp U
.- UCg of P. We associate each poset ideadf P with the sequence

£@) = (3@ N Cy), 4@ N Cp), ..., (e N Cy)) € Z°,

wheret(« N Cj) is the number of elements efN C; for all i. See 5, pp. 111 and 112].
It follows easily that ife and 8 belong toD = J7(P) with ¢(e) = (a1, @y, ...,3as) and
£(B) = (by, by, ..., bs), thent(a A B) = (min{ay, b1}, min{ay, by}, ..., min{as, bs}) and
L(a Vv B) = (maxXay, b1}, max{ay, by}, ..., maxas, bs}). The total ordering on the variables
Uy, « € D = J(P), arising from the canonical chain decomposit@nu C, U - - - U Cg of
P is the total ordering obtained by setting < ug if the left-most nonzero component of the
vector difference («) — £(B) is positive. In particulan), < ugif o > gin D = J(P).

Now, Theoreml.2 and Propositiori.3yield the following

COROLLARY 2.1. If P belongstd), thenRk [ (P)] possesses a quadratic &ner basis
with respect to the lexicographic term order induced by the total ordering arising from a
canonical chain decomposition of P.
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PROOF First, letP (resp.Q) belong to© and suppose th&k [7 (P)] (resp. Rk [T (Q)])
possesses a quadratic @Bner basis with respect to the lexicographic term order on
K[{Xe}aer ()] (resp.K[{Xy}oee7(q)]) induced by the total ordering1 (resp.<>) arising
from a canonical chain decompositidgh = C; UC, U --- U Cs (resp.Q = C; UC, U
.-+ U C{). We know by Propositiori.3 that the tensor produd®k [7(P)] ® Rk [J(Q)]
possesses a quadraticdBner basis with respect to the lexicographic term ordgg on
K[{Xe}aes(Pyo7 ()] Obtained by setting, <iex Xg if (i) «, B € J(P) with X, <1 Xg,
or (i) , 8 € J(Q) with x, <2 Xg, or (i) « € J(Q) andp e J(P). If we identify
J(P) @ J(Q) with 7(P @ {p} & Q) in the obvious way, then the lexicographic term order
<lex coincides with the lexicographic term order induced by the total ordering arising from the
canonical chain decompositi@{ UCJ UCZ U- - - with C{ = C1U{p}UC; andC’ = C; UC/
for eachi > 2 of the ordinal sunP @ {p} ® Q.

Second, letP belong to© and let<1 denote the total ordering arising from a canonical
chain decompositio®; UC, U - - - U Cg of P. Suppose thaRg [ 7 (P)] possesses a quadratic
Grobner basis with respect to the lexicographic term ordel pixX, }oc 7 ()] induced by<;.

By virtue of Theoreml.2 we know that the Segre produk[7(P)] * S of Rx[J(P)]
and the polynomial rindgs = K[Xo, X1, ..., Xm] possesses a quadraticdBner basis with
respect to the lexicographic term ordegx on the polynomial ring< [{Z,i)}ae 7 (P):0<i <m]
obtained by setting(.iy <iex Z,j) if and only if eitherx, <1 Xg or (@ = g andi > j).
LetC:y1 < yo < --- < ym be any finite chain angk = {y1, y2,...,Vyi} with yp = @.
Then7(P +C) = {eUy:a € J(P),0 <i < m}. The total ordering< arising from the
canonical chain decompositi@y U Co U --- U Cs U C of P + C is, by definition, obtained
by settingzuy) < Zpuy;) if and only if eitherx, <1 xg or (@ = g andi > j), since
La Uy) = (La),i) € Z5foralla Uy € J(P + C). Hence, the trivial Hibi ring
Rk [T (P + C)] possesses the required quadratiolgder basis. O

Fix the total ordering< arising from a canonical chain decompositionPofvhich belongs
to O. Lety, ¥ € D = J(P) with x, < xy and WriteRK[D]Z for the subring ofRk [D]
generated by all monomiaig, with x, < X, < Xy, i.e.,

RK[D]g = K[{Ua}xngasx,/,] = K[{Xa}xngang,]/(lD n K[{Xa}stxasx(/,])-

Such a subring oRk [D] is called dexsegmensubring of Rk [D].
We are now in a position to state the first result of this section.

