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Abstract. Gröbner Bases is a technique that provides algorithmic solutions to a vari-
ety of problems in Commutative Algebra and Algebraic Geometry. In this introductory
tutorial the basic algorithms as well as their generalization for computing Gröbner basis
of a set of multivariate polynomials are presented. The Gröbner basis technique is ap-
plied to solve systems of polynomial equations in several variables. This technical report
investigates this application.

1 Introduction

The origins of algebra and algorithms date back to the ninth century. Working on polynomial
equations, the mathematician Mohammed ibn Musa al-Khawarizmi wrote his famous book
kitab al-jabr wa’l muqabala in Baghdad. The book discusses symbolic methods for solving
polynomial equations. The words algebra and algorithms are actually the westernization of
the words al-jabr and al-Khawarizmi’yah respectively [1]. Until the nineteen sixties, Alge-
bra was concerned with constructive methods. With the discovery of computers and their
development, algebraic algorithms have been recognized to play a central role in computer
science. The recent advances in computer technology coupled with the ancient interest in
algebraic algorithms have made it necessary to study computer related topics to algorithms,
such as their efficiency, implementation, hardware and software needs and so on. This has
lead to the establishment of Computer Algebra, a field of study that extends deeply into both
mathematics and computer science.

Over the years, new concepts and results have developed in the area of Computer Algebra
and computer algebraists made significant contributions to the fields of Mathematics and
Computer Science. Among these contributions, an outstanding example is the theory and
algorithms for Gröbner .

∗Work reported herein has been supported in part by the National Science Foundation under Grant CCR-
9201800
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The concept of Gröbner Bases was introduced by Bruno Buchberger (1965) in the context
of his work on performing algorithmic computations in residue classes of polynomial rings.
Buchberger’s algorithm for computing Gröbner Bases is a powerful tool for solving many
important problems in polynomial ideal theory. It has been extensively studied, developed,
refined, and it has been implemented on most computer algebra systems.

This tutorial is divided into six sections. We start by giving the reader the necessary back-
ground for understanding the theory of Gröbner basis. Mathematical notations and defi-
nitions follow in Section 2. The important concept of monomial ordering and polynomial
reduction, a corner stone in the Gröbner basis algorithm, are explained in Sections 3 and 4.
Buchberger’s original algorithm and a modified version of it are given in Section 5. The last
section presents an important application of the Gröbner basis algorithm: solution of systems
of polynomial equations in several variables.

2 Mathematical Notations

The theory of Gröbner bases is centered around the concept of ideals generated by finite sets
of multivariate polynomials. Studying polynomials is essential to understand the relationship
between algebra and geometry. Therefore, we start our discussion by defining some basic al-
gebraic structures, and move on to the notion of ideals.

Definition. A commutative ring 〈R, +, ·〉 is a set R with the two binary operations addi-
tion (+) and multiplication (·) defined on R such that 〈R, +〉 is a commutative group, · is
commutative and associative, and the distributive law a ·(b+c) = a ·b+a ·c holds ∀a, b, c ∈ R.

Example. 〈Z,+, ·〉 is a commutative ring.
Shortly, we will define the most important ring to this tutorial.

Definition. Let 〈R, +, ·〉 be a commutative ring with a multiplicative identity. 〈R, +, ·〉 is
called a field if every nonzero element of R has a multiplicative inverse in R.

Example. 〈Q,+, ·〉, 〈R,+, ·〉, 〈C,+, ·〉 are fields. However, 〈Z,+, ·〉 is not a field.

Definition. Let N denote the non-negative integers. Let α = (α1, . . . , αn) be a power vector
in Nn, and let x1, x2, . . . , xn be any n variables. Then a monomial xα in x1, x2, . . . , xn is
defined as the product xα = xα1

1 · xα2
2 · · ·xαn

n . Moreover, the total degree of the monomial xα

is defined as |α| = α1 + · · · + αn.

Example. x5y2z, x4y3, y5, and x2z are monomials in x, y, z. They are of total degrees 8, 7,
5, and 3 respectively.

In this tutorial, unless otherwise specified, all monomials will be in x1, x2, . . . , xn.
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Definition. A multivariate polynomial f in x1, x2, . . . , xn with coefficients in a field k is
a finite linear combination, f(x1, x2, . . . , xn) =

∑
α aαxα, of monomials xα and coefficients

aα ∈ k. The total degree of the polynomial f is defined as the maximum |α| such that aα 6= 0.

