Non-linear Loop Invariant Generation using Gr

Obner Bases

Sriram Sankaranarayanan, Henny B. Sipma, and Zohar Manna *
Department of Computer Science,
Stanford University,
Stanford, CA 94305,
USA.

{srirams,sipma,zm} @theory.stanford.edu

Abstract

We present a new technique for the generation of non-lingar (
gebraic) invariants of a program. Our technique uses therghe
of ideals over polynomial rings to reduce the non-lineaamant
generation problem to a numerical constraint solving bl So
far, the literature on invariant generation has been famiss the
construction of linear invariants for linear programs. €equently,
there has been little progress toward non-linear invarigmera-
tion. In this paper, we demonstrate a technique that encibaes
conditions for a given template assertion being an invéiisio a
set of constraints, such that all the solutions to thesetrmints
correspond to non-linear (algebraic) loop invariants efghogram.
We discuss some trade-offs between the completeness addhe t
nigue and the tractability of the constraint-solving peshlgener-
ated. The application of the technique is demonstrated @awa f
examples.

Categories and Subject Descriptors¥.3.1 [Verifying Programs]:
Invariants, 1.1.2 [Algorithms]:Algebraic Algorithms, 41 [Mathe-
matical Logic]:Logic and Constraint Programming, F.3.21&n-
tics of Programming]: Program Analysis.

General Terms: Algorithms, Languages, Theory, Verification.
Keywords: Program Analysis, Verification, Invariant Generation,

Symbolic Computation, Ideals, Grobner Bases, Constriahak:
gramming.

1 Introduction

An invariant of a program at a location is an assertion that is true

of any program state reaching the location. The importaftkeo
automatic invariant generation problem for the verificatiand the
analysis of programs is well-known. Invariant assertioas be
used directly to establish properties of a program, or useiddctly
to obtain lemmas for proving other safety and liveness piagseof
the program [20].

An assertion is said to baductive at a program location if it
holds the first time the location is reached, and is presemwed
der every cycle back to the location. Inductive assertioageh
been traditionally used to prove programs correct, s@siiith the
Floyd-Hoare method of inductive assertions for verifyiraytal-
correctness [14, 16]. It can be shown that any inductiverdsee
is invariant, and furthermore, all known techniques toldih in-
variants use inductive assertions. In this sense, invagiameration
methods are, in fact, inductive assertion generation nastho

Traditionally, invariant generation has been performed us
ing the iterative technique under the framework of abstract
interpretation [10, 11]. Since an invariant is true of evesgch-
able state of a program, any over-approximation of the sedauth-
able states is an invariant. To generate such an over-appaban,
the iterative technique starts from the initial states ef phogram,
and iterates until no more states can be added.
verge, the technique uses a heuristic guess caliddningto in-

formally guess the limit of a sequence of iterative steps.wHo
ever, widening may sometimes produce over-approximatibat

In order to con

are too large to be useful. This technique has been appligd wi
numerous refinements to generate invariants, especiatyadiin-

* This research was supported in part by NSF grants CCR- variants [18, 11, 15, 6, 26, 5, 4]. However, apart from a few ex
01-21403, CCR-02-20134 and CCR-02-09237, by ARO grant ceptions [3, 22], there has been little progress on the gébar

DAAD19-01-1-0723, by ARPA/AF contracts F33615-00-C-1693 of non-linear invariants involving multiplication. One dife rea-
and F33615-99-C-3014, and by NAVY/ONR contract NO0014-03-

1-0939.

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copesarmade or distributed
for profit or commercial advantage and that copies bear ttiseand the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

POPL’04,January 14-16, 2004, Venice, Italy.

Copyright 2004 ACM 1-58113-729-X/04/0001 ...$5.00

sons for this may be the lack of algorithmic improvementseee
to define reasonable assertion manipulation techniquethéodo-

main of non-linear assertions. Polyhedra, for instancee teeen
widely studied with advances in polyhedral invariant gatien

going hand in hand with algorithmic improvements in polytaéd
manipulation techniques.

As an alternative to the iterative strategy, we have propase
constraint-based technique to generate linear invari@ts The
main idea there is to fix a template candidate assertion, andrg
ate constraints on the coefficients in order to guarantéedtetive-
ness. Any solution to these constraints corresponds tocarciive
assertion. The technique does not rely on widening hecsistind
can potentially generate stronger invariants than thatiter tech-

nigue. However, so far, its use in practice has been limidihéar
invariants of linear programs.

In this paper, we present a technique to generate algebdiictive
assertions of the form(x,...,xn) =0, wherep is a polynomial of
fixed degree with real coefficients. Similar to our previousrky
we translate the invariant generation into a constraintisglprob-
lem using a theory that describes the consequences ofiassert
However, the theory used for linear invariants is differfean that
needed for algebraic invariants. In the linear c&sekas’ Lemma
[23] provides a straightforward way to encode the condgtifor
being an invariant. For the non-linear case, we demonsthatie
Grobner bases [12] can be used to reduce the invariant ajerer
problem to a non-linear constraint solving problem thathieven
to be in the parametric linear form [2]. We then discuss smfut
techniques to these constraints, and show that any soliatitese
constraints is an invariant, thus proving the soundnessiofexh-
nique. Even though completeness seems achievable in theery
find that insistence on completeness makes the constrdiihgo
intractable. Hence, we present tractable relaxationsntiade our
technique feasible. We demonstrate our technique on a fam-ex
ples.

Grobner bases are also used in the work of Miller-Olm andlSe

which presents a backward propagation-based method for non

linear programs without branch conditions [22]. The use iofen-
ing/narrowing is avoided by observing that ideals in cerfaoly-
nomial rings (calledNoetherian Ringssatisfy the ascending chain
condition. The technique is shown to be exact for polynomaed-
stants, i.e, invariants of the form= p, wherex is a program vari-
able andp is a polynomial in the program variables. However,
their technique is applicable only to programs where altitoonal
branches are abstracted by non-deterministic choicesoritrast,
our technique sacrifices completeness for the ability talleaalge-
braic branch conditions.

The rest of the paper is organized as follows: Section 2 ptsse
some preliminary definitions along with a statement of thaebpr
lem. The constraint generation technique is describeddticse3.
Techniques for solving these constraints are discussegttios 4.

In section 5, the technique is illustrated with a few exampleec-
tion 6 concludes with some ideas for future work. The appendi
presents a few results alluded to in the paper.

2 Preliminaries

In this section, we introduce the theory of ideals, whichtishe
heart of our technique, and present our computational mofiel
transition systems.

Algebraic Assertions

We begin by presenting some definitions and results fron tea
ory. Informally, an ideal is a set of equations between potyials
along with all their consequences. Ideals can be used tocdedu
facts about the set of points that satisfy their underlyiggagions.
Some of the results in this section are stated in generaktwiith-
out proofs. Details can be found in most standard texts osbaig
and algebraic geometry [12, 21].

Let R be the set of reals and be the set of complex numbers
obtained as thalgebraic closureof the reals. Lefx,...,xn} be
a set of variables. The set of polynomials on the variablémse
coefficients are drawn from the real (complex) numbers i®tieh

by R[x1,...,%] (C[X1,.--,%n]). We shall work with these rings even
though the results can be applied to many other rings, iivodud
Z[Xq,...,%n), the ring of integer polynomials.