THEOREM 2.2. All lexsegment subrings of a trivial Hibi ring possess lexicographic quad-
ratic Grobner bases.

In order to prove Theorer®.2the following well-known technique will be required.

LEMMA 2.3. Let A be a polynomial ring over a field K, | a homogeneous ideal of A, and
S a subring of A generated by some of the indeterminates of A< beta term order of A,
and G a Gibbner basis of | with respect ta such that for all fe G within_(f) € S one
has fe S. Then G S is GBbner basis of N S.

PROOF Letg e | NS, then, sinceg € | andG is a Gibbner basis of , there existsf € G
such that in(f) divides in. (g). In particular, in.(f) € S. Thus our hypothesis implies that
f € S, and consequently, € G N S. This concludes the proof of the lemma. o

PROOF (PROOF OFTHEOREM2.2.). Let Rk [D] be a trivial Hibi ring, whereD = 7 (P)
and P belongs ta®. We know by Corollan2.1that | p possesses a quadraticd®Bner basis,
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say G, with respect to the lexicographic term order induced by the total ordetiagising
from a canonical chain decomposition Bf Let RK[D]}g with x, < xy be a lexsegment
subring of Rk [D].

Suppose that a quadratic binomiglixg — X, xs belongs taG with x, Xg its initial part. Let
L) = (ag, @, ...), L(B) = (by, by, ...), &(y) = (C1, C2, ...) andl(8) = (d1, dp, ...). Then,
min{a;, bj} = min{c;, di} and maxa;, bj} = maxc;, d;} forall i, sincea A 8 = y A § and
aV B =y V. Letus assume that, < Xg. Then, there i$ with aj = bj forall j <i and
with a; > bj. We next assume that = ¢ andbj = d. Thus,x, < Xs. Sincex,Xg is the
initial part and sincex, < Xg, we havexs < Xg. Thus, there i$’ > i with bj = d;. for all
j’ <i”and withd;; > by. Henceaj = cj forall j’ < i’ anda; > ¢/. Thus,X, < X,. SO,
Xa < Xy < X5 < Xg.

Hence, if xoXg belongs to K[{Xy}x,<x,<x,]; then XyXg — X, X5 must belong to
KI{Xa}x,<x,<x,1- Thus, by Lemme2.3 the setG N K[{Xy}x,<x,<x,] IS @ Gidbner basis
of IpN KI{Xe }x, <x, <x, 15 @S desired. O

We now turn to a discussion of the existence of rank lexicographic quadrdatmér bases
of finite distributive lattices. LeD be a finite distributive lattice. Theank of « € D is the
maximal integek such that there exists a chainBfof the formag < a1 < --- < ax = «,
and is denoted by raiik). The rank of a uniqgue maximal elementdfs called theankof D,
and is denoted by raiik). A rank lexicographiderm order orK [{X, }«cD] iS @ lexicographic
term order induced by a total ordering Bnsatisfyinga < 8 if rank(«) > rank(B).

Fix integersn < m. The subring ofRk [D] generated by all monomialg, with n <
ranko) < mis called arank boundedubring ofRk [D]. It follows again from Lemma&.3
that if a Hibi ring Rk [D] possesses a rank lexicographic quadratiob@er basis, then all
rank bounded subrings @&« [D] also possess lexicographic quadrati©Brer bases. Thus,
it is reasonable to ask which Hibi rings possess rank lexicographic quadratim&rbases.

However, it seems difficult to find a combinatorial characterization for a finite distributive
lattice to possess a rank lexicographic quadratiob@er basis. We give a solution of this
classification problem for simple planar distributive lattices.

Let N? denote the (infinite) distributive lattice consisting of all pairsj) of nonnegative
integers with the partial ordér, j) < (k,|) <= i <k, j <. A planar distributive lattice
is a finite sublatticeD of N2 with (0,0) € D such that, for anyi, j), (k,|) € D with
@, ) < (k,1), there exists a chain dD of the form(i, j) = (ig, jo) < (i1, 1) < -+ <
(s, js) = (k,1) such thatix,1 + jkr1 = ik + jk + 1 for all k. A planar distributive lattice
D is calledsimpleif, for all 0 < r < rank(D), there exist at least two elemerfts= D with
rank(&) =r.