Example. f(x, y, x) = x5y2z − x4y3 + y5 + x2z − y3z + xy + 2x − 5z + 3 is a polynomial in
x, y, z. The total degree of f is 8 since |α| = |(5, 2, 1)| = 8 is maximum of all power vectors of
monomials with nonzero coefficients. It is the power vector of the monomial x5y2z.

Example. The set of all multivariate polynomials in x1, x2, . . . , xn with coefficients in a field
k is denoted by k[x1, x2, . . . , xn]. It is easy to verify that k[x1, x2, . . . , xn] forms a commuta-
tive ring. Hence, it will be called a polynomial ring.

Definition. Let 〈R, +, ·〉 be a commutative ring. A nonempty subset I ⊂ R is called an
ideal if I is closed under addition and is closed under inside-outside multiplication.

Definition. Let F = {f1, . . . , fs} be a set of multivariate polynomials. Then the ideal
generated by F, denoted by I = 〈F 〉, is given by:

{∑s
i=1 hifi : h1, . . . , hs ∈ k[x1, x2, . . . , xn]}.

The polynomials f1, . . . , fs are called a basis for the ideal they generate and, since F is finite,
we say the ideal is finitely generated.

Thus, the ideal generated by a family of generators consists of the set of linear combinations
of these generators, with polynomial coefficients. Moreover, we say that two polynomials are
equivalent with respect to an ideal if their difference belongs to the ideal.

Hilbert Bases Theorem proves that every ideal is finitely generated. Obviously, there are
several bases for one ideal. We can always add any linear combination of the generators, or
suppress one of them if it is a linear combination of the others. However, among the different
bases of an ideal, stands a very useful basis: Gröbner basis.

As we will see, a basic ingredient to the theory of Gröbner basis is the idea of polynomial
reduction to compute a suitably defined normal form of a given polynomial. Before one can
talk about polynomial reduction, the notion of monomial ordering should be introduced. This
important idea is studied next.

3 Monomial Ordering

Let us consider polynomials in the variables x1, . . . , xn, with coefficients in a field k. We will
assume the following ordering on the variables x1, . . . , xn:

x1 > x2 > · · · > xn−1 > xn

As we will see, the computation of Gröbner bases varies substantially when we use different
monomial orderings.
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Definition. A total ordering, >, on Nn is called admissible if the following two conditions
are satisfied:

1. ∀α ∈ Nn, α > 0.

2. ∀α, β, γ ∈ Nn, α > β =⇒ α + γ > β + γ.

Clearly, an admissible ordering establishes a one-to-one correspondence between Nn and the
monomials xα = xα1

1 · xα2
2 · · ·xαn

n in k[x]. In other words, if > is an admissible ordering on
Nn then > is an ordering on the monomials. i.e., α > β =⇒ xα > xβ .
There are several monomial orederings. Following is the description of most important three:

Definition. Let α and β be in Nn.

1. Lexicographic Order: α >lex β if and only if the left-most nonzero entry in α− β is
positive.

2. Graded Lex Order: α >grlex β if and only if |α| > |β| or (|α| = |β| and α >lex β).

3. Graded Reverse Lex Order: α >grevlex β if and only if |α| > |β| or (|α| = |β| and
the right-most nonzero entry in α − β is negative.

Example.

• (3, 2, 1) = α >lex β = (1, 2, 4) since in α − β = (2, 0,−3) the left-most nonzero entry is
positive. Hence x3y2z >lex xy2z4.

• (2, 4, 1) = α >grlex β = (1, 6, 0) since |α| = 7 = |β| and α >lex β and left-most nonzero
entry in α − β = (1,−2, 1) is positive. Hence x2y4z >grlex xy6.

• (1, 3, 1) = α >grevlex β = (1, 2, 2) since |α| = 5 = |β| and the right-most entry in
α − β = (0, 1,−1) is negative. Hence

Definition. Assume an arbitrary admissible ordering > is fixed. Given a nonzero polynomial
f ∈ k[x1, x2, . . . , xn], we define:

• The multidegree of f as: multideg(f) = max(α ∈ Nn : aα 6= 0).

• The leading monomial of f as: LM(f) = xmultideg(f ).

