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Abstract

We present a new technique for the generation of non-linear (al-
gebraic) invariants of a program. Our technique uses the theory
of ideals over polynomial rings to reduce the non-linear invariant
generation problem to a numerical constraint solving problem. So
far, the literature on invariant generation has been focussed on the
construction of linear invariants for linear programs. Consequently,
there has been little progress toward non-linear invariantgenera-
tion. In this paper, we demonstrate a technique that encodesthe
conditions for a given template assertion being an invariant into a
set of constraints, such that all the solutions to these constraints
correspond to non-linear (algebraic) loop invariants of the program.
We discuss some trade-offs between the completeness of the tech-
nique and the tractability of the constraint-solving problem gener-
ated. The application of the technique is demonstrated on a few
examples.
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Invariants, I.1.2 [Algorithms]:Algebraic Algorithms, F.4.1 [Mathe-
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1 Introduction

An invariant of a program at a location is an assertion that is true
of any program state reaching the location. The importance of the
automatic invariant generation problem for the verification, and the
analysis of programs is well-known. Invariant assertions can be
used directly to establish properties of a program, or used indirectly
to obtain lemmas for proving other safety and liveness properties of
the program [20].

An assertion is said to beinductive at a program location if it
holds the first time the location is reached, and is preservedun-
der every cycle back to the location. Inductive assertions have
been traditionally used to prove programs correct, starting with the
Floyd-Hoare method of inductive assertions for verifying partial-
correctness [14, 16]. It can be shown that any inductive assertion
is invariant, and furthermore, all known techniques to establish in-
variants use inductive assertions. In this sense, invariant generation
methods are, in fact, inductive assertion generation methods.

Traditionally, invariant generation has been performed us-
ing the iterative technique under the framework of abstract-
interpretation [10, 11]. Since an invariant is true of everyreach-
able state of a program, any over-approximation of the set ofreach-
able states is an invariant. To generate such an over-approximation,
the iterative technique starts from the initial states of the program,
and iterates until no more states can be added. In order to con-
verge, the technique uses a heuristic guess calledwideningto in-
formally guess the limit of a sequence of iterative steps. How-
ever, widening may sometimes produce over-approximationsthat
are too large to be useful. This technique has been applied with
numerous refinements to generate invariants, especially linear in-
variants [18, 11, 15, 6, 26, 5, 4]. However, apart from a few ex-
ceptions [3, 22], there has been little progress on the generation
of non-linear invariants involving multiplication. One ofthe rea-
sons for this may be the lack of algorithmic improvements needed
to define reasonable assertion manipulation techniques forthe do-
main of non-linear assertions. Polyhedra, for instance, have been
widely studied with advances in polyhedral invariant generation
going hand in hand with algorithmic improvements in polyhedral
manipulation techniques.

As an alternative to the iterative strategy, we have proposed a
constraint-based technique to generate linear invariants[9]. The
main idea there is to fix a template candidate assertion, and gener-
ate constraints on the coefficients in order to guarantee itsinductive-
ness. Any solution to these constraints corresponds to an inductive
assertion. The technique does not rely on widening heuristics, and
can potentially generate stronger invariants than the iterative tech-



nique. However, so far, its use in practice has been limited to linear
invariants of linear programs.

In this paper, we present a technique to generate algebraic inductive
assertions of the formp(x1, . . . ,xn) = 0, wherep is a polynomial of
fixed degree with real coefficients. Similar to our previous work,
we translate the invariant generation into a constraint solving prob-
lem using a theory that describes the consequences of assertions.
However, the theory used for linear invariants is differentfrom that
needed for algebraic invariants. In the linear case,Farkas’ Lemma
[23] provides a straightforward way to encode the conditions for
being an invariant. For the non-linear case, we demonstratethat
Gröbner bases [12] can be used to reduce the invariant generation
problem to a non-linear constraint solving problem that is shown
to be in the parametric linear form [2]. We then discuss solution
techniques to these constraints, and show that any solutionto these
constraints is an invariant, thus proving the soundness of our tech-
nique. Even though completeness seems achievable in theory, we
find that insistence on completeness makes the constraint solving
intractable. Hence, we present tractable relaxations thatmake our
technique feasible. We demonstrate our technique on a few exam-
ples.

Gröbner bases are also used in the work of Müller-Olm and Seidl,
which presents a backward propagation-based method for non-
linear programs without branch conditions [22]. The use of widen-
ing/narrowing is avoided by observing that ideals in certain poly-
nomial rings (calledNoetherian Rings) satisfy the ascending chain
condition. The technique is shown to be exact for polynomialcon-
stants, i.e, invariants of the formx = p, wherex is a program vari-
able andp is a polynomial in the program variables. However,
their technique is applicable only to programs where all conditional
branches are abstracted by non-deterministic choices. In contrast,
our technique sacrifices completeness for the ability to handle alge-
braic branch conditions.

The rest of the paper is organized as follows: Section 2 presents
some preliminary definitions along with a statement of the prob-
lem. The constraint generation technique is described in section 3.
Techniques for solving these constraints are discussed in section 4.
In section 5, the technique is illustrated with a few examples. Sec-
tion 6 concludes with some ideas for future work. The appendix
presents a few results alluded to in the paper.

2 Preliminaries

In this section, we introduce the theory of ideals, which is at the
heart of our technique, and present our computational modelof
transition systems.

Algebraic Assertions

We begin by presenting some definitions and results from ideal the-
ory. Informally, an ideal is a set of equations between polynomials
along with all their consequences. Ideals can be used to deduce
facts about the set of points that satisfy their underlying equations.
Some of the results in this section are stated in general terms with-
out proofs. Details can be found in most standard texts on algebra
and algebraic geometry [12, 21].

Let R be the set of reals andC be the set of complex numbers
obtained as thealgebraic closureof the reals. Let{x1, . . . ,xn} be
a set of variables. The set of polynomials on the variables, whose
coefficients are drawn from the real (complex) numbers is denoted

byR[x1, . . . ,xn] (C [x1, . . . ,xn]). We shall work with these rings even
though the results can be applied to many other rings, including
Z[x1, . . . ,xn], the ring of integer polynomials.

Definition 1 (Algebraic Assertions) An algebraic assertionψ is
an assertion of the form

V

i pi(x1, . . . ,xn) = 0 where each pi ∈
R[x1, . . . ,xn]. Thedegreeof an assertion is the maximum among
the degrees of the polynomials that make up the assertion.

The set of points in the complex plane that satisfy an algebraic as-
sertion is called avariety. Given an assertionψ ≡

V

i(pi(~x) = 0),
its corresponding variety is defined as

Variety (ψ) = {~z∈ C n | (∀i) pi(~z) = 0}

Definition 2 (Ideals) A set I⊆R[x1, . . . ,xn] is an ideal, if and only
if

1. 0∈ I,

2. If p1, p2 ∈ I then p1 + p2 ∈ I,

3. If p1 ∈ I and p2 ∈ R[x1, . . . ,xn] then p1p2 ∈ I.

An idealgenerated bya set of polynomialsP, denoted by((P)) is
the smallest ideal containingP. Equivalently,

((P)) =

{

g1p1 + · · ·+gmpm |
g1, . . . ,gm ∈ R[x1, · · · ,xn],

p1, . . . , pm ∈ P

}

An ideal I is said to befinitely generatedif there is a finite setP
such thatI = ((P)). A famous theorem due to Hilbert states that all
ideals inR[x1, . . . ,xn] are finitely generated.