An element(i, j) of a simple planar distributive lattid® is said to be aimner cornerof D
ifi—21,)),0d+1j),3d,j+21andd, j— 1) belongtoD and if either(i + 1, ] —1) ¢ D
or(i—1,j+1) ¢ D. A chain ladder(cf. [5]) is a simple planar distributive latticB such
that the set of all inner corners @ is a chain ofD and that, for any two inner corners
(,j)# (', j)of D,onehas #i"andj # j'. (See the figure below, where the dots denote
the inner corners.)
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The following combinatorial characterization of chain ladders might be of interest.

LEMMA 2.4. A simple planar distributive lattice D is a chain ladder if and only if the
following condition(x) is satisfied:

(%) If D possesses four elemerits j), (i, j), (k,1) and (k’, ) with j < | < j"and k <
i <k, then eitherk, j) e Dor (K, j) € D.

PROOF First, suppose thdD fails to satisfy conditior(x) and choose four elements j),
(,j", k,1)and(,I) belonging toD with j <| < j’andk < i < k' such thatk, j’) ¢ D
and(k’, j) ¢ D. It then follows that there exist inner cornersand of D with (i, j) < a <
(K,lyand(k,1) < B8 < (i, j’). Note thatx or 8 may be equal tdi, |), buta # 8, sinceD is
simple. HenceDP cannot be a chain ladder.

Second, ifD is not a chain ladder, then there exist two inner corriierg) and (k, |) with
(i, }) # (k, ) suchthat < kandj > I|. Then, the four elements, | —1), (i —1,1), (k+1,1)
and(, j + 1) belong toD. However, neithetk + 1,1 — 1) nor (i — 1, j + 1) belong toD.
Hence,D cannot satisfy conditiog). ]

We now come to the second result of this section.

THEOREM2.5. Let D be afinite simple planar distributive lattice. TR [D] has a rank
lexicographic quadratic Gsbner basis if and only if D is a chain ladder.

PrROOF We fix a rank lexicographic term ordet on K[{X4}4ep], and letG denote the
set of all quadratic binomialg, Xg — XurgX«vpg SUch thatr, B € D are incomparable. Since
D is a planar distributive lattices, g & in<(Ip) if « andg are incomparable . Then,

a monomialXy, Xy, - - + Xaq Of K[{Xs}aen] is @ standard monomial with respect{oandG

if and only if, for all @i # «j, eitherej andej are incomparable iD, or i < « and

ai =B Ay,aj =pVyfornog,y € D. Let B denote the set of standard monomials with
respect to< andG.

We will show thatB is a K-basis of Rk [D] if D is a chain ladder. We easily see that
Rk [D] is spanned byB as a vector space ovét. Thus, we must show thd is linearly
independent. Lefa, b) € D be the unique minimal element of the inner corneroénd,
without loss of generality, assume that all elemeit§) € N? with (i, j) < (a, b) belong
to D. Suppose thaB is linearly dependent and choose = X, j;)Xis.j») * * * X(iq.jq) &N
w = Xy ipXig iy " X400 belonging toB with w # w’ such that the support ab co-
incides with that ofw’. Here, the support of a monomial = X, j;)Xi,.j, - - - Xdq.jq) 1S the
multichain(ay, by) < (ap, bp) < --- < (aq, by) of D such that, as multisetfiy, io, ..., iq} =
{a1, @, ..., aq} and{jz, j2, ..., jq} = {b1, b2, ..., bg}. Note thatw is equal tow” in Rk [D]
if and only if the support ofw coincides with that ofw’. Now, choosing the abovg > 2
as small as possible, we may assume thatjs) # (i;, j/) for all s andr. Moreover, let us
assume that mins<q js = MiNi<r<q j; = 0, sayji = j; = 0 andiy < i; < a. Then, for
some 1< s < q, we haveis = ij and js > 0. The fact thaD is a chain ladder guarantees
that(is, js) belongs toD. Hence.w cannot be a standard monomial with respect tandG,

a contradiction. This completes the proof of the ‘if’ part of the theorem.