• The leading coefficient of f as: LC(f) = amultideg(f ).

• The leading term of f as: LT(f) = LC(f)·LM(f).

Example. Consider the polynomial f(x, y, z) = 2x2y8 − 3x5yz4 + xyz3 − xy4 in k[x, y, z].
Then
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• with respect to the lex order, f is reordered in decreasing order as:
f(x, y, z) = −3x5yz4 + 2x2y8 − xy4 + xyz3

multideg(f) = (5,1,4), LM(f) = x5yz4, LC(f)=−3, LT(f) = −3x5yz4.

• With respect to the grlex order, f is reordered in decreasing order as:
f(x, y, z) = −3x5yz4 + 2x2y8 − xy4 + xyz3

multideg(f) = (5,1,4), LM(f) = x5yz4, LC(f)=−3, LT(f) = −3x5yz4.

• With respect to the grevlex order, f is reordered in decreasing order as:
f(x, y, z) = 2x2y8 − 3x5yz4 − xy4 + xyz3

multideg(f) = (2,8,0), LM(f) = x2y8, LC(f) = 2, LT(f) = 2x2y8.

4 Polynomial Reduction

As we will see, polynomial reduction is the corner stone in the Gröbner bases algorithm. It is
the most computationally intensive part of the algorithm. Buchberger [3] viewed polynomial
reduction as a one step in a generalized division. A polynomial g reduces to another polyno-
mial h modulo some polynomial set F, denoted as g −→F h, if and only if the LT(g) can be
deleted by the subtraction of an appropriate multiple of: an appropriate polynomial f in F,
a monomial u where u =LM(g)/LM(f), and a scalar b in k, where b =LC(g)/LC(f), yielding h.

Definition. g −→F h if and only if there exists f ∈ F , b, and u such that h = g − buf .
Otherwise, g is called irreducible modulo F.

In other words, g is called irreducible modulo F if no leading monomial of an element of F
divides the leading monomial of g. On the other hand if g is reducible modulo F then we
can subtract from it a multiple of an element of F to eliminate its leading monomial and to
get a new leading monomial less than the leading monomial of g. This new polynomial is
equivalent to g with respect to the ideal generated by F.

Example. Let F = {f1, f2}, where f1 = xy2 − x and f2 = x − y3. Consider the polynomial
g = x7y2 + x3y2 − y + 1. These polynomials are ordered with respect to the lex order.
Choose f = f1, u = x6, b = 1, we obtain the polynomial h = g − buf = x7 + x3y2 − y + 1.
Thus, g −→F h.

Definition. A polynomial h is a normal form of g if and only if g −→+
F h and h is irreducible

modulo F.

Example. Let F = {f1, f2}, where f1 = xy − 1 and f2 = y2 − 1. Consider the polynomial
g = x2y + xy2 + y2. These polynomials are ordered with respect to the lex order with x > y.
Clearly, g is reducible modulo F. If we continue the reduction process, we end up with the
polynomial h = x + y + 1 which is irreducible modulo F. Thus h is a normal form of g.

The definition of polynomial reduction involves only the leading term of g. However, it is
possible to eliminate some other monomials of g to make the linear combination smaller. This
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leads to the following definition.

Definition. A polynomial g is completely reduced with respect to F if no term in g is divisible
by any of the LT(fi) for all fi ∈ F .

As we see, one way to reduce a polynomial modulo a polynomial set F is to generalize the
division algorithm for k[x1] which states as follows:

Proposition [4]. If f, g ∈ k[x1] and g 6= 0, then ∃ unique q, r ∈ k[x1] such that f = qg + r
and either r = 0 or deg(r) < deg(g).

The proof is straightforward and can be found in ordinary algebra texts. To generalize this
division algorithm, we need to divide a polynomial f ∈ k[x1, x2, . . . , xn] by a set of polyno-
mials F = f1, . . . , fs ⊂ k[x1, x2, . . . , xn]. Following is the formal statement:

Theorem [4]. Let F = (f1, . . . , fs) be an ordered s-tuple of polynomials in k[x1, x2, . . . , xn].
Then if f is a polynomial in k[x1, x2, . . . , xn], then ∃q1, . . . , qs, r ∈ k[x1, x2, . . . , xn] such that
f = q1f1 + · · · + qsfs + r and either r = 0 or r is a completely reduced polynomial.