As a result, algebraic assertions can be seen as the generators of an
ideal and vice-versa. Any ideal defines a variety, which is the set
of the common zeros of all the polynomials it contains. This cor-
respondence between ideals and varieties is one of the fundamen-
tal observations involving algebraic assertions called the Hilbert’s
Nullstellensatz. We state the relevant (and the easy) direction of this
theorem below:

Theorem 1 (Hilbert’s Nullstellensatz) Consider an algebraic
assertion ψ. Let I = ((ψ)) be the ideal generated byψ in
R[x1, . . . ,xn], and f(x1, . . . ,xn) ∈ R[x1, . . . ,xn]. If f ∈ I, then

(∀~z∈ C
n) ψ(~z) ⇒ ( f (~z) = 0)

i.e, ψ(z) |= ( f (z) = 0).

PROOF. Let ψ ≡ f1 = 0 ∧ ·· ·∧ fm = 0 and f ∈ I . Hence, we can
expressf as

f = g1 f1 + · · ·+gm fm

for someg1, . . . ,gm ∈ R[x1, . . . ,xn]. Let~z∈ C n be such thatψ(~z)
holds. Then,f (~z) = ∑m

i=1(gi(~z) fi(~z)) = 0, since eachfi(~z) = 0.
Therefore, we have shown that

(∀~z∈ C
n) ψ(~z) ⇒ ( f (~z) = 0)

The theorem shows that membership in an idealI leads to semantic
entailment in the variety induced byI . Hence, an ideal is (infor-
mally) a Consequence-Closedset of polynomials. While a sim-
ilar statement can be made in the converse, it is not relevantto



the overall soundness of our technique, and therefore, we omit it
from the discussion. Note that even though the ideals are defined
in R[x1, . . . ,xn], the varieties along with the consequence relations
are defined over the complex numbers, which subsume the reals.
This is a technicality that arises from the fact that the reals are not
algebraically closed.

Example 1 Consider the ideal I= (({x2 +1})). The variety cor-
responding to this ideal is the set V= {i,−i}, which are the com-
plex roots of unity. Any other member of the ideal can be expressed
as p· (x2 + 1), where p is an arbitrary polynomial over x. It can
be easily seen that each of these polynomials is zero at the points
where x2 +1 = 0, i.e,

(∀p∈ I) p(i) = 0 ∧ p(−i) = 0

In the remainder of this subsection, we use the concept of ideals to
derive a systematic algorithm for determining, for a given assertion
ψ and a polynomialf , whetherf ∈ ((ψ)). Assume that all the poly-
nomials are drawn fromR[x1, . . . ,xn], and all consequence relations
of the formψ1 |= ψ2 are over the domain of complex numbers.

Let X = {x1, . . . ,xn} be a set of variables. Apower-productover
X is of the formxr1

1 xr2
2 · · ·xrn

n , where eachr i ∈ N. The set of power
products will be denoted byPP. A term(also amonomial) is of the
form c· p wherec∈R andp∈PP. The set of terms will be denoted
by Term.

Definition 3 (Term Orderings) A term ordering< is a total and
strict ordering on PP that satisfies the following properties:

1. (∀t ∈ PP) 1≤ t,

2. if (t1 ≤ t2) then(∀t ∈ PP)t1t ≤ t2t.

These orderings can be extended to terms by ignoring the coeffi-
cients and just comparing the power-products.

Term orderings will be used to induce a reduction relation over
polynomials. Many term orderings are used in the literature, the
most common being thelexicographic and total-degree lexico-
graphicorderings. We assume a linear ordering≺ on the variables
in X. Assuming thatx1 ≺ x2 ≺ ·· · ≺ xn, the lexicographic extension
≺lex is defined as follows:

xr1
1 · · ·xrn

n ≺lex xq1
1 · · ·xqn

n iff (∃i) r i < qi ∧ (∀ j < i) r j = q j

The ordering is lexicographic on the tuple〈r1, . . . , rn〉 correspond-
ing to a termxr1

1 · · ·xrn
n . A variant of this ordering is called thetotal-

degreelexicographic ordering, which first compares power prod-
ucts by theirtotal degree, defined as the sum of the powers of all the
variables. For terms with the same total degree, the lexicographic
ordering is used to resolve the tie. In general, the choice ofordering
does have a bearing on the complexity of the algorithms, but such
an effect is beyond the scope of this paper.

Given a polynomialg, we define itslead term (denotedLT(g)) to
be the largest among all its terms w.r.t. a given term-ordering.

Definition 4 (Reduction) Let f, g be polynomials, and< be a

term-ordering. The reduction relation over polynomials,
g

−→ is de-

fined as: f
g

−→ f ′ iff there exists term t in f s.t.LT(g) divides p,
and

f ′ = f −
t

LT(g)
g

The reduction, in effect cancels out the termt that was selected. If
no such reduction can be made, thenf is said to be a normal-form
w.r.t.

g
−→. The reduction can also be extended to a finite setP of

polynomials asf
P

−→ f ′ iff (∃g∈ P) f
g

−→ f ′. The reduction
P

−→
can be shown to be terminating for any finite set of polynomials P
as a direct consequence of the definition of term-orderings.

By
P
�, we denote the reflexive transitive closure of the relation

P
−→.

A normal form f of the reduction is a polynomial such that there is
no further reduction that can be carried out onf . The reduction is
said to beconfluentif every polynomial reduces to a unique normal
form. These definitions along with their properties are explained in
standard textbooks on term-rewriting systems [1].

If I = ((P)), then the reduction relation induced byP can be used
to check membership of a given polynomialf in I according to the
following theorem:

Theorem 2 (Ideal Membership) Let I = ((P)) be an ideal, and f

be a polynomial. If f
P
� 0 then f∈ I.

PROOF. Proof proceeds by induction on the length of the deriva-
tion. It is trivially true for zero length derivations, since 0∈ I . Let

f
P

−→ f ′
P
� 0. It follows that f ′ = f − tg, for some suitable termt,

and someg∈ P. Sincef ′ ∈ I (the induction hypothesis), andg∈ P.
Thereforef ′ + tg∈ I . Thus, f ∈ I .

Example 2 Assume a set of variables x,y,z with a precedence or-
dering x> y > z. Consider the ideal I= (( f : x2−y, g : y−z, h :
x+z)), and the polynomial p= x2−y2. We shall use the total lexi-
cographic ordering. From the definition of the ordering relation, it
follows that x2 > z. The lead term in the polynomial f: x2− z is

x2, which divides the term t: x2 in p. Thus, p
f

−→ p′, where

p′ = (x2−y2)
︸ ︷︷ ︸

p

−
x2

x2
︸︷︷︸

t
LT( f )

(x2−y)
︸ ︷︷ ︸

f

= (−y2 +y)

The following sequence of reductions shows the membership of p in
the ideal

p
h

−→−zx−y2 h
−→ z2−y2 g

−→−yz+z2 g
−→−z2 +z2 ≡ 0

thus p
I

� 0, and hence p∈ I. However, the reduction sequence

p
f

−→−y2 +y
g

−→−yz+y
g

−→−z2 +y
g

−→−z2 +z

reaches a normal-form without showing the ideal membership.