Definition 1 (Algebraic Assertions) An algebraic assertio is

an assertion of the formf\; pi(Xy,...,Xn) = 0 where each pe
R[x1,...,%n]. Thedegreeof an assertion is the maximum among
the degrees of the polynomials that make up the assertion.

The set of points in the complex plane that satisfy an algelas
sertion is called aariety. Given an assertiop = A;(pi(X) = 0),
its corresponding variety is defined as

Variety () = {Ze C"| (Vi) pi(2) = 0}

Definition 2 (Ideals) A set1C R[x,...
if

,Xn] is an ideal, if and only

1. 0el,
2. Ifpy,ppelthenp+pel,

3. Ifpreland p € R[xq,...,xn| then pp2 €I.

An idealgenerated by set of polynomial®, denoted by((P)) is
the smallest ideal containirigy Equivalently,

gly"'ygmem[xly"'vxn}v
pl7"'7pm€P

An ideal | is said to befinitely generatedf there is a finite seP
such that = ((P)). A famous theorem due to Hilbert states that all
ideals infR[xy, .. .,xn] are finitely generated.

<<P>>:{glp1+-~-+gmpm |

As a result, algebraic assertions can be seen as the gesaybitm
ideal and vice-versa. Any ideal defines a variety, which esgbt

of the common zeros of all the polynomials it contains. This c
respondence between ideals and varieties is one of therhemda
tal observations involving algebraic assertions calledHlibert's
NullstellensatzWe state the relevant (and the easy) direction of this
theorem below:

Theorem 1 (Hilbert's Nullstellensatz) Consider an algebraic
assertiony. Let | = ((¢)) be the ideal generated by in
RIX1,...,%n], and f(xq,...,%n) € R[xq,...,Xa]. If f €1, then

(Vze CM Y(2) = (f(2)=0)
ey F (f(2=0).
PROOF Lety=f;=0A ---A fn=0andf €l. Hence, we can
expressf as
f=01f1+--+0mfm

for somegy,...,0m € R[Xy,...,Xn]. LetZe C" be such thaty(2)
holds. Then,f(?) = 3", (gi(?)fi(2)) = 0, since eachf;(Z) = 0.
Therefore, we have shown that

(VZe C") (@) = (f(2) =0)
o
The theorem shows that membership in an idéaads to semantic
entailment in the variety induced by Hence, an ideal is (infor-

mally) a Consequence-Closeskt of polynomials. While a sim-
ilar statement can be made in the converse, it is not releant

the overall soundness of our technique, and therefore, weibm
from the discussion. Note that even though the ideals areatefi

The reduction, in effect cancels out the terthat was selected. If
no such reduction can be made, theis said to be a normal-form

in R[xq,..., %], the varieties along with the consequence relations \yrt. —9, The reduction can also be extended to a finitePset

are defined over the complex numbers, which subsume the reals

This is a technicality that arises from the fact that thegeaé not
algebraically closed.

Example 1 Consider the ideal & (({x? +1})). The variety cor-
responding to this ideal is the set¥ {i,—i}, which are the com-
plex roots of unity. Any other member of the ideal can be agee
as p- (x*+ 1), where p is an arbitrary polynomial over x. It can
be easily seen that each of these polynomials is zero at timéspo
where ¥+1=0, i.e,

(Vpel) p(i)=0A p(-i)=0

In the remainder of this subsection, we use the concept afsde
derive a systematic algorithm for determining, for a givesation

Y and a polynomiaf, whetherf € (()). Assume that all the poly-
nomials are drawn frofR[xy, ..., X], and all consequence relations
of the formy; |= Y, are over the domain of complex numbers.

Let X = {x1,...,Xn} be a set of variables. power-productover
X is of the formxj*x ---x', where eachnj € N. The set of power
products will be denoted biyP. A term(also amonomia) is of the
form c- pwherec € R andp € PP. The set of terms will be denoted
by Term

Definition 3 (Term Orderings) A term ordering< is a total and
strict ordering on PP that satisfies the following propestie

1. (vtePP)1<t,
2. if (t1 <tp) then(Vvt € PP)tyt < tot.

These orderings can be extended to terms by ignoring thdi-coef
cients and just comparing the power-products.

Term orderings will be used to induce a reduction relatioarov
polynomials. Many term orderings are used in the literattire
most common being théexicographic and total-degree lexico-
graphicorderings. We assume a linear orderirgn the variables
in X. Assuming thak; < X2 < --- < Xn, the lexicographic extension
~<lex is defined as follows:

Xt X <iex X{ X iff (Fi)ri<qi A (Y <i)rj=aq

The ordering is lexicographic on the tuple,...,r,) correspond-
ing to a termx;* - --x7'. A variant of this ordering is called thetal-
degreelexicographic ordering, which first compares power prod-
ucts by theitotal degreedefined as the sum of the powers of all the
variables. For terms with the same total degree, the lerégiuc
ordering is used to resolve the tie. In general, the choiceddring
does have a bearing on the complexity of the algorithms, lach s
an effect is beyond the scope of this paper.

Given a polynomiab, we define itdead term (denoted.T(g)) to
be the largest among all its terms w.r.t. a given term-ordgri

Definition 4 (Reduction) Let f, g be polynomials, ang be a
term-ordering. The reduction relation over ponnomiaLgﬁ is de-

fined as: f—2 ' iff there exists term t in f s.tLT(g) divides p,
and
fl=1f- Lg
L7(9)

polynomials asf Pt (JgeP) f 9, /. The reduction-"~
can be shown to be terminating for any finite set of polynostal
as a direct consequence of the definition of term-orderings.

By E», we denote the reflexive transitive closure of the relatifm

A normal formf of the reduction is a polynomial such that there is
no further reduction that can be carried outfonThe reduction is
said to beconfluentif every polynomial reduces to a unique normal
form. These definitions along with their properties are aix@d in
standard textbooks on term-rewriting systems [1].

If I = ((P)), then the reduction relation induced Bycan be used
to check membership of a given polynomfain | according to the
following theorem:

Theorem 2 (Ideal Membership) Let | = ((P)) be an ideal, and f
be a polynomial. If fi Othen fel.

PROOF. Proof proceeds by induction on the length of the deriva-
tion. It is trivially true for zero length derivations, sie®¢c |. Let

P
f 25 # 5 0. 1t follows thatf’ = f —tg, for some suitable tert
and somey € P. Sincef’ € | (the induction hypothesis), amgk P.
Thereforef’ +tgel. Thus,f c1. O

Example 2 Assume a set of variablesyxz with a precedence or-
dering x>y > z. Consider the ideal+ ((f : X —y, g:y—z h:
x+2)), and the polynomial p= x> —y?. We shall use the total lexi-
cographic ordering. From the definition of the ordering reéden, it
follows that > z. The lead term in the polynomial: fx2 — z is

x2, which divides the term:t X2 in p. Thus, pL> P/, where

po= 6Y) 2 (xzfy) = (—y2+y)
P e

The following sequence of reductions shows the membershimo
the ideal

P L2 28 2 9 229
I
thus p— 0, and hence g |. However, the reduction sequence

f
p— —Vry-L yzry-L 2y S 2yg
reaches a normal-form without showing the ideal membership

Since the reduction™ may not be confluent, it is not possible to
use the theorem to decide membership using an arbitraryhedeis
P. However, given an ided| there is a special set of generat@s

such that = ((G)), and the reduction relatior>> induced byG is
confluent. Such a basis fbiis variously called th&robner Basis
or Standard Basisf |.