In the following section, this division algorithm is given.
Now, we turn to a term that plays an essential role in the theory of Gröbner bases: S-
polynomials. Recall that the l.c.m. of two monomials is the product of all the variables, each
to a power which is maximum of its powers in the two monomials.

Definition. Given two polynomials f, g ∈ k[x1, x2, . . . , xn]. Let J = l.c.m(LM(f), LM(g)).
We define the S-polynomial of f and g as the linear combination

S-poly(f,g)= J
LT (f) · f − J

LT (g) · g

Since J/LT (f) and J/LT (g) are monomials, then the S-poly(f,g) is a linear combination with
polynomial coefficients of f and g, and belongs to the same ideal generated by f and g. The
above mentioned definition indicates that S-polynomials are cross product of leading terms
and are constructed to cancel leading terms. The leading terms of the two components of
S-poly(f,g) are equal and therefore, cancel each other.

Example. Let F = {f1, f2}, where f1 = xy2z − xyz and f2 = x2yz − z2. These polynomials
are ordered with respect to the pure lexicographic order. LM(f1) = xy2z, and the LM(f2) =
x2yz. Let J = l.c.m.(xy2z, x2yz) = x2y2z. Then
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S-poly(f1, f2) = J
LT (f1) · f1 − J

LT (f2)
· f2

= x2y2z
xy2z

· f1 − x2y2z
x2yz

· f2

= x · f1 − y · f2

= −x2yz + yz2

Now, let us take three examples. In the first example, let us consider two polynomials f1 and
f2 such that LT (f1) and LT (f2) are relatively prime and LC(f1) = LC(f2) = 1. As we will
see, the LM(S-poly)(f1, f2) is a multiple of the LM(f1) or the LM(f2).
In the second and third examples, we will consider two polynomials f1 and f2 such that the
gcd(f1, f2) = 1. As we will see, the above mentioned observation may or may not work in
this case.

Example. Let F = {f1, f2}, where f1 = xy + z3 and f2 = z2 − 3z. These polynomials are
ordered with respect to the pure lexicographic order. LM(f1) = xy, and the LM(f2) = z2.
Let J = l.c.m.(xy, z2) = xyz2. Then

S-poly(f1, f2) = xyz2

xy · f1 − xyz2

z2 · f2

= −3xyz + z5

Example. Let F = {f1, f2}, where f1 = 4x2z−7y2 and f2 = xyz2+3xz4. These polynomials
are ordered with respect to the pure lexicographic order. LM(f1) = x2z, and the LM(f2) =
xyz2. Let J = l.c.m.(x2z, xyz2) = x2yz2. One can check that the gcd(f1, f2) = 1. Then

S-poly(f1, f2) = x2yz2

x2z
· f1 − x2yz2

xyz2 · f2

= −12x2z4 − 7y3z

Example. Let F = {f1, f2}, where f1 = x4y − z2 and f2 = 3xz2 − y. These These
polynomials are ordered with respect to the pure lexicographic order. LM(f1) = x4y, and
the LM(f2) = xz2. Let J = l.c.m.(x4y, xz2) = x4yz2. One can check that the gcd(f1, f2) = 1.
Then

S-poly(f1, f2) = x4yz2

x4y
· f1 − x4yz2

3xz2 · f2

= x3y2 − 3z4

There are several equivalent definitions for Gröbner bases. Following is the definition of a
Gröbner basis as it was originally given by Buchberger [3].
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Definition. Given a finite set of polynomials, F. Then F is a Gröbner basis if and only if
∀g, h1, h2 if h1 and h2 are normal forms of g modulo F then h1 = h2.

Theorem. Let F = {f1, . . . , fs} be a finite set of polynomials. Let I be the ideal generated
by F. The following are equivalent:

• F is a Gröbner basis.

• ∀fi, fj ∈ F : S-poly(fi, fj) reduces to zero modulo F.

• Every reduction of an f of I to a reduced polynomial with respect to F always gives
zero.