Since the reduction
P

−→ may not be confluent, it is not possible to
use the theorem to decide membership using an arbitrary ideal basis
P. However, given an idealI , there is a special set of generatorsG

such thatI = ((G)), and the reduction relation
G

−→ induced byG is
confluent. Such a basis forI is variously called theGröbner Basis
or Standard Basisof I .

Theorem 3 (Gröbner Basis) Let I = ((P)) be an ideal and f be

a polynomial. Let G be the Gröbner basis of I. f
G
� 0 iff f ∈ I.

PROOF. A proof of this theorem can be found in any standard text
or survey on this topic [12, 21].



Since any reduction is terminating, Theorem 3 provides a decision
procedure for ideal membership. We shall useNFG(p) to denote

the normal form of a polynomialp under
G
�. The subscriptG

in NFG(p) may be dropped if it is evident from the context. The
standard algorithm for computing the Gröbner basis of an ideal
is known as theBuchberger algorithm. There are numerous im-
plementations of this algorithm available with standard computer-
algebra packages and polynomial computation libraries. Asan
example, the libraryGROEBNERimplements many improvements
over the standard algorithm [30].

Example 3 Consider again the ideal from Example 2; I= (( f :
x2 − y, g : y− z, h : x+ z)). The Gröbner basis for I is G= { f ′ :
z2− z, g : y− z, h : x+ z}. With this basis, every reduction of p:
x2−y2 will yield a normal form0.

Templates

Our technique for invariant generation aims to find polynomials
which satisfy certain properties. To represent these sets of poly-
nomials we use templates, which are polynomials with coefficients
that are linear expressions over some set of template variables. In
this subsection, we show that the theory of ideals can be natu-
rally extended to templates. In particular, we show that there ex-
ist confluent reductions on templates that allow the generation of
constraints on the template variables, such that the resulting set of
polynomials is precisely the set of polynomials that belongto the
corresponding ideal.

Definition 5 (Templates) Let A be a set oftemplate variablesand
L(A) be the domain of alllinear expressionsover variables in A
of the form c0 + c1a1 + . . .+ cnan, where each ci is a real valued
coefficient. Atemplateover A,X is a polynomial over variables in
X with coefficients drawn fromL(A).

Example 4 Let A= {a1,a2,a3}, henceL(A) is the set of expres-
sions

L(A) = {c0 +c1a1 +c2a2 +c3a3 | c0, . . . ,c3 ∈ R}

The set of templates lies in the ringL(A)[x1, . . . ,xn]. As an example,
consider the template

(2a2 +3)x1x2
2 +(3a3)x2 +(4a3 +a1 +10)

Definition 6 (Semantics of Templates)Given a set of template
variables A, an A-environment (if A is clear from the context, then
simply an environment) is a mapα that assigns real values to each
variable in A. Hence, this map can be naturally extended to map
expressions inL(A) to their corresponding values inR, and to map
polynomials inL(A)[x1, . . . ,xn] to their corresponding polynomials
in R[x1, . . . ,xn].

Example 5 The environmentα ≡ 〈a1 = 0,a2 = 1,a3 = 2〉, maps
the template

(2a2 +3)x1x2
2 +(3a3)x2 +(4a3 +a1 +10)

from Example 4 to the polynomial

5x1x2
2 +6x2 +18

The reduction
g

−→ for polynomials can be extended to a reduction
for templates in a natural way.

Definition 7 (Reduction of Templates) Let p be a polynomial in
R[x1, . . . ,xn] and f, f ′ be templates over A and{x1, . . . ,xn}. The

reduction relation is defined as: f
p

−→ f ′ iff the lead termLT(p)
divides a term c· t in f with coefficient c(a0, . . . ,am) and

f ′ = f −
c· t

LT(p)
p

Note that the reduction is defined to be the same as the reduction
relation over polynomials. This can, in turn, be extended tosets

of polynomials to define reductions
G

−→ over templates for sets of
polynomialsG. Henceforth, we shall use the symbolsf ,g with
subscripts to denote templates and the symbolsh, p to denote poly-
nomials.

Example 6 Let p be the polynomial x2−y, with LT(p) = x2. Con-
sider the template

f : ax2 +by2 +cz2 +dz+e

The lead termLT(p) divides the term ax2 in f . Therefore, f
p

−→ f ′,
where

f ′ : (ax2+by2+cz2+dz+e)−
ax2

x2 (x2−y)= by2+cz2+dz+e+ay

Given a templatef and an idealI , we are interested in finding those
environmentsα such thatα( f ) ∈ I . We achieve this by obtaining
constraints on the environment variablesA such that any solutionα
satisfiesα( f ) ∈ I .

The properties of the Gröbner basis reduction over polynomials can
be extended smoothly to templates. Proofs of these results can be
found in the appendix. We first show that the extension of reduc-
tion is consistent w.r.t. the semantics of templates under any A-
environment. The confluence of Gröbner basis reduction over tem-
plates, guarantees that a unique normal form exists for any template
(Theorem 11). The template membership theorem (Theorem 13)
proves that iff1 = NFG( f ) is the normal form off , then for each
environmentα, α( f ) ∈ ((G)) iff α( f1) is identically zero.

Theorem 4 (Zero Polynomial Theorem) A polynomial p is zero
for all the possible values of x1, . . . ,xn iff all its coefficients are
identically zero.

PROOF. Proof proceeds by induction on the number of variablesn.
For n = 1, the result is immediate from the fundamental theorem
of algebra, restricting the number of roots of a non-zero univariate
polynomial of degreen. Therefore, a non-zero polynomial cannot
be zero everywhere. Let us assume that the result is true for all poly-
nomials inn−1 variables. Letp = p0 + p1xn + . . .+ pmxm

n , where
eachpi is a polynomial inx1, . . . ,xn−1. For any valueα1, . . . ,αn−1
of thesen− 1 variables, the polynomialp = p0(α1, . . . ,αn−1) +
p1(α1, . . . ,αn−1)xn + · · ·+ pm(α1, . . . ,αn−1)xm

n is identically zero
for all xn and hence eachpi is identically zero for all possible val-
uesα1, . . . ,αn−1. Using the inductive hypothesis, every coefficient
in eachpi is zero, and hence, all the coefficients ofp are zero.

Given a templatef and an idealI with Gröbner basisG, we first
computeNFG( f ), and then, equate each coefficient of the normal
form to zero to obtain a set of equations over the template variables
A. Any solution to this set of equations yields anA environmentα
such thatα( f ) ∈ I (and conversely).



Example 7 Let I be the ideal((x2−y, y−z, z+x)) of Example 2
with Gröbner basis G= {x+z, y−z,z2−z}. We are interested in
polynomials represented by the template

ax2 +by2 +cz2 +dz+e

that are members of the ideal. The normal form of this template is

(a+b+c+d)z+e

Equating each coefficient in the normal form to zero, we obtain

a+b+c+d = 0
e= 0

From this, we can generate all instances of the template thatbe-
long to I. Some examples are x2 − y2, y2 − z, 2x2 − z2 − z. On
the other hand, x2 +y2−z 6∈ I, as the coefficients do not satisfy the
constraints.