Theorem 3 (Grobner Basis) Let | = ((P)) be an ideal and f be

G
a polynomial. Let G be the Grobner basis of I-f Qiff f €.

PROOF. A proof of this theorem can be found in any standard text
or survey on this topic [12, 21]. [

Since any reduction is terminating, Theorem 3 provides éstbec
procedure for ideal membership. We shall wegs(p) to denote

the normal form of a polynomiap underg. The subscriptG

in NFg(p) may be dropped if it is evident from the context. The
standard algorithm for computing the Grobner basis of aalid
is known as theBuchberger algorithm There are numerous im-
plementations of this algorithm available with standarthpater-
algebra packages and polynomial computation libraries. aAs
example, the libranlGROEBNERIMplements many improvements
over the standard algorithm [30].

Example 3 Consider again the ideal from Example 24 ((f :
X2 —y, g:y—1z h:x+2). The Grobner basis for | is G {f’:
Z—z g:y—z h:x+z}. With this basis, every reduction of:p
x2 —y2 will yield a normal form0.

Templates

Our technique for invariant generation aims to find polyremi
which satisfy certain properties. To represent these Jepoly-
nomials we use templates, which are polynomials with cdeffis
that are linear expressions over some set of template @siam
this subsection, we show that the theory of ideals can be- natu
rally extended to templates. In particular, we show thatethex-

ist confluent reductions on templates that allow the geiweraif
constraints on the template variables, such that the negudet of
polynomials is precisely the set of polynomials that beltmghe
corresponding ideal.

Definition 5 (Templates) Let A be a set ofemplate variableand
L(A) be the domain of allinear expressionsver variables in A
of the form ¢ +c1a; + ... + chan, where each icis a real valued
coefficient. Aemplateover A X is a polynomial over variables in
X with coefficients drawn from (A).

Example 4 Let A= {a,a,a3}, henceL(A) is the set of expres-
sions
L(A) ={co+cra1+Crar+C3a3 | Cp,...,C3 € R}

The set of templates lies in the ridgA) [x1, . . .
consider the template

,Xn]. As an example,

(22 +3)x1%3 + (3a3)%2 + (483 + a1 + 10)

Definition 6 (Semantics of Templates)Given a set of template
variables A, an A-environment (if A is clear from the contéxén
simply an environment) is a mapthat assigns real values to each
variable in A. Hence, this map can be naturally extended tp ma
expressions it (A) to their corresponding values iR, and to map
polynomials inL(A)[xa, ..., Xn] to their corresponding polynomials
in R[xq,...,%n].

Example 5 The environmentl = (ay = 0,a, = 1,a3 = 2), maps
the template

(2ap + 3)x1%3 + (3ag)x2 + (4a3 +ay + 10)
from Example 4 to the polynomial

5x1x§ +6x2+18

The reduction-2 for polynomials can be extended to a reduction
for templates in a natural way.

Definition 7 (Reduction of Templates) Let p be a polynomial in
R[Xy,..., %] and f, f’ be templates over A anfky,...,x,}. The

reduction relation is defined as: £ f' iff the lead termLT(p)
divides a term et in f with coefficient ¢ay,...,am) and

Note that the reduction is defined to be the same as the reducti
relation over polynomials. This can, in turn, be extendedédts

of polynomials to define reductions’> over templates for sets of
polynomialsG. Henceforth, we shall use the symbdigy with
subscripts to denote templates and the symhgiso denote poly-
nomials.

Example 6 Let p be the polynomialPx-y, with LT (p) = x?. Con-
sider the template

f: al+hbyY+cZ+dz+e

The lead term.T(p) divides the term &in f. Therefore, -2 1)
where

f': (@l +by? +cZ+dzte) - i—f(xz—y) =by?+cZ+dz+etay

Given a templaté and an ideal, we are interested in finding those
environmentsx such thati(f) € 1. We achieve this by obtaining
constraints on the environment variablesuch that any solutioa
satisfieu(f) € I.

The properties of the Grobner basis reduction over polyatsncan
be extended smoothly to templates. Proofs of these reaitbe
found in the appendix. We first show that the extension of cedu
tion is consistent w.r.t. the semantics of templates undgr/a
environment. The confluence of Grobner basis reduction teve-
plates, guarantees that a unique normal form exists foramplate
(Theorem 11). The template membership theorem (Theorem
proves that iffy = NFg(f) is the normal form off, then for each
environment, a(f) € ((G)) iff a(fy) is identically zero.

13)

Theorem 4 (Zero Polynomial Theorem) A polynomial p is zero
for all the possible values ofix...,xq iff all its coefficients are
identically zero.

PrROOF Proof proceeds by induction on the number of variahles
For n = 1, the result is immediate from the fundamental theorem
of algebra, restricting the number of roots of a non-zerwvanute
polynomial of degre@. Therefore, a non-zero polynomial cannot
be zero everywhere. Let us assume that the result is trué fary-
nomials inn— 1 variables. Lep = po+ piXn+ . ..+ pmX7', where
eachp; is a polynomial inxy, ..., X,_1. For any valueiq,...,0n_1

of thesen — 1 variables, the polynomigb = po(ay,...,0n-1) +
p1(01,...,0n_1)%n+ -+ Pm(01,...,0n_1)X7 is identically zero
for all x, and hence each; is identically zero for all possible val-
uesday,...,0n_1. Using the inductive hypothesis, every coefficient
in eachp; is zero, and hence, all the coefficientspodire zero. [

Given a templatef and an ideal with Grobner basiss, we first
computeNFg(f), and then, equate each coefficient of the normal
form to zero to obtain a set of equations over the templatelims

A. Any solution to this set of equations yields Arenvironmentx
such thati(f) € | (and conversely).

Example 7 Let | be the ideal((x® —y, y—z, z+x)) of Example 2
with Grébner basis G= {x+2z y—z2* —z}. We are interested in
polynomials represented by the template

al +hy +cZ +dz+e
that are members of the ideal. The normal form of this terepkat
(a+b+c+d)z+e
Equating each coefficient in the normal form to zero, we abtai

a+b+c+d=0
e=0

From this, we can generate all instances of the template bieat
long to I. Some examples aré x y2, Y2 —z, 2¢—22—z. On
the other hand, %+y? —z ¢ |, as the coefficients do not satisfy the
constraints.

Transition Systems and Invariants

We begin by defining transition systems in general.

Definition 8 (Transition System) A transition systenis a tuple
(V,L,T,£y,0), where V is a set ofariables L is a set ofloca-
tions 7 is a set oftransitions A state s is an interpretation of the
variables in V. Each transition € T is a tuple(l1,l2, pr), where
I, and b are thepre- and post-locations of the transition. The
transition relationp; is a first-order assertion over V', where
V denotes theurrent-statevariables and V denotes th@ext-state
variables. The locatiorg € L is theinitial location and© is a
first-order assertion over V denoting th@tial condition

Transition systems are the standard representation foy tyaes

of programs. A more detailed presentation of these systems c
be found in [20]. Given a transition system, we define itsgiran
tion graph with locations labeled by vertices and edgesiéabley
transitions, such that each edge connects the pre-locatidrthe
post-location of its labeling transition. Given a pathn this graph,
we define the transition relatiqn, corresponding tat as the rela-
tional composition of all the transition relations labeglithe edges
along the path.

Definition 9 (Invariant) Let P= (V,L,7,1p,®) be a transition
system. Airinvariantat a location € L is defined as an assertion
Y over V, such thatp holds on all the states that can be reached at
location I. An invariant of the transition system is an aser)
which holds at all the locations of the transition system.