Indeed, this criterion is the driving force behind Gröbner bases method. To check if a basis
is a Gröbner basis, all we have to do is compute all S-poly(fi, fj) and see if all reduce to
zero or not. Another useful use of this theorem is that it gives us the tools to construct a
Gröbner basis. If one S-poly does not reduce to zero, it still can be added to the basis without
changing the ideal generated. This is because it is a linear combination of two polynomials
of the basis. Once this S-poly is added to the basis, it will reduce to zero. However, there
will be new S-polynomials to be considered. This process comes to an end as it was shown
by Buchberger. This is the essence of Buchberger’s algorithm to compute Gröbner bases. In
the next section, we discuss this algorithm.

5 Algorithms

The above mentioned theorem formulates the algorithmic criterion for Gröbner bases. The
following algorithm is the original algorithm given by Buchberger in his Ph.D. dissertation.
Buchberger and interested researchers extensively worked on the algorithm and several de-
velopments were given. The refined algorithm will be discussed later.

Algorithm Buchberger [3].
Input: A polynomial set F = (f1, . . . , fn) that generates an ideal I.
Output: A Gröbner basis G = (g1, . . . , gt) that generates the same ideal I with F ⊂ G.

G := F
M := {{fi, fj}|fi, fj ∈ G and fi 6= fj}
Repeat

{p, q} := a pair in M
M := M − {{p, q}}
S := Spoly(p,q)
h := NormalForm(S,G)
IF h 6= 0 THEN

M := M
⋃{{g, h} ∀g ∈ G}

G := G
⋃{h}

Until M = ∅
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So, the idea of the algorithm is fairly clear. We initialize the Gröbner basis, G, to the original
set of polynomials. Form the set, M, of all pairs of polynomials in G. Pick a pair {p,q} from
M. Compute the S-poly(p,q) and reduce it modulo G to the polynomial h. If h is nonzero,
then we add it to the basis, G, and we update the set of pairs, M, by forming and adding
new pairs, {h,g}, for all g ∈ G. We repeat this process until any computed h equals zero.

The computation of S-polynomials is straightforward. The computation of the Normalform(S, G)
is possible through any normal form algorithm. One algorithm that has been implemented
in several computer algebra systems is the generalized division algorithm mentioned in the
previous section. The Normalform(S, G) can be taken as the remainder r of dividing the
polynomial S by the set G. Following is this algorithm.

Algorithm Generalized Division [4].
Input: A polynomial set F = (f1, . . . , fs), and any nonzero polynomial f in k[x1, x2, . . . , xn].
Output: The remainder, r, of dividing f by F.

The quotients q1, q2, . . . , qs such that f = q1f1 + · · · + qsfs + r with either r = 0 or
r is a completely reduced polynomial with respect to F.

qi := 0; for i := 1, . . . , s
r := 0
p := f
Repeat

i := 1
dividing := true
While (i ≤ s) and (dividing) do

If LT(fi) divides LT(p) then
u :=LT(p)/LT(fi)
qi := qi + u
p := p − u · fi

dividing := false
else

i := i + 1
If not dividing then

r := r+ LT(p)
p := p− LT(p)

Until p = 0

Indeed, this algorithm is a generalized form of the high school division algorithm. As long as
the LT of a divisor divides the LT of an intermediate dividend, the algorithm proceeds as in
the one-variable case. If no LT(fi) divides LT(p), then the algorithm removes LT(p) from p
and adds it to r.
It should be noted here that unlike the division algorithm in k[x1], the generalized division
algorithm does not have several of the nice properties: the remainder is not uniquely charac-
terized by the requirement that if it is nonzero then none of its terms is divisible by LT(fi),
the qi are not unique and they change if the fi are rearranged. However, this algorithm has
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the properties of its one-variable counterpart when it is coupled with Gröbner bases. Let us
take an example on how to compute Gröbner basis for a basis.

Example. Let G = {g1, g2}, where g1 = 4x2z − 7y2 and g2 = xyz2 + 3xz4. Let us use
the pure lexicographic order with x > y > z. The only S-polynomial to be considered is
S-poly(g1, g2) = −12x2z4 − 7y3z. This polynomial is non-zero and its remainder on division
by G = (g1, g2) is g3 = −21z3y2 − 7y3z, which is non-zero. Hence, g3 should be included
in our generating set. Hence, G = (g1, g2, g3), and the S-polynomials to be considered are
S-poly(g1, g2), S-poly(g1, g3), S-poly(g2, g3).
Now, S-poly(g1, g2) reduces to 0 modulo the new G = (g1, g2, g3), and does not have to be
considered. S-poly(g1, g3) = 49y5 + 84x2z3y2 and reduces to g4 = 49y5 + 1323z6y2 which is
non-zero. Hence, we must add g4 to our generating set. If we let G = (g1, g2, g3, g4), then
S-poly(g1, g2), S-poly(g1, g3) S-poly(g1, g4), S-poly(g2, g3), S-poly(g2, g4), and S-poly(g3, g4) all
reduce to zero modulo the new G. Hence, we stop and the Gröbner basis for the ideal gen-
erated by the old G is the new G = (g1, g2, g3, g4).