Transition Systems and Invariants

We begin by defining transition systems in general.

Definition 8 (Transition System) A transition systemis a tuple
〈V,L,T , `0,Θ〉, where V is a set ofvariables, L is a set of loca-
tions, T is a set oftransitions. A state s is an interpretation of the
variables in V. Each transitionτ ∈ T is a tuple〈l1, l2,ρτ〉, where
l1 and l2 are thepre- and post- locations of the transition. The
transition relationρτ is a first-order assertion over V∪V ′, where
V denotes thecurrent-statevariables and V′ denotes thenext-state
variables. The locatioǹ0 ∈ L is the initial location, and Θ is a
first-order assertion over V denoting theinitial condition.

Transition systems are the standard representation for many types
of programs. A more detailed presentation of these systems can
be found in [20]. Given a transition system, we define its transi-
tion graph with locations labeled by vertices and edges labeled by
transitions, such that each edge connects the pre-locationand the
post-location of its labeling transition. Given a pathπ in this graph,
we define the transition relationρπ corresponding toπ as the rela-
tional composition of all the transition relations labeling the edges
along the path.

Definition 9 (Invariant) Let P≡ 〈V,L,T , l0,Θ〉 be a transition
system. Aninvariantat a location l∈ L is defined as an assertion
ψ over V , such thatψ holds on all the states that can be reached at
location l. An invariant of the transition system is an assertion ψ
which holds at all the locations of the transition system.

Given adomain of assertionsD, anassertion-mapfor a transition
system is a mapη : L 7→ D that associates each location of the tran-
sition system with an assertion.

Definition 10 (Inductive Assertion Map) An assertion mapη is
said to be inductive iff the following conditions hold:

Initiation The assertion at l0 subsumes the initial condition,

Θ |= η(l0)

Consecution For each transitionτ from li to l j ,

η(l i) ∧ ρτ |= η(l j)
′

integer i, j ,swhere(s= 0 ∧ j = j0)

l0 : while (· · ·) do
l1 : (s, j) := (s+ i, j −1)

Figure 1. A program to multiply two numbers.

It is a well known fact from the pioneering work of Floyd and
Hoare [14, 16], that ifη is an inductive assertion map thenη(l)
is invariant atl . Furthermore, for general transition systems, given
any invariantϕ at l , there is an inductive assertion mapη such that
η(l) implies the invariantϕ. In fact, all known invariant generation
methods are inductive assertion generation methods.

Algebraic Transition Systems

We now specialize general transition systems into algebraic transi-
tion systems.

Definition 11 (Algebraic Transition System) An algebraic tran-
sition systemis a transition system〈V,L,T , `0,Θ〉, such that, for
each transitionτ, the transition relationρτ is an algebraic asser-
tion over V∪V ′, and the initial conditionΘ is an algebraic asser-
tion over V .

Example 8 Consider the loop program to multiply two numbers
shown in Figure 1. The corresponding transition system is given by

V = {i, j ,s, j0}
L = {l0}
T = {τ1}, where

τ1 :

〈

l0, l0,






s′−s− i = 0
j ′− j +1 = 0
i′− i = 0
j ′0− j0 = 0






〉

`0 = l0

which is an algebraic transition system.

For algebraic transition systems in general, the composition of tran-
sition relations along a path may lie outside the domain of algebraic
transitions. However, if the transition relations areseparable, that
is, each variable inV ′ is expressed as a polynomial expression over
the variables inV, we can compose relations along any path. For
instance, the transition system in Example 8 is separable.

Corresponding to general assertion maps, we define analgebraic
assertion mapη, wherein each locationl is mapped to an asser-
tion η(l) of the form p = 0. We shall useη(l) to denote both the
assertionp = 0 and the polynomialp.

3 Constraint Generation

In this section, we present the basic algorithm for invariant gener-
ation in algebraic transition systems. Given an algebraic transition
system, we first define a template map that maps each location to
a template over a set of abstract coefficient variablesA. We then
generate constraints on all the template variablesA, guaranteeing
that any solution to these constraints corresponds to an inductive
assertion map.

Definition 12 (Template Map) Let P≡ 〈V,L,T , l0,Θ〉 be an alge-
braic transition system. Assuming a set oftemplate variablesA, an



invariant templateover P is a mapη : L 7→L(A)[V], that maps each
location in L to a template over A.

When the variables inA are instantiated to real values, the invari-
ant template is thenspecializedto a polynomial assertion map. The
problem that we intend to tackle in this section is as follows: Given
an algebraic transition system with a template map, computecon-
straints on the template variablesA, such that any solution to these
constraints specializes the template to a valid inductive assertion
map.

The solution to the problem involves encoding the initiation and
the consecution conditions that any inductive assertion map must
satisfy. In practice, if the transitions can be composed, itis more
effective to do this over partial maps by selecting a suitable set of
cutpoints.

The example below shows a (rather lengthy) template that will be
used as a running example.

Example. Consider the example transition system in Example 8.
Since there is one locationl0, we set theη(l0) to be ageneric
quadraticform on{s, i, j , j0} as shown below:

η(l0) :





a0s2 +a1s+a2si+a3s j+a4s j0 +a5i2+
a6i +a7i j +a8i j0 +a9 j2+

a10 j +a11 j j0 +a12 j20 +a13 j0 +a14





Encoding Initiation

Initiation is expressed by encoding the membership ofη(l0) to the
ideal generated by the initial assertionΘ, i.e.,η(l0) ∈ ((Θ)) which
in turn impliesΘ |= η(l0) by the Nullstellensatz. The following are
the steps involved in the encoding:

1. Compute the Gröbner basisG for ((Θ)),

2. Reduce the templateη(l0) using G, to compute f =
NF(η(l0)),

3. For each term inf , equate the coefficient expression of the
term to zero, in order to obtain a constraint. The overall ini-
tiation constraint is the conjunction of all the constraints thus
obtained.

Example 9 We now generate initiation constraints for the system
in Example 8. The Gröbner basis ofΘ : s = 0 ∧ j − j0 = 0 is
G = {s, j − j0}. The normal form ofη(l0) w.r.t. G is

f = a5i2+a6i+(a7+a8)i j0+(a9+a11+a12) j20+(a10+a13) j0+a14

Setting each coefficient expression to zero, we obtain the constraints

a5 = a6 = a14 = 0
a7 +a8 = 0
a9 +a11+a12 = 0
a10+a13 = 0

Encoding Consecution

For each locationl i and for each transitionτ :
〈
l i , l j ,ρ

〉
, consecution

can be expressed by the implication

(η(l i) = 0) ∧ ρ |= (η(l j )
′ = 0)

There are two cases to consider here, one when the antecedent
η(l i) = 0 ∧ ρ is satisfiable, i.e.,τ is anenabled transition; the other
case occurs when the antecedent is unsatisfiable, i.e.,τ is disabled.

The disabled case consists of encoding

ρ |= η(l i) 6= 0

This is achieved by computing the normal form of the reduction of
η(l i) by the Gröbner basis of((ρ)). The normal form is set to be
identical to a scalar different from zero. Thus all the termsin this
normal form except the constant term have their coefficientsset to
zero, and the constant term is required to be non-zero. The rest of
the section deals with the enabled case.