Given adomain of assertiond, anassertion-magor a transition
system is a map : L — D that associates each location of the tran-
sition system with an assertion.

Definition 10 (Inductive Assertion Map) An assertion mapm is
said to be inductive iff the following conditions hold:

Initiation The assertion afylsubsumes the initial condition,
© E=n(lo)

Consecution For each transitiort from | to |},

n() A pr E n(y)

integeri, j,swhere(s=0 A j= jo)
lo: while (---) do

li: (s))i=(s+i,j-1)
Figure 1. A program to multiply two numbers.

It is a well known fact from the pioneering work of Floyd and
Hoare [14, 16], that if is an inductive assertion map therl)

is invariant at. Furthermore, for general transition systems, given
any invariantp atl, there is an inductive assertion maysuch that
n(l) implies the invarian®. In fact, all known invariant generation
methods are inductive assertion generation methods.

Algebraic Transition Systems

We now specialize general transition systems into algeltransi-
tion systems.

Definition 11 (Algebraic Transition System) An algebraic tran-
sition systemis a transition systeniV,L, T, ¢p,®), such that, for
each transitior, the transition relationp; is an algebraic asser-
tion over VUV’, and the initial conditior® is an algebraic asser-
tion over V.

Example 8 Consider the loop program to multiply two humbers
shown in Figure 1. The corresponding transition systemisigby

V={i,j,sjo}
L= {lo}
T = {11}, where
d—-s—i=0
i'—j+1=0
T1: <|07|07 |J/7|JIO >
jo—io=0
fo:|o

which is an algebraic transition system.

For algebraic transition systems in general, the compusdf tran-
sition relations along a path may lie outside the domaingélataic
transitions. However, if the transition relations aeparable that

is, each variable iN’ is expressed as a polynomial expression over
the variables iV, we can compose relations along any path. For
instance, the transition system in Example 8 is separable.

Corresponding to general assertion maps, we definglgabraic
assertion maj, wherein each locatioh is mapped to an asser-
tion n(I) of the formp = 0. We shall use(l) to denote both the
assertiorp = 0 and the polynomiap.

3 Constraint Generation

In this section, we present the basic algorithm for invdrgamner-
ation in algebraic transition systems. Given an algebraigsition
system, we first define a template map that maps each location t
a template over a set of abstract coefficient varialedVe then
generate constraints on all the template variaBleguaranteeing
that any solution to these constraints corresponds to arciive
assertion map.

Definition 12 (Template Map) Let P=(V,L,T,lo,) be an alge-
braic transition system. Assuming a setemplate variables, an

invariant templatever P isamapm) : L — L(A)[V], that maps each
location in L to a template over A.

When the variables iA are instantiated to real values, the invari-
ant template is thespecializedo a polynomial assertion map. The
problem that we intend to tackle in this section is as follo@&en

an algebraic transition system with a template map, compaite
straints on the template variabldssuch that any solution to these
constraints specializes the template to a valid inductasedion
map.

The solution to the problem involves encoding the initiatemd
the consecution conditions that any inductive assertiop mast
satisfy. In practice, if the transitions can be composed; fhore
effective to do this over partial maps by selecting a suétaat of
cutpoints.

The example below shows a (rather lengthy) template thatbeil
used as a running example.

Example. Consider the example transition system in Example 8.
Since there is one locatioly, we set then(lp) to be ageneric
quadraticform on{s,i, j, jo} as shown below:

apS? + a15+ aSi—+ a3s |+ asSjo + asi >+
agi +ayij +agijo+agj?+
a1oj +a11jjo+ar2jg +aizjo+aia

n(lo):

Encoding Initiation

Initiation is expressed by encoding the membership (&) to the
ideal generated by the initial asserti®ni.e.,n(lp) € ((©)) which
in turn implies® |= n(lp) by the Nullstellensatz. The following are
the steps involved in the encoding:

1. Compute the Grdbner basisfor ((0)),

2. Reduce the templatg(lp) using G, to compute f =
NF(n(lo)),

3. For each term irf, equate the coefficient expression of the
term to zero, in order to obtain a constraint. The overall ini
tiation constraint is the conjunction of all the constraititus
obtained.

Example 9 We now generate initiation constraints for the system
in Example 8. The Grobner basis &f: s=0 A j—jo=0Is
G={sj—jo}- The normal form ofi(lp) w.rt. G is
f = agi®+agi+ (a7 +ag)ijo+ (a9 +aw1+a12) j§ + (10+213) jo+ans
Setting each coefficient expression to zero, we obtain theti@nts

as=a=a4=0

a;+ag=0

ag+aj1+ap=0

ajp+az=0

Encoding Consecution

For each locatioh and for each transition: <Ii i, p>, consecution
can be expressed by the implication

(n(i)=0) A p = (n(lj)’ =0)

There are two cases to consider here, one when the antecedent

n(li) =0 A pis satisfiable, i.ex is anenabled transitionthe other
case occurs when the antecedent is unsatisfiablet issdjsabled

The disabled case consists of encoding
plE=n(i)#0

This is achieved by computing the normal form of the redurctb
n(li) by the Grdbner basis dfp)). The normal form is set to be
identical to a scalar different from zero. Thus all the teimthis
normal form except the constant term have their coefficisatgo
zero, and the constant term is required to be non-zero. Tefe
the section deals with the enabled case.

An Exact but Impractical Encoding

The first approach to encoding the enabled case of the cdiwmecu
condition is similar to that of the initiation conditiongi, to com-
pute the Grobner basis of the ideal generated by = 0A pr. The
normal form ofn(l;)’ is computed and constraints on the template
variables that ensure that this normal form is identicaldmzare
obtained. However, the assertigfl;) = 0A p; contains a template.
Hence, a variant of the Grobner basis construction, riesulh a
basis known as th€omprehensiv&robner basis [28], is required.

The comprehensive basis is a set of condition-basis p&ire),
wherey is a non-linear constraint on the template variables,@nd
is a Grobner basis involving template polynomials with flioear
coefficient expressions. For each such pair, computing tre n
mal form ofn(lj)’ underG, and equating each coefficient of each
normal form to zero yields constraings over the template vari-
ables. The overall constraint for the paiis=- 1. Unfortunately,
this approach, though exact, is impractical, because thebauof
condition-basis pairs produced on a generic polynomiapteta is
large, and the nonlinear constraints produced make theredmts
solving problem intractable, even for simple programs.

Hence, we resort to an alternative approach that uses astroan-
sequence relation to avoid the explicit construction ofdbmpre-
hensive Grobner basis but in doing so, we sacrifice compste

A Practical Alternative

The original consecution condition for a the assertion mage-
quires that the values after the transition are zero wheribeeval-
ues before the transition is taken are zero. We define thoeeds-
ingly stronger relations on the values of the invariant befand
after the transition.