6 Improved Gröbner Bases

Now, we know the idea of Gröbner bases, we turn to the improvements of Buchberger’s
original algorithm. Following are some observations.

1. As we saw in the above example, if one S-polynomial reduces to 0, the algorithm still
recomputes its remainder in each iteration of the loop thereafter. This should not
happen because once an S-polynomial reduces to 0, it is going to reduce to 0 even if we
adjoin new polynomials to F .

2. Buchberger’s Criterion I [2]: In the process of picking a pair {fi, fj}, choose a pair
{fi, fj} such that LCM(LM(fi),LM(fj)) is minimal among all the pairs.

3. Also, as we saw in an example in previous section, there are S-polynomials that may be
ignored and we do not need to compute their normal form because they are guaranteed
to reduce to zero modulo F . If the LM(fi) and LM(fj) are relatively prime, then
S-poly(fi, fj) reduces to 0 modulo F . Thus, pick a pair {fi, fj} such that LM(fi)
and LM(fj) are not relatively prime. This has become to be known as Buchberger’s
Criterion II [2].

4. Buchberger’s Criterion III [2]: If there is an element fk of the basis such that the
LM(fk) divides LCM(LM(fi),LM(fj)) and if the S-poly(fi, fk) and the S-poly(fj , fk)
have already been considered, then S-poly(fi, fj) reduces to zero and hence could be
ignored.

5. The output G is not a minimal (reduced) Gröbner basis. There are redundant poly-
nomials that can be eliminated. If LT(gi) divides LT(gj) then gj can be eliminated
from the basis and G − {gj} is still a Gröbner basis. So, each time a new polynomial
is adjoined to the basis, all the other polynomials may be reduced using also the new

10



polynomial. This results in many polynomials deleted and the resulting basis will be a
reduced Gröbner basis.

With these observations in mind, the following modified algorithm computes the Gröbner
basis.

Algorithm Buchberger (modified) [4]:
Input: A polynomial set F = (f1, . . . , fn) that generates an ideal I.
Output: A Gröbner basis G = (g1, . . . , gt) that generates the same ideal I with F ⊂ G.

G := F
M := {{fi, fj}|1 ≤ i < j ≤ s}
t := s
Repeat

{fi, fj} := a pair in M
IF (LCM(LM(fi),LM(fj)) 6= LM(fi)·LM(fj)) AND NOT(Criterion(fi, fj ,M) then

S := S-polynomial(fi, fj)
h := NormalForm(G,S)
IF h 6= 0 THEN

t := t + 1
ft := h
M := M

⋃{{i, t}∀1 ≤< i ≤ t − 1}
G := G

⋃{ft}
M := M − {{fi, fj}}

Until M = ∅

where Criterion(fi, fj ,M) is true provided the conditions in (4) above are met.

7 Applications

Gröbner bases algorithm has been intensively studied and more applications have been ex-
ploited. One of the most important applications is the use of Gröbner bases algorithm for
solving systems of polynomial equations and answering questions about the solvability of
such systems.

We assume that the systems of equations we are dealing with are in the variables x1, . . . , xn

with the lexicographic order x1 > . . . > xn. We begin by this definition.

Definition. Given I = 〈f1, . . . , fs〉 ⊂ k[x1, . . . , xn], the ith elimination ideal Ii is the ideal
of k[xi + 1, . . . , xn] defined by

Ii = I
⋂

k[xi+1, . . . , xn].

Thus, Ii consists of all consequences of f1 = · · · = fs = 0 which eliminate the variables
x1, . . . , xi. We see that eliminating x1, . . . , xi means finding nonzero polynomials in the ith
elimination ideal Ii, and the significance of Gröbner bases for solving systems of equations
stems from the fact that, for Gröbner bases, it is simple to construct all of the elimination
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ideals. During the construction of the Gröbner bases, variables are eliminated successively.
Also, the order of elimination corresponds to the ordering of the variables: x1 is eliminated
first, then x2 is eliminated second, and so on.