An Exact but Impractical Encoding

The first approach to encoding the enabled case of the consecution
condition is similar to that of the initiation condition, i.e., to com-
pute the Gröbner basis of the ideal generated byη(l i) = 0∧ρτ. The
normal form ofη(l j)

′ is computed and constraints on the template
variables that ensure that this normal form is identical to zero are
obtained. However, the assertionη(l i) = 0∧ρτ contains a template.
Hence, a variant of the Gröbner basis construction, resulting in a
basis known as theComprehensiveGröbner basis [28], is required.

The comprehensive basis is a set of condition-basis pairs(ψ,G),
whereψ is a non-linear constraint on the template variables, andG
is a Gröbner basis involving template polynomials with non-linear
coefficient expressions. For each such pair, computing the nor-
mal form ofη(l j )

′ underG, and equating each coefficient of each
normal form to zero yields constraintsψ1 over the template vari-
ables. The overall constraint for the pair isψ ⇒ ψ1. Unfortunately,
this approach, though exact, is impractical, because the number of
condition-basis pairs produced on a generic polynomial template is
large, and the nonlinear constraints produced make the constraint
solving problem intractable, even for simple programs.

Hence, we resort to an alternative approach that uses a stronger con-
sequence relation to avoid the explicit construction of thecompre-
hensive Gröbner basis but in doing so, we sacrifice completeness.

A Practical Alternative

The original consecution condition for a the assertion mapη re-
quires that the values after the transition are zero whenever the val-
ues before the transition is taken are zero. We define three increas-
ingly stronger relations on the values of the invariant before and
after the transition.

Definition 13 (Alternative Consequence Relations)Let τ be the
transition

〈
l i , l j ,ρ

〉
andη be an algebraic assertion map. We define

the following increasingly stronger notions of consecution:

1. η satisfiespolynomial-scaleconsecution (PS) forτ iff there
exists a polynomial p such that

ρ |= (η(l j)
′− pη(l i) = 0)

2. η satisfiesconstant-scaleconsecution (CS) forτ iff there exists
a real valuedparameterλ s.t.

ρ |= (η(l j)
′−λη(l i) = 0)



3. η satisfiesconstant-valueconsecution (CV) forτ iff

ρ |= (η(l j )
′−η(l i) = 0)

4. η satisfieslocal-consecution(LC) for τ iff

ρ |= (η(l j)
′ = 0)

LC consecution states thatη(l j)
′ is zero upon taking the transition,

independent ofη(l i). CV consecution encodes the fact that the nu-
merical value of the assertion does not change through the transi-
tion. The CS consecution on the other hand encodes the fact that the
numerical value of the assertion after the transition is taken is a con-
stant multiple of the numerical value prior to the transition. Each
consecution can be seen as a generalization of the next consecu-
tion. For instance, CV consecution can be seen as CS consecution
for λ = 1. Similarly, LC consecution is again a special case of CS
for λ = 0. CS consecution results when the polynomialp in PS
consecution is of degree 0. We now show that any assertion map
that satisfies PS consecution also satisfies (exact) consecution. This
implies similar results for CV and CS consecutions.

Theorem 5 Letτ :
〈
l i , l j ,ρ

〉
be a transition, andη be a polynomial

assertion map.

1. If η satisfies CV consecution forτ then it satisfies CS conse-
cution.

2. If η satisfies CS consecution forτ then it satisfies PS consecu-
tion.

3. If η satisfies PS consecution forτ then it satisfies (exact) con-
secution.

PROOF. (1) and (2) follow directly from the definitions. We shall
prove (3). Sinceη satisfies PS,∃ p such that,

ρ |= (η(l j)
′− pη(l i) = 0)

Assuming thatη(l i) = 0 ∧ ρ, we obtain

η(l j )
′− p·η(l i) = η(l j )

′− p·0 = η(l j)
′ = 0

Thus, assumingη(l i) = 0 ∧ ρ, we obtainη(l j)
′ = 0. This shows

thatη satisfies consecution w.r.t.τ.

Thus, if an assertion map satisfies initiation, and any of thethree
restricted consecutions for each transition, then it is an inductive
assertion map. In practice, we find that using CS consecutionpro-
duces useful invariants without making the constraint solving prob-
lem intractable. The following theorem suggests a method toen-
code CS consecution:

Theorem 6 Let G= {g1, . . . ,gm} be the Gröbner basis of asser-
tion ψ, and p1, p2 be polynomials. Let p′i = NFG(pi), for i = 1,2
andλ be a real-valued parameter. If p′1−λp′2 = 0, then

ψ |= (p1−λp2 = 0)

The enabled case of consecution is encoded using CS consecution
as follows:

1. Let f = NFG(η(l i)) and g = NFG(η(l j )
′), where G is the

Gröbner basis ofρ.

2. Introducing a real parameterλ, we set each coefficient of the
polynomialλ f −g to zero, obtaining constraints involving the
template variables, and the parameterλ.

3. The resulting constraint involving the template variables, and
the parameterλ is existentially quantified byλ.

The overall constraint for the consecution ofτ is a disjunction of the
constraints for the enabled case and that for the disabled case. We
illustrate this by encoding the consecution for our runningexample.

Example 10 Returning to the transition system in Example 8, The
only transition isτ1, with transition relation

ρτ1 :






s′−s− i = 0
j ′− j +1 = 0
i′− i = 0
j ′0− j0 = 0






which corresponds to the Gröbner basis{s′ − s− i, j ′− j + 1, i′−
i, j ′0− j0}, generated under the total-degree lexicographic ordering
with the precedence

s′ > j ′ > i′ > j ′0 > s> j > i > j0

The normal form ofη′(l0) is given by

f ′ =









a0s2 +(2a0 +a2)si+(a1−a3)s+a3s j+
a4s j0 +(a0 +a2 +a5)i2 +(a1−a3 +a6−a7)i+

(a3 +a7)i j +(a4 +a8)i j0 +a9 j2+
(a10−2a9) j +a11 j j0 +a12 j20+
(a13−a11) j0 +(a9−a10+a14)









The templateη(l0) remains unaltered by the reduction. Hence, set-
ting

(∃λ) NF(η(l0)
′) = λ ·NF(η(l0))

gives us the following constraints for the enabled case:

a0 = λa0
2a0 +a2 = λa2
a0 +a2 +a5 = λa5
a1−a3 = λa1
a1−a3 +a6−a7 = λa6
a3 = λa3
a3 +a7 = λa7
a4 = λa4
a4 +a8 = λa8
a9 = λa9
a10−2a9 = λa10
a9−a10+a14 = λa14
a11 = λa11
a13−a11 = λa13
a12 = λa12

The solution to these constraints is discussed in the next section.
As mentioned above, the normal form ofη(l0) w.r.t. the Gröbner
basis forρ is itself, thus yielding the following constraints for the
disabled case.

a1 = a2 = · · · = a13 = 0 ∧ a14 6= 0

The overall constraint for a template map being inductive isgiven
by the conjunction of the initiation and the consecution constraints.
Let ϕΘ be the initiation constraint andϕτ be the constraint corre-
sponding to the consecution for transitionτ. Then the overall con-
straintsϕ are given by

ϕ ≡ ϕΘ ∧
^

τ∈T

ϕτ



Let [[η(l i)]] = α(η(l i)) denote the specialization ofη(l i) by some
solutionα of ϕ, and let[[η]] = α ◦ η.