Definition 13 (Alternative Consequence Relations)Let T be the
transition(li7lj7p> andn be an algebraic assertion map. We define
the following increasingly stronger notions of consecuitio

1. n satisfiespolynomial-scaleconsecution (PS) for iff there
exists a polynomial p such that

p = (n(1)"—pn(li) =0)

2. n satisfieconstant-scaleonsecution (CS) fariff there exists
a real valuedparameten s.t.

p = (n(1j)’ =An(li) =0)

3. n satisfiesconstant-valugonsecution (CV) for iff
p = (n(j) —n(l)=0)

4. n satisfiedocal-consecutiorfLC) for T iff
pE (1) =0

LC consecution states thatl;j)’ is zero upon taking the transition,
independent of(l;). CV consecution encodes the fact that the nu-
merical value of the assertion does not change through amsitr
tion. The CS consecution on the other hand encodes the &idhth
numerical value of the assertion after the transition iefidk a con-
stant multiple of the numerical value prior to the trangitidcach
consecution can be seen as a generalization of the nextazense
tion. For instance, CV consecution can be seen as CS coisecut

2. Introducing a real paramet&r we set each coefficient of the
polynomial\ f —gto zero, obtaining constraints involving the
template variables, and the parameter

3. The resulting constraint involving the template varabhland
the parametexk is existentially quantified by.

The overall constraint for the consecutiorta$ a disjunction of the
constraints for the enabled case and that for the disablkeel e
illustrate this by encoding the consecution for our runrérgmple.

Example 10 Returning to the transition system in Example 8, The
only transition isty, with transition relation

§—s—-i=0
.| '=i+1=0
Pt | o0
jo—jo=0

for A = 1. Similarly, LC consecution is again a special case of CS yhich corresponds to the Grobner bagis —s—i, |’ — j+1,i —

for A = 0. CS consecution results when the polynonpah PS

i,io— lo}, generated under the total-degree lexicographic ordering

consecution is of degree 0. We now show that any assertion mapyith the precedence

that satisfies PS consecution also satisfies (exact) car@ectihis
implies similar results for CV and CS consecutions.

Theorem 5 Letrt: <Ii,lj,p> be a transition, and) be a polynomial
assertion map.

1. If n satisfies CV consecution forthen it satisfies CS conse-
cution.

2. Ifn satisfies CS consecution fothen it satisfies PS consecu-
tion.

3. Ifn satisfies PS consecution fothen it satisfies (exact) con-
secution.

PrRoOFE (1) and (2) follow directly from the definitions. We shall
prove (3). Since) satisfies PS] p such that,

p E (n()) —pn(li) =0)
Assuming that(lj) =0 A p, we obtain

n(t;)) —p-n(li) =n(j)’ —p-0=n(lj) =0

Thus, assuming|(l;j) =0 A p, we obtainn(l;)’ = 0. This shows
thatn satisfies consecution w.rt. [

Thus, if an assertion map satisfies initiation, and any oftitihee
restricted consecutions for each transition, then it israuctive
assertion map. In practice, we find that using CS consecption
duces useful invariants without making the constraintisglyprob-
lem intractable. The following theorem suggests a methoento
code CS consecution:

Theorem 6 Let G= {gi,...,0m} be the Grobner basis of asser-
tion y, and p, p be polynomials. Let{p= NFg(pi), fori=1,2
andA be a real-valued parameter. Ifjp-Ap, =0, then

Y= (pL—Ap2=0)

The enabled case of consecution is encoded using CS coiasecut
as follows:

1. Let f = NFg(n(li)) and g = NFg(n(lj)’), whereG is the
Grobner basis of.

g>j>i">jy>s>j>i>jo
The normal form of)’(lp) is given by

a9 + (2ag + ap)si+ (ag — ag)s—+agSj+
auSjo+ (a0 +a2+as)i?+ (ag —ag+ag —ay)i+
(a3+ay)ij + (aa+ag)ijo+ag |+
(a10—2a9)j +a11jjo+ar2j5+
(a3 —a11)jo+ (89 — @10+ a14)
The template (lp) remains unaltered by the reduction. Hence, set-
ting

/=

(3M) NF(n(lo)') = A-NF(n(lo))
gives us the following constraints for the enabled case:

3 = Aap

2a0+ay =Aap
a+ax+as=A>Aag
alfagz)\al

ag —az+ag—ay = MAag
a3:)\a3
az+ay = Aay

ay =My

a4 +ag = hag
ag = Aag
aj0—2ag = Aayg
ag—ajo+ais=Aayy

a1 =Aagg
ajz—a;; = Aag
a;p =Aagp

The solution to these constraints is discussed in the netiose
As mentioned above, the normal formndfp) w.rt. the Grobner
basis forp is itself, thus yielding the following constraints for the
disabled case.

ay=a=---=a3=0A a4 #0

The overall constraint for a template map being inductivgivien
by the conjunction of the initiation and the consecutionstraints.
Let do be the initiation constraint angl; be the constraint corre-
sponding to the consecution for transitionThen the overall con-
straints$ are given by

¢E¢e/\/\¢r

€T

Let [[n(I;)]] = a(n(l;)) denote the specialization ofl;) by some
solutiona of ¢, and let[[n]] = a o n.

Theorem 7 (Soundness)ror any solutiona of ¢, the instantiation
of the template map with the solution values is an inductive as-
sertion map.

PROOF Since the solution set satisfigs it must satisfy each in-
dividual ¢ along withdg. Since the constraint set satisfies the
$o, the normal form of[n(lp)]] is identically zero. By Theorem 8,
[In()]] € ((©)), and by Theorem 1® = [[n(l;)]] = 0. Thus initia-
tion holds.

Similarly, the constraints for consecution ensure thastoneA,

(INF((1))]] = A[[NF(n (1i)]] = 0
This implies

pe = [N =AlIn()]] =0

by Theorem 6. Thereford|n]] satisfies CS consecution for each
transitiont. Thus we have shown th]] satisfies the conditions
of initiation and consecution for each transition. Therefidn]] is
an inductive assertion map[]

The converse of this theorem (completeness) does not heldodu
our choice of a stronger consecution condition that is Setidy
fewer inductive assertion maps. So far, we have reducechvaeii
ant generation problem for algebraic transition systemne set of
constraints, such that any solution to these constraintss@n in-
variant. Solution methods to these constraints are disduissthe
next section.

The complexity of the constraint generation process isliine the
size of the transition relation and the number of templat&aistes.
The Grobner bases need to be computed only over initialicond
tions and transitions, which can be done efficiently. The lneim
of Grdbner basis computations is linear in the program. sidee
reduction process can also be done efficiently, the numbredoic-
tions required being roughly linear in the size of the terteota be
reduced, if the template is a generic polynomial of a fixed-eleg

4 Solving Constraints

In this section, we discuss techniques for solving the sysié
equations generated by the method described in Section 8 Th
constraints corresponding to the initiation and the disdlskse for
consecution are linear whereas the constraints correspptalthe
enabled case of consecution vary depending on the consecati
lation used. For the LC and CV cases, these constraintsrearli
equalities. For the CS consecution the constraints ardinear,
more specificallyParametric Linear Constraints/Ne shall first dis-
cuss the structure of these constraints in detail and thecust
solution techniques. We do not discuss techniques for thee mo
general PS consecution. The constraint types are sumrdadrize
Figure 2.

Definition 14 (Parametric Linear Constraint) Let A be the set of
abstract variables and\ be a set of multiplier variables. A para-
metric linear constraint is of the form

lo+Ali+--+Amlm=0

where, §,...,Im € L(A) are linear expressions in A and\ =
{A1,.-,Am}, A ER.