In order to see why the ‘only if’ part of the theorem is true, suppose that a simple pla-
nar distributive latticeD is not a chain ladder. By Lemm24 we can find four elements
G,),a,j"H, k1 andK,I) belonging toD with j < | < j" andk < i < k' such that
neither(k, j’) nor (k/, j) belong toD. Leta = (i, j), 8 = (k, 1),y = (i, j)) ands = (K, ]).
Then,a v B =y AS. Letw = XgnpXavpXyvs. Then, bothx, XgX, s andx, g%, X5 have the
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same support as. Hence, for any rank lexicographic term orderon K [{X,}«eD], €ither
XaXgXyvs OF Xonp Xy Xs DElONG tO i (1p). However, none 0k Xg, Xa Xyvs, XgXyvs, XansXy
XanpXs, Xy Xs belong to in.(Ip). Hence,lp cannot possess a rank lexicographic quadratic
Grobner basis, as required. O

REMARK 2.6. Even if D is a nonsimple planar distributive lattice, the above proof of The-
orem 2.5 shows thatRk [D] has a rank lexicographic quadraticdner basis if and only
if D satisfies conditior(x) of LemmaZ2.4. For example, ifP = {«, 8}, wherea and g are
incomparable, and iD is the nonsimple planar distributive latticé(P & P), thenRk[D]
has no rank lexicographic quadratic@®ner basis.

By virtue of the proof of the ‘if’ part of Theorer2.5together with Lemm&.3, we imme-
diately obtain

COROLLARY 2.7. Let D be a chain ladder and F a nonempty subset satisfying the con-
dition as follows if « € D witha < g anda > y for someB,y € F, thena € F.
Then, the subring Rk [D] generated by all monomials,with @ € F over K possesses a
lexicographic quadratic Gibner basis.
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APPENDIX

We present here a quick introduction todBner bases for combinatorialists. LAt =
K[X1, ..., Xs] denote the polynomial ring im variables over a fieldk and write M (A)
for the set of all monomials il\. Thus M (A) is aK-basis ofA as a vector space ovér. A
term orderon A is a total orde on M (A) such that

() 1 <uforalll£ue M(A);
(i) if u < v, thenuw < vw forall w € M(A).

IfO # f = ciug + --- + cUm is a polynomial inA, where each G4 ¢« € K and each
uk € M(A), withu; < up < --- < um, then the monomiali, is said to be thenitial
monomialof f with respect to< and is denoted by in(f). If I # (0) is an ideal ofA,
then theinitial ideal of | with respect to< is the ideal of A generated by all monomials
in.(f)with0 # f e | and is written as in(l). A Grobner basiof | with respect to< is

a finite setG = {qg1, ..., gs} of polynomials belonging td such that in.(1) is generated by
in<(91), s in<(gs)-

Dickson’s lemma, which says that any nonempty subset@i®) (in particular, in.(1) N
M(A)) has only finitely many minimal elements in the partial order by divisibility, guarantees
that a Gbbner basis of with respect to< always exists. Moreover, it follows easily that if
G ={01,...,0s} is a Gibbner basis of,, thenl is generated by, ..., gs.

A lexicographic term ordeon A induced by the total orde, > X2 > - -+ > X, is the term
order <iex defined as follows: for monomials = x3* - -- " andv = x{*---x" in A with
U=v,wesell <iggvifiz=j1,...,ike1 = jk—1 andix < jx forsome 1< k < n.

Let R be a homogeneous-algebraan® = A/I, wherel is a homogenous ideal &f. We
say thatR admits a quadratic @bner basis (resp. a lexicographic quadratiolgier basis) if
there exists a term order on A (resp. a lexicographic term ordetex 0n A induced by a total
order ofxy, ..., Xy) such that the initial ideal of with respect to< (resp.<jex) iS generated
by quadratic monomials.
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