Theorem 7 (Soundness)For any solutionα of ϕ, the instantiation
of the template mapη with the solution values is an inductive as-
sertion map.

PROOF. Since the solution set satisfiesϕ, it must satisfy each in-
dividual ϕτ along with ϕΘ. Since the constraint set satisfies the
ϕΘ, the normal form of[[η(l0)]] is identically zero. By Theorem 8,
[[η(l i)]] ∈ ((Θ)), and by Theorem 1,Θ |= [[η(l i)]] = 0. Thus initia-
tion holds.

Similarly, the constraints for consecution ensure that forsomeλ,

[[NF(η(l j)
′)]]−λ[[NF(η(l i))]] = 0

This implies

ρτ |= [[η(l j)
′]]−λ[[η(l i)]] = 0

by Theorem 6. Therefore,[[η]] satisfies CS consecution for each
transitionτ. Thus we have shown that[[η]] satisfies the conditions
of initiation and consecution for each transition. Therefore [[η]] is
an inductive assertion map.

The converse of this theorem (completeness) does not hold due to
our choice of a stronger consecution condition that is satisfied by
fewer inductive assertion maps. So far, we have reduced the invari-
ant generation problem for algebraic transition systems toa set of
constraints, such that any solution to these constraints forms an in-
variant. Solution methods to these constraints are discussed in the
next section.

The complexity of the constraint generation process is linear in the
size of the transition relation and the number of template variables.
The Gröbner bases need to be computed only over initial condi-
tions and transitions, which can be done efficiently. The number
of Gröbner basis computations is linear in the program size. The
reduction process can also be done efficiently, the number ofreduc-
tions required being roughly linear in the size of the template to be
reduced, if the template is a generic polynomial of a fixed degree.

4 Solving Constraints

In this section, we discuss techniques for solving the system of
equations generated by the method described in Section 3. The
constraints corresponding to the initiation and the disabled case for
consecution are linear whereas the constraints corresponding to the
enabled case of consecution vary depending on the consecution re-
lation used. For the LC and CV cases, these constraints are linear
equalities. For the CS consecution the constraints are non-linear,
more specificallyParametric Linear Constraints. We shall first dis-
cuss the structure of these constraints in detail and then discuss
solution techniques. We do not discuss techniques for the more
general PS consecution. The constraint types are summarized in
Figure 2.

Definition 14 (Parametric Linear Constraint) Let A be the set of
abstract variables andΛ be a set of multiplier variables. A para-
metric linear constraint is of the form

l0 +λ1l1 + · · ·+λmlm = 0

where, l0, . . . , lm ∈ L(A) are linear expressions in A andΛ =
{λ1, . . . ,λm}, λi ∈ R.

A linear constraintis of the forml0 = 0. Similarly, atransformis
of the form

c0 +c1λ1 + · · ·+cmλm = 0

where,c0, . . . ,cm∈R. The constraint isfactorizableiff l0 = c1l1 =
· · · = cmlm for some real constantsc1, . . .cm. In such a case we
express the constraint as

l0 +λ1l1 + · · ·+λmlm = l0(1+c1λ1 + · · ·+cmλm)

a product of a linear constraint and a transform constraint.The con-
straint generation algorithm provides us with a set of constraints.
Some of the constraints (initiation constraints) are linear whereas
the constraints from consecution are parametric linear constraints.
The parameters inΛ are all existentially quantified. In the remain-
der of this section we discuss some techniques to eliminate the
quantifiers.

Elimination by Splitting

The simplest technique for elimination is a CLP-style [17] elimina-
tion algorithm that maintains the linear constraints in aconstraint
storeand repeatedly linearizes the remaining constraints. The main
advantage of this technique is its efficiency. It has been observed to
be fast and memory efficient in practice. Furthermore, it preserves
the parametric linear form throughout the elimination process. On
the other hand, it may not be able to remove all instances of the
parameter. In such a case, we resort to more general elimination
techniques. The following is a brief sketch of the technique:

Constraint-Store The constraint store is a set of linear constraints
over the variables inA. We store these constraints in terms of
a matrix that is always kept in a reduced row form using the
standard Gaussian elimination. The operations supported by
the store include the addition of a new constraint and the sim-
plification of a given parametric linear constraint to a normal
form.

The following are the major steps involved:

1. Each linear constraint is added to the constraint store and each
transform constraint is used to eliminate one of the multipliers
involved in the constraint system by rewriting it in terms ofthe
remaining parameters.

2. Each factorizable constraint leads to asplit into two cases,
one where the linear constraint is added to the store, and the
other where the transform constraint is applied to remove one
multiplier from the system. Care must be taken to avoid in-
consistent branches on a split. For instance a split ona 6= 0 in
a branch should not be followed by a split ona = 0.

The steps shown above are repeated until the branch is unsatisfiable
or all the constraints have been linearized. In almost all the ob-
served cases, a majority of the branches are completely linearized,
and only a few branches with unresolved parametric linear con-
straints remain. The latter can be resolved by generating more lin-
ear constraints as “hints” to help simplify the non-linear constraints
further. These constraints can be obtained by choosing pathsπ start-
ing from l0 ending inl and encoding the condition

Θ∧ρπ |= η(l)′

where ρπ represents the composition of the transition relations
along π. Soundness can be shown to be preserved by these op-
erations. Furthermore, the solution set can also be shown tobe
preserved.



Condition Restriction Constraint types
Initiation linear equalities

Local (LC) linear equalities
Consecution Constant Value (CV) linear equalities

Constant Scale (CS) parametric linear
Polynomial Scale (PS) non-linear algebraic

Figure 2. Constraints obtained from different conditions for inductive assertions

Example 11 To illustrate the technique, we solve the constraints
for the enabled case of consecution for Example 8, recalled below
from Example 10.

a0 = λa0
2a0 +a2 = λa2
a0 +a2 +a5 = λa5
a1−a3 = λa1
a1−a3 +a6−a7 = λa6
a3 = λa3
a3 +a7 = λa7
a4 = λa4
a4 +a8 = λa8
a9 = λa9
a10−2a9 = λa10
a9−a10+a14 = λa14
a11 = λa11
a13−a11 = λa13
a12 = λa12

Factorizing,(1−λ)a0 = 0, we get1−λ = 0 or a0 = 0,1−λ 6= 0.
In the first case, we rewrite all occurrences ofλ by 1, resulting in
the constraints

a0 = a2 = a3 = a4 = a9 = a10 = a11 = 0
a1−a7 = 0

Repeating the strategy on the other branch, we obtain

a0 = a3 = a4 = a9 = a11 = a13 = 0
2a0 +a2 = λa2
a0 +a2 +a5 = λa5
a1−a3 = λa1
a1−a3 +a6−a7 = λa6
a3 +a7 = λa7
a4 +a8 = λa8
a10−2a9 = λa10
a9−a10+a14 = λa14
a13−a11 = λa13

By simplifying and repeating the strategy, we finally obtain

a0 = a1 = · · · = a14 = 0

Thus combining with the initiation constraints, we obtain

a{0,2,3,4,5,6,9,10,11,12,13,14} = 0
a1−a7 = 0
a7 +a8 = 0

This in turn simplifies to yield: a1 = a7 = −a8, while all the other
coefficients are zero. This corresponds to the invariant

s= i( j0− j)

This invariant establishes the partial correctness of the program
shown in example 8.