A linear constraintis of the formlg = 0. Similarly, atransformis
of the form

Co+CiAi+--+CmAm=0

whereCy, ...,Cm € R. The constraint i¢actorizableiff o =cyl1 =
.-+ = Cmlm for some real constants,...cm. In such a case we
express the constraint as

lo+Al1+-+Amlm= |0(1+C]_)\1+"'+Cm)\m)

a product of a linear constraint and a transform constraim con-
straint generation algorithm provides us with a set of qauirsts.
Some of the constraints (initiation constraints) are linghereas
the constraints from consecution are parametric lineastcaimts.
The parameters i are all existentially quantified. In the remain-
der of this section we discuss some techniques to elimirete t
quantifiers.

Elimination by Splitting

The simplest technique for elimination is a CLP-style [1th@na-
tion algorithm that maintains the linear constraints icoastraint
storeand repeatedly linearizes the remaining constraints. Tdia m
advantage of this technique is its efficiency. It has beeermiesl to

be fast and memory efficient in practice. Furthermore, isprees
the parametric linear form throughout the elimination gsx On
the other hand, it may not be able to remove all instanceseof th
parameter. In such a case, we resort to more general elionnat
techniques. The following is a brief sketch of the technique

Constraint-Store The constraint store is a set of linear constraints
over the variables ih. We store these constraints in terms of
a matrix that is always kept in a reduced row form using the
standard Gaussian elimination. The operations supposted b
the store include the addition of a new constraint and the sim
plification of a given parametric linear constraint to a natrm
form.

The following are the major steps involved:

1. Each linear constraint is added to the constraint stateanh
transform constraint is used to eliminate one of the muipl
involved in the constraint system by rewriting it in termgtoé
remaining parameters.

2. Each factorizable constraint leads te@lit into two cases,
one where the linear constraint is added to the store, and the
other where the transform constraint is applied to remowe on
multiplier from the system. Care must be taken to avoid in-
consistent branches on a split. For instance a splét gr0 in
a branch should not be followed by a splitag- 0.

The steps shown above are repeated until the branch is sfiedale
or all the constraints have been linearized. In almost @&ldh-
served cases, a majority of the branches are completelgries,
and only a few branches with unresolved parametric linear co
straints remain. The latter can be resolved by generating fimo
ear constraints as “hints” to help simplify the non-lineanstraints
further. These constraints can be obtained by choosing patiart-
ing fromlg ending inl and encoding the condition

OnprEnNn()

where pr; represents the composition of the transition relations
alongt. Soundness can be shown to be preserved by these op-
erations. Furthermore, the solution set can also be shovire to
preserved.

Condition | Restriction || Constraint types
Initiation linear equalities
Local (LC) linear equalities

Consecution| Constant Value (CV) linear equalities

Constant Scale (CS)
Polynomial Scale (PS

parametric linear
non-linear algebraic

Figure 2. Constraints obtained from different conditions for inductive assertions

Example 11 To illustrate the technique, we solve the constraints
for the enabled case of consecution for Example 8, recalédavb
from Example 10.

ap = Aag
2ap+ax = Aay
a+az+as =Aag
al—agz)\al

a) —ag+ag—ay =Aag
8.3:)\6.3

azt+ay =Aay
ay=Aay
as+ag = Aag
ag = Aag

a1072ag :)\alo

ag — 10+ a14 = Adys

a11 = Aaqy
a;z—ap; = Aaga
a1z = Aagp

Factorizing,(1—A)ag =0, we getl—A =0o0rap=0,1—A #0.
In the first case, we rewrite all occurrencesXoby 1, resulting in
the constraints

p=p=xy=ay=ag=xp=a1=0

a;—ay=0

Repeating the strategy on the other branch, we obtain

ap=ag=y=a=a1=a3=0
2a9+ay = Aay

at+ap+as=Aag

a]_—ag:)\a]_
a;—ag+ag—ay =Aag
a3+a7:)\a7

ay+ag =Aag

ajo—2ag = Aago
ag—a1p+ai4=Aai4
a;z—ap; = Aay3

By simplifying and repeating the strategy, we finally obtain

p=a;=--=a;4=0

Thus combining with the initiation constraints, we obtain

a{0,2.,3,4.,5,6,9,10,11,12,13,14} =0
a;—ay=0
a7+ag=0

This in turn simplifies to yield: a= a; = —ag, while all the other
coefficients are zero. This corresponds to the invariant

s=i(Jo—1)

This invariant establishes the partial correctness of tihegpam
shown in example 8.

Generic Elimination Techniques

If the simple elimination by factorization technique failge resort
to more general techniques for quantifier elimination. Weasia-
rize the viable approaches to this problem. The first gerediriai-

nation technique casts the constraints obtained as a neaiation

Bd=0

whered is a vector of variables from, andB is a parametric matrix
whose entries are linear expressions over the parametsisrie,

the matrices involved are sparse in terms of the number of non
zero entries involving the parameters. The resulting gmoidan be
treated using Gaussian Elimination with a few modificatiortsere
has been some attention to solving these types of constfait2].

In contrast to constraints tailored to parametric linearstaints,
more general quantifier elimination techniques may be uSette

the constraints are non-linear with real-valued variahl&scan use
real quantifier elimination tools to solve these constgim brief

summary of the related work on this topic follows.

Tarski [25], established the decidability of quantifiemalation
over the theory of reals with multiplication. However, tHga
rithm suggested by Tarski is non-elementary. This was réded
by Collins [7] using a technique calle@ylindric Algebraic De-
composition Collins and Hong [8] present an efficient version
of this technique calledPartial Cylindric Algebraic Decomposi-
tion, implemented in the toohEPCAD. An alternative approach
called the elimination at test point technique is taken bysypfen-
ning [27, 29]. The method is efficient over low degree polyiam
and has been implemented in the te@bLOG[13]. Even though
these methods have high time and space complexities, wehnd t
for most constraints we do not require these generic eliticina
techniques.

5 Applications

To show the viability of our approach, we present some aafitin
examples.

Generalized Readers-Writers

Consider the following transition system with variabtesv, k, ko,
1, Cp, modeling a generalization of the readers-writers problem

V = {r,wk,cg,cz, ko}
L= {lo}
T ={11,T2,13, T4}

w=0
r'=r+1
T1: <|07|o7 K = k—cy >

id(w, c1,Cp, ko)

r=0

. wW=w+1

121 { loslos K =K—0
id(r, 1,2, ko)
w=0

. r'=r—1

130 (loslo, K =kt 0y
id(w, C1, Cz, ko)
r=0

. w=w-1

W (ol | ki,
id(r,c1,C2, ko)

O: (r=0Aw=0Ak=kp)

lo=lp

The number of readers and writers are representeddndw re-
spectively. Initially we assumle= kg tokens to be present. Transi-

real y1,¥2,Y3,Y4,X1, X2 Where()3;; i >1<1/\/\yi/2::0x2)
lo: while (y1 >y») do

1§ (¥2,¥3) := (2y2,2y3)
I1: while (true) do

122 if (y1 > y,) then

(Y1,Ya) = (Y1—Y2.Ya+Y3)
if (y3=1) then
return (q=ya, r =yi)
f1 (ays):=(%.%)

Figure 4. Hardware Style Division Algorithm

b.
LE

Hardware Style Division Algorithm

tion T models a reader obtaining access by checking if no writers Figure 4 shows a procedure, taken from [19], to divide two bera

are present, and obtainiog tokens. Similarly transitiom, models
a writer entering by obtaining tokens. Transitions, 14 model the
readers and the writers giving up access. The target assattp is
a generic degree two template. The simplification and fazttion
technique was sufficient to eliminate all the quantifierse Tihal
invariants obtained are

rci+we+k=ky A rw=0
The former accounts for the tokens during the run of the gnogr

while the latter establishes mutual exclusion between ¢agers
and the writers.