To solve a system F of polynomial equations (which determines the ideal I = 〈F 〉) we proceed
as follows:

1. Compute the Gröbner basis, G, of I with respect to the lex order.

2. Find the roots of the generator in xn by applying one-variable techniques.

3. Apply back substitution to find the roots of all generators in G.

4. Roots of generators in G are extended to solutions of the original equations.

Example. Consider the following system of equations:

x2 + y2 + z2 = 1
x2 + y2 + z2 = 2x

2x − 3y − z = 0

Let I be the ideal

I = 〈x2 + y2 + z2 − 1, x2 + y2 + z2 − 2x, 2x − 3y − z〉,
then a Gröbner basis for I with respect to the lex order is G = (g1, g2, g3), where
g1 = 2x − 1,
g2 = 3y + z − 1,
g3 = 40z2 − 8z − 23.

If we examine the generators in G, we notice the following:

• We have exactly one generator, g3, in the variable xn = z alone. The other variables
have been eliminated during the process of finding the Gröbner basis. This polynomial
has a finite number of roots which can be determined using any one-variable technique.

• There is exactly one generator in the variables xn−1 = y and xn = z. Since we have
all possible roots of z, we can determine the roots of y. It is possible that we have a
generator in xn−1 alone.

• Generator g1 is in x alone. All roots of x can be computed.

• The process of back substitution continues until all roots of generators are determined.

• We also note that when Gröbner bases are computed using the lex order, the variables
are eliminated in a nice fashion.
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Example. Consider the system of equations:

x2y − z3 = 0
2xy − 4z = 1

z − y2 = 0
x3 − 4zy = 0

Let I be the ideal

I = 〈x2y − z3, 2xy − 4z − 1, z − y2, x3 − 4zy〉,
then a Gröbner basis for I with respect to the lex order is G = (1). It is well known that a
system has a solution if and only if 1 is not a member of the ideal generated by the set of
polynomials in the system. Buchberger proved that a system F is unsolvable if and only if
1∈ G, where G is the Gröbner basis generated by the set of polynomials in the system.
Next, we consider a system with infinitely many solutions.

Example. Consider the system of equations:

t2 + x2 + y2 + z2 = 0 (1)
t2 + 2x2 − xy − z2 = 0 (2)

t + y3 − z3 = 0 (3)
(4)

Let I be the ideal

I = 〈t2 + x2 + y2 + z2, t2 + 2x2 − xy − z2, t + y3 − z3〉,
then a Gröbner basis for I with respect to the lex order is G = (g1, g2, g3, g4, g5), where
g1 = x2 + y2 + z2 + y6 − 2y3z3 + z6

g2 = 2y2 + 3z2 + y6 − 2y3z3 + z6 + xy
g3 = −5y3−7yz2−5y7+10y4z3−3yz6+6z5y2+4y8z3−5y5z6+2z9y2−3y5z2−y11+3xz2+xz6

g4 = t + y3 − z3

g5 = 13y2z2+9z4+6y6z2−12z5y3+6z8+5z6y2+6z6y6−4z9y3+z12+5y8−10y5z3−4y9z3+y12

Let us examine these generators carefully:

• There is no generator in the variable xn = z alone. g5 is in y and z.

• Consider the leading monomials of g1, g2, g3, g4, and g5. They are x2, xy, xz6, t, and
y12 respectively. We note that a monomial of the form xh

i occurs among these leading
monomials for xi = t, xi = x, xi = y but there is no monomial of the form xh

i for xi = z.
Buchberger [3] proved the following fact:
A system, F, has finitely many solutions if and only if for all i(1 ≤ i ≤ n): a power
product of the form xh

i occurs among the leading power products of the polynomials in
G = GB(F ), where n is the number of polynomials in F.
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8 Conclusion

In conclusion, we have presented the reader with enough information on this important tech-
nique of Gröbner bases. The reader is referred to the home-page for ICM on SymbolicNet using
Mosaic for more applications of Gröbner bases and a comprehensive list of references. The
URL to be used is: http://symbolicnet.mcs.kent.edu/areas/groebner/index.html.
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