Generic Elimination Techniques

If the simple elimination by factorization technique fails, we resort
to more general techniques for quantifier elimination. We summa-
rize the viable approaches to this problem. The first genericelimi-
nation technique casts the constraints obtained as a matrixequation

B~a = 0

where~a is a vector of variables fromA, andB is a parametric matrix
whose entries are linear expressions over the parameters. As a rule,
the matrices involved are sparse in terms of the number of non-
zero entries involving the parameters. The resulting problem can be
treated using Gaussian Elimination with a few modifications. There
has been some attention to solving these types of constraints [24, 2].

In contrast to constraints tailored to parametric linear constraints,
more general quantifier elimination techniques may be used.Since
the constraints are non-linear with real-valued variables, we can use
real quantifier elimination tools to solve these constraints. A brief
summary of the related work on this topic follows.

Tarski [25], established the decidability of quantifier elimination
over the theory of reals with multiplication. However, the algo-
rithm suggested by Tarski is non-elementary. This was remedied
by Collins [7] using a technique calledCylindric Algebraic De-
composition. Collins and Hong [8] present an efficient version
of this technique calledPartial Cylindric Algebraic Decomposi-
tion, implemented in the toolQEPCAD. An alternative approach
called the elimination at test point technique is taken by Weispfen-
ning [27, 29]. The method is efficient over low degree polynomials
and has been implemented in the toolREDLOG [13]. Even though
these methods have high time and space complexities, we find that
for most constraints we do not require these generic elimination
techniques.

5 Applications

To show the viability of our approach, we present some application
examples.

Generalized Readers-Writers

Consider the following transition system with variablesr, w, k, k0,
c1, c2, modeling a generalization of the readers-writers problem.

V = {r,w,k,c1,c2,k0}
L = {l0}
T = {τ1,τ2,τ3,τ4}

τ1 :

〈

l0, l0,






w = 0
r ′ = r +1
k′ = k−c1
id(w,c1,c2,k0)






〉



τ2 :

〈

l0, l0,






r = 0
w′ = w+1
k′ = k−c2
id(r,c1,c2,k0)






〉

τ3 :

〈

l0, l0,






w = 0
r ′ = r −1
k′ = k+c1
id(w,c1,c2,k0)






〉

τ4 :

〈

l0, l0,






r = 0
w′ = w−1
k′ = k+c2
id(r,c1,c2,k0)






〉

Θ : (r = 0 ∧ w = 0 ∧ k = k0)
`0 = l0

The number of readers and writers are represented byr andw re-
spectively. Initially we assumek = k0 tokens to be present. Transi-
tion τ1 models a reader obtaining access by checking if no writers
are present, and obtainingc1 tokens. Similarly transitionτ2 models
a writer entering by obtainingc2 tokens. Transitionτ3,τ4 model the
readers and the writers giving up access. The target assertion atl0 is
a generic degree two template. The simplification and factorization
technique was sufficient to eliminate all the quantifiers. The final
invariants obtained are

rc1 +wc2 +k = k0 ∧ rw = 0

The former accounts for the tokens during the run of the program,
while the latter establishes mutual exclusion between the readers
and the writers.

LCM-GCD Algorithm

integer x1,x2,y1,y2,y3,y4 where





y1 = x1∧
y2 = y3 = x2∧
y4 = 0





l0 : while (y1 6= y2) do





l1 : while (y1 > y2) do
la1 : (y1,y4) := (y1−y2,y4 +y3)

l2 : while (y2 > y1) do
la2 : (y2,y3) := (y2−y1,y3 +y4)






{y1 = GCD(x1,x2), y3 +y4 = LCM(x1,x2)}

Figure 3. Simultaneous LCM-GCD algorithm

Figure 3 shows a program that calculates the lcm and gcd of in-
tegersx1 and x2. The integers are modeled as reals for our pur-
pose and the loop conditions at the head of the while loops are
abstracted to non-deterministic choices since they lie outside the
domain of algebraic assertions. This leads to a transition relation
with two loops around the single locationl0. The target invariant
for location l0 is a generic degree two template. The application
of the technique produced constraints that resolved completely on
factorization and simplification. The resulting invariantobtained
at l0 is y1y3 + y2y4 = x1x2. Applying the exit conditiony1 = y2
yields, y1(y3 + y4) = x1x2. Assuming thaty1 = GCD(x1,x2) and
y3 +y4 = LCM(x1,x2), the invariant states that

LCM(x1,x2) ·GCD(x1,x2) = x1x2

Note that correctness cannot be inferred directly sinceLCM and
GCD functions cannot be expressed algebraically.

real y1,y2,y3,y4,x1,x2 where
(

y1 = x1 ∧ y2 = x2
y3 = 1 ∧ y4 = 0

)

l0 : while (y1 ≥ y2) do
la0 : (y2,y3) := (2y2,2y3)

l1 : while (true) do







la1 : if (y1 ≥ y2) then
(y1,y4) := (y1−y2,y4 +y3)

lb1 : if (y3 = 1) then
return (q = y4, r = y1)

lc1 : (y2,y3) := ( y2
2 ,

y3
2 )








Figure 4. Hardware Style Division Algorithm

Hardware Style Division Algorithm

Figure 4 shows a procedure, taken from [19], to divide two numbers
x1 andx2, which we model as reals, in order to apply our technique.
The branch conditions that involve inequalities are modeled as non-
deterministic choices. The cutpoints used arel0 andl1. The target
invariant at locationsl0 and l1 were degree two templates, yield-
ing a total of 56 template variables. Expressing the programas a
transition system, we obtain four transitions, one self-loop around
l0, two loops aroundl1 and one transition froml0 to l1. The con-
straints generated were simplified using factorization andlineariza-
tions. All but two of the cases in the result were linear. The remain-
ing two cases contained simple two variable quantifier elimination
instances that were resolved by hand. The following invariants were
obtained atl0 andl1:

η(l0) : y1 = x1 η(l1) : true
η(l0) : y4 = 0 η(l1) : true
η(l0) : ϕ1 ≡ y2−y3x2 = 0 η(l1) : ϕ1 ≡ y2−y3x2 = 0

On strengthening the transition relations with the invariants above,
and repeating the process, we obtained additional invariant ϕ2 :
y1y3 +y2y4−y3x1 = 0 at l0, l1.

The loop exits wheny3 = 1, q = y4, r = y1. Substituting this on the
invariants obtained atl1, we obtain thatϕ2 : x1 = r +qy2 andy2 =
x2. Therefore, we can inferx1 = r +x2q at the loop exit. This shows
one of the specifications of the division algorithm, the other being
y1 < x1, which lies outside the domain of algebraic invariants. Note
that some additional invariants are required to justify thefact that
the division inlc1 is applied to integers that are always even. These
invariants are, however, not expressible in our assertion language.