LCM-GCD Algorithm

. y1=X1A
integer x1,X2,Y1,Y2, Y3, Y4 Where [Y2 =y3 =XA
Ya=0

lo: while (y1 #y2) do
I1: while (y; >y2) do
12 (y1,¥a) = (Y1 —Y2,Ya+Y3)
I2: while (y2 > y;) do
125 (¥2,¥3) := (Y2 = Y1,Y3+Ya)
{y1 = GCD(X1,X2), Y3+Y4 = LCM(X1,X2) }

Figure 3. Simultaneous LCM-GCD algorithm

X1 andxy, which we model as reals, in order to apply our technique.
The branch conditions that involve inequalities are madlanon-
deterministic choices. The cutpoints used larandl;. The target
invariant at locationdy andl; were degree two templates, yield-
ing a total of 56 template variables. Expressing the progaam
transition system, we obtain four transitions, one sedplaround
lg, two loops around; and one transition frorty to I1. The con-
straints generated were simplified using factorizationlaregriza-
tions. All but two of the cases in the result were linear. Témaain-
ing two cases contained simple two variable quantifier elation
instances that were resolved by hand. The following invasiavere
obtained atg andl:

n(lo): y1=x1
N(lo): ya=0 n(ly) : true
N(lo): 01=y2—yax2=0 n(l1): p1=y2—-y3xe =0

On strengthening the transition relations with the invaisaabove,
and repeating the process, we obtained additional invagian

Y1Y3 +YoYa —yax1 = 0 atlg, .

n(ly) : true

The loop exits whelys = 1, q =Yy, r = y;. Substituting this on the
invariants obtained di, we obtain thath, : x; =r +qy, andy, =

X2. Therefore, we can infeq =r +xoq at the loop exit. This shows
one of the specifications of the division algorithm, the otheing

y1 < X1, which lies outside the domain of algebraic invariants.eNot
that some additional invariants are required to justify fdm that

the division inl{ is applied to integers that are always even. These
invariants are, however, not expressible in our assersinglage.

Figure 3 shows a program that calculates the lem and ged of in- 6 Conclusion

tegersx; andx,. The integers are modeled as reals for our pur-

pose and the loop conditions at the head of the while loops are [N this paper, we presented a reduction from the algebraasiant

abstracted to non-deterministic choices since they lisidatthe
domain of algebraic assertions. This leads to a transittation
with two loops around the single locatidgn The target invariant
for locationlg is a generic degree two template. The application
of the technique produced constraints that resolved cdgiplen
factorization and simplification. The resulting invariatitained
atlg is y1y3 + y2ya = x1%2. Applying the exit conditiony; = y»
yields, y1(y3 +VYa) = X3Xo. Assuming that; = GCD(x1,X2) and
y3+Ya = LCM(X1,X2), the invariant states that

LCM(X1,X2) - GCD(X1,X2) = X1X2

Note that correctness cannot be inferred directly since and
GcD functions cannot be expressed algebraically.

generation problem for algebraic transition systems torarpeat-
ric linear constraint solving problem, so that any soluttorthe
constraints corresponds to an inductive assertion. THenigge
has many advantages; first of all, the degree of the desixediin
ant does not affect the constraint problem. Secondly, thetcaint
solving problem can almost always be handled by simple abmi
tion techniques. With a good constraint handling strategyare
confident that the technique will scale to larger examples.ti@
other hand, a drawback of the technique is its lack of corapks
arising from the restrictions placed on the consecutiorditimm.
While many tried and tested methods in the field of staticyanal
sis and program verification do not insist on completenésslack
of completeness can sometimes cause these methods to fniss “o
vious” invariants for subtle reasons, as has been obsenviddi-

tional invariant generation technique using widening [9ye are
working on identifying useful classes of systems whererictst
notions of consecution suffice. Currently inequalities leaiadled
as non-deterministic choices. We are developing moditinatiof
the technique that are able to reason with loops involviegjirali-

ties.

The technique also requires that the degree bounds on tes tes-
sertion be known a priori. This is a drawback for some apptica
and effective strategies on selecting the degree boundie afivari-

ant need to be studied. We are also working on comparisotiis wit
related approaches like [22] that may yield techniquesitoiehte
some of these drawbacks.

Acknowledgement$Ve would like to thank the anonymous review-
ers for their detailed comments on an earlier version ofghjzer.

7 References

(1]
(2]

(3]

(4]

(5]

(6]

(7]

(8]

9]

[10]

[11]

BAADER, F.,AND NiPkoOw, T. Term Rewriting andhll That.
Cambridge University Press, 1998.

BALLARIN, C., AND KAUERS, M. Solving parametric lin-
ear systems: an experiment with constraint algebraic pro-
gramming. InEighth Rhine Workshop on Computer Algebra
(2002), pp. 101-114.

BENSALEM, S., BOZGA, M., FERNANDEZ, J.-C., GHIRVU,
L., AND LAKHNECH, Y. A transformational approach for
generating non-linear invariants. Btatic Analysis Sympo-
sium(June 2000), vol. 1824 dfNCS Springer Verlag.

BENSALEM, S., LAKHNECH, Y., AND SAIDI, H. Pow-
erful techniques for the automatic generation of invasant
In Computer-Aided Verificatiof1996), vol. 1102 olLNCS
pp. 323-335.

BJZRNER N. S., BROWNE, A., AND MANNA, Z. Automatic
generation of invariants and intermediate assertidhgoret-
ical Comput. Sci. 1731 (Feb. 1997), 49-87.

BULTAN, T., GERBER, R.,AND PUGH, W. Symbolic model
checking of infinite state systems using Presburger aritisme
In Computer-Aided VerificatiofJune 1997), vol. 1254 of
LNCS springer, pp. 400-411.

CoLLINS, G. Quantifier elimination for real closed fields by
cylindrical algebraic decomposition. Kkutomata Theory and
Formal Language$1975), H.Brakhage, Ed., vol. 33 bNCS
pp. 134-183.

COLLINS, G. E.,AND HONG, H. Partial cylindrical algebraic
decomposition for quantifier eliminatiodournal of Symbolic
Computation 123 (sep 1991), 299-328.

COLON, M., SANKARANARAYANAN , S., AND SIPMA, H.
Linear invariant generation using non-linear constragivs
ing. In Computer Aided Verificatio@uly 2003), F. Somenzi
and W. H. Jr, Eds., vol. 2725 dfINCS Springer Verlag,
pp. 420-433.

Cousort, P., AND CousoT, R. Abstract Interpretation: A
unified lattice model for static analysis of programs by con-
struction or approximation of fixpoints. IKRCM Principles of
Programming Languaged 977), pp. 238-252.

CousoT, P.,AND HALBWACHS, N. Automatic discovery of
linear restraints among the variables of a program AGM
Principles of Programming Languagddan. 1978), pp. 84—
97.

(12]

(13]

(14]

(15]

(16]

(17]

(18]
(19]
(20]
(21]

(22]

(23]

(24]

(25]

(26]

(27]

(28]

[29]

(30]

Cox, D., LITTLE, J., AND O’SHEA, D. Ideals, Varieties
and Algorithms: An Introduction to Computational Algelrai
Geometry and Commutative Algebi@pringer, 1991.

DOLZMANN, A., AND STURM, T. REDLOG: Computer al-
gebra meets computer logicACM SIGSAM Bulletin 312
(June 1997), 2-9.

FLoYD, R. W. Assigning meanings to progranf&oc. Sym-
posia in Applied Mathematics 12967), 19-32.

HENZINGER, T. A., AND HO, P. HYTECH: The Cornell
hybrid technology tool. IHybrid Systems 1{1995), vol. 999
of LNCS pp. 265-293.

HoARE, C. A. R. An axiomatic basis for computer program-
ming. Commun. ACM 1,210 (1969), 576-580.

JAFFAR, J.,AND LASSEZ J.-L. Constraint logic program-
ming. InPrinciples of Programming LanguagestrL) (Jan.
1987), pp. 111-119.

KARR, M. Affine relationships among variables of a program.
Acta Inf. 6(1976), 133-151.

MANNA, Z. Mathematical Theory of ComputatioNlcGraw-
Hill, 1974.

MANNA, Z., AND PNUELI, A. Temporal Verification of Re-
active Systems: Safet@pringer-Verlag, New York, 1995.

MISHRA, B., AND YAP, C. Notes on Grobner basekfor-
mation Sciences 48989), 219-252.

MULLER-OLM, M., AND SEIDL, H. Polynomial constants
are decidable. IrStatic Analysis Symposium (SAS 2002)
(2002), vol. 2477 of.NCS pp. 4-19.

SCHRIJVER, A. Theory of Linear and Integer Programming
Wiley, 1986.

SIT, W. Y. An algorithm for solving parametric linear sys-
tems. Journal of Symbolic Computation 13 (April 1992),
353-394.

TARSKI, A. A decision method for elementary algebra and
geometry.Univ. of California Press, Berkeley(®951).

TIWARI, A., RUESS H., SaiDI, H., AND SHANKAR, N. A
technique for invariant generation. TTACAS 2001(2001),
vol. 2031 ofLNCS Springer-Verlag, pp. 113-127.

WEISPFENNING V. The complexity of linear problems in
fields. Journal of Symbolic Computation 5-2 (April 1988),
3-27.

WEISPFENNING V. Comprehensive Grobner basdsurnal
of Symbolic Computation 14992), 1-29.

WEISPFENNING V. Quantifier elimination for real algebra—
the quadratic case and beyond Alpplied Algebra and Error-
Correcting Codes (AAECC)@997), pp. 85-101.

WINDSTEIGER, W., AND BUCHBERGER B. Groebner: A
library for computing grbner bases based on saclib. Tech.
rep., RISC-Linz, 1993.

8 Appendix

In this appendix, we shall prove a few useful theorems maatio
in other results along with the confluence of the Grobneishas
duction on templates. The key idea is to reduce any failuenf

fluence on templates to a failure of confluence on the insteoni

of the template under an appropriate environment. Two tetegl

are calledidentical if the coefficient corresponding to a ternin
one template is the same as the coefficient correspondinip the
other.

Claim 1 Let f, f’ be templates and be any environment.
1. a(f+g) =a(f)+a(g),

2. c-a(f)=a(c-f), forany ce R.

Theorem 8 (Consistency) Let f 2§ for templates ff’ over
template variables in A. Then, for an arbitrary A-environthe

a, aff) *, a(f’) or a(f) = a(f’). Conversely, if for some,
a(f) -2, hthen there is a ‘fsuch that h=a(f’) and 25,

PrRoOF We have thatf’ = f — %‘(tp)p for some termc-t in f

wherein c(ao .,a8m) is a linear expression. Ifi(c) = O then
a(f) = a(f’), or else, ifa(c) # 0 then we have that(f') =

a(f) Eﬁ;)) p. In this caseq(f) - a(f’).

On the other hand, let(f) LN h, for some templaté and polyno-
mial p. Leta(c) -t be the term irmx(f) thatLT(p) divides. Hence,
the result of the reduction is,

o Ss-at-5

p)

Therefore, setting’ = f —
. O

(T P we havea(f’) =hand f P,

Theorem 9 (Template Identity) Two templates f f, over tem-
plate variables A are not identical iff there is an enviromme
such thatoi(f1) Z a(fy).

PrROOF Sincef; # f,, we have thaf; — f, is a non-zero template.
Lett be a term inf; — f,, with a non-zero coefficient expression
Leta be an environment s.tx(c) # 0. Henceu (fy — f2) #0. Thus
we have thati(f1) # a(fz).

The other direction is immediate from the definition of ideat
templates. [

Theorem 10 (Normal Form Theorem) A template f is a normal
form under-- iff for each environmena, a(f) is a normal form
under-%-.

PROOF To prove the forward implication, assume tHais a nor-

mal form under--. However assume that() 5. hfor somea.
By the reverse direction of the consistency theorem (Thedg

we have that there exisfé such thatf > f/ anda(f’) = h. This
contradicts our assumption thits in normal form.

To prove the reverse implication, let us assume thiatnot in nor-

mal form. Then there is a reductidn-2» /. Lett be the term in
f that is replaced by the reduction antle its non-zero coefficient.
By Theorem 8, we have that for each environmeni(f) = a(f’)

ora(f) S, a(f"). We find an environmeri such thai(c) # 0.
For such an environmert(f) R a(f’), sincea(c) # 0. Thus
a(f) is not in normal form wrt-2s. O

Theorem 11 (Confluence of Templates)Let G be a Grobner ba-

sis and f be a template. Letg f1 and f—G» fo, where 1, fo are

normal forms. We have that £ f, and hence-2- is confluent for
templates.

PROOF Assuming otherwise, i.efy # f, we have by Theorem 9
thato(fy) # a(f;) for somea. Furthermore, Theorem 10 implies
thata(f1) anda(fy) are in normal forms. By the forward direction

G
of Theorem 8, we have that(f) — a(f;), i = 1,2. Hence, by the
confluence of the Grobner basis reduction over real polyalsm
we have thati(f1) = a(f2), thus leading to a contradiction.]

Theorem 12 (Normal Forms for Templates) Let f be a template
over variables A. Let G be the Grobner basis ef (G). Then, for
any A-environment,

a(NFe(f)) = NFg(a(f))

PrROOF The proof is by induction over the length of the minimal
sequence of reductions frorh to f' = NF(f). For zero length
derivations,f = NF(f), we have that(() is a normal form. Hence,
a(NF(f)) =a(f) =NF(a(f)).

Assuming that the theorem holds for templates which havagtte
G
n or less derivation to their normal forms, 1t-2- f1 —n NF(T).

Hence, by Theorem 8, we have tra{f) = a(fy) or a(f) S,
a(fq). In either casevr(a(fq)) = NF(a(f)). Applying the induc-
tion to f1, we have thati(NF(f1)) = NF(a(f1)). Hence

a(NF(F)) = a(NF(f1)) = NF(a(fy)) = NF(a(f))
(]

Theorem 13 (Template Membership) Let f be a template and G
be a Grobner basis, such that ((G)). Let f = NFg(f). For each
environmenty, a(f) € | iff a(f’) isidentically zero

PROOF Given f,G such thatf’ = NFg(f), for any environment
a, we have thati(f’) = a(NF(f)) = NF(a(f)). Hence, ifa(f') is
identically zero, themnr(a(f)) is identically zero, and therefore,
a(f) e (G).

Let a(f) € (G), hencenFg(a(f)) is identically zero. However,
a(f") = a(NF(f)) = NF(a(f)) =0, and henceq (NF(f)) = a(f')
is identically zero. [