6 Conclusion

In this paper, we presented a reduction from the algebraic invariant
generation problem for algebraic transition systems to a paramet-
ric linear constraint solving problem, so that any solutionto the
constraints corresponds to an inductive assertion. The technique
has many advantages; first of all, the degree of the desired invari-
ant does not affect the constraint problem. Secondly, the constraint
solving problem can almost always be handled by simple elimina-
tion techniques. With a good constraint handling strategy,we are
confident that the technique will scale to larger examples. On the
other hand, a drawback of the technique is its lack of completeness
arising from the restrictions placed on the consecution condition.
While many tried and tested methods in the field of static analy-
sis and program verification do not insist on completeness, the lack
of completeness can sometimes cause these methods to miss “ob-
vious” invariants for subtle reasons, as has been observed in tradi-



tional invariant generation technique using widening [9].We are
working on identifying useful classes of systems where restricted
notions of consecution suffice. Currently inequalities arehandled
as non-deterministic choices. We are developing modifications of
the technique that are able to reason with loops involving inequali-
ties.

The technique also requires that the degree bounds on the target as-
sertion be known a priori. This is a drawback for some applications
and effective strategies on selecting the degree bounds of the invari-
ant need to be studied. We are also working on comparisons with
related approaches like [22] that may yield techniques to eliminate
some of these drawbacks.

Acknowledgements:We would like to thank the anonymous review-
ers for their detailed comments on an earlier version of thispaper.
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8 Appendix

In this appendix, we shall prove a few useful theorems mentioned
in other results along with the confluence of the Gröbner basis re-
duction on templates. The key idea is to reduce any failure ofcon-
fluence on templates to a failure of confluence on the instantiation
of the template under an appropriate environment. Two templates



are calledidentical if the coefficient corresponding to a termt in
one template is the same as the coefficient corresponding tot in the
other.

Claim 1 Let f, f ′ be templates andα be any environment.

1. α( f +g) = α( f )+α(g),

2. c·α( f ) = α(c· f ), for any c∈ R.

Theorem 8 (Consistency) Let f
p

−→ f ′ for templates f, f ′ over
template variables in A. Then, for an arbitrary A-environment

α, α( f )
p

−→ α( f ′) or α( f ) = α( f ′). Conversely, if for someα,

α( f )
p

−→ h then there is a f′ such that h= α( f ′) and f
p

−→ f ′.

PROOF. We have thatf ′ = f − c·t
LT(p) p for some termc · t in f

wherein c(a0, . . . ,am) is a linear expression. Ifα(c) = 0 then
α( f ) = α( f ′), or else, if α(c) 6= 0 then we have thatα( f ′) =

α( f )− α(c·t)
LT(p)

p. In this case,α( f )
p

−→ α( f ′).

On the other hand, letα( f )
p

−→ h, for some templatef and polyno-
mial p. Let α(c) · t be the term inα( f ) that LT(p) divides. Hence,
the result of the reduction is,

h = α( f )−
α(c)t
LT(p)

p = α( f −
ct

LT(p)
p)

Therefore, settingf ′ = f − ct
LT(p) p, we haveα( f ′) = h and f

p
−→

f ′.

Theorem 9 (Template Identity) Two templates f1, f2 over tem-
plate variables A are not identical iff there is an environment α
such thatα( f1) 6≡ α( f2).

PROOF. Sincef1 6≡ f2, we have thatf1− f2 is a non-zero template.
Let t be a term inf1− f2, with a non-zero coefficient expressionc.
Let α be an environment s.t.α(c) 6= 0. Henceα( f1− f2) 6≡ 0. Thus
we have thatα( f1) 6≡ α( f2).

The other direction is immediate from the definition of identical
templates.

Theorem 10 (Normal Form Theorem) A template f is a normal

form under
G

−→ iff for each environmentα, α( f ) is a normal form

under
G

−→.

PROOF. To prove the forward implication, assume thatf is a nor-

mal form under
G

−→. However assume thatα( f )
G

−→ h for someα.
By the reverse direction of the consistency theorem (Theorem 8),

we have that there existsf ′ such thatf
G

−→ f ′ andα( f ′) = h. This
contradicts our assumption thatf is in normal form.

To prove the reverse implication, let us assume thatf is not in nor-

mal form. Then there is a reductionf
G

−→ f ′. Let t be the term in
f that is replaced by the reduction andc be its non-zero coefficient.
By Theorem 8, we have that for each environmentα, α( f ) = α( f ′)

or α( f )
G

−→ α( f ′). We find an environmentα such thatα(c) 6= 0.

For such an environmentα( f )
G

−→ α( f ′), sinceα(c) 6= 0. Thus

α( f ) is not in normal form w.r.t.
G

−→.

Theorem 11 (Confluence of Templates)Let G be a Gröbner ba-

sis and f be a template. Let f
G
� f1 and f

G
� f2, where f1, f2 are

normal forms. We have that f1 ≡ f2 and hence
G

−→ is confluent for
templates.

PROOF. Assuming otherwise, i.e.,f1 6≡ f2, we have by Theorem 9
thatα( f1) 6≡ α( f2) for someα. Furthermore, Theorem 10 implies
thatα( f1) andα( f2) are in normal forms. By the forward direction

of Theorem 8, we have thatα( f )
G
� α( fi), i = 1,2. Hence, by the

confluence of the Gröbner basis reduction over real polynomials,
we have thatα( f1) = α( f2), thus leading to a contradiction.

Theorem 12 (Normal Forms for Templates) Let f be a template
over variables A. Let G be the Gröbner basis of I= (G). Then, for
any A-environmentα,

α(NFG( f )) = NFG(α( f ))

PROOF. The proof is by induction over the length of the minimal
sequence of reductions fromf to f ′ = NF( f ). For zero length
derivations,f = NF( f ), we have thatα( f ) is a normal form. Hence,
α(NF( f )) = α( f ) = NF(α( f )).

Assuming that the theorem holds for templates which have a length

n or less derivation to their normal forms, letf
G

−→ f1
G
�n NF( f ).

Hence, by Theorem 8, we have thatα( f ) = α( f1) or α( f )
G

−→
α( f1). In either caseNF(α( f1)) = NF(α( f )). Applying the induc-
tion to f1, we have thatα(NF( f1)) = NF(α( f1)). Hence

α(NF( f )) = α(NF( f1)) = NF(α( f1)) = NF(α( f ))

Theorem 13 (Template Membership) Let f be a template and G
be a Gröbner basis, such that I= ((G)). Let f′ = NFG( f ). For each
environmentα, α( f ) ∈ I iff α( f ′) is identically zero.

PROOF. Given f ,G such thatf ′ = NFG( f ), for any environment
α, we have thatα( f ′) = α(NF( f )) = NF(α( f )). Hence, ifα( f ′) is
identically zero, thenNF(α( f )) is identically zero, and therefore,
α( f ) ∈ (G).

Let α( f ) ∈ (G), henceNFG(α( f )) is identically zero. However,
α( f ′) = α(NF( f )) = NF(α( f )) ≡ 0, and hence,α(NF( f )) = α( f ′)
is identically zero.


