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Abstract

The Apollonius Circle Problem dates to Greek antiquity, circa 250b.c. Given three circles in the plane, find or
construct a circle tangent to all three. This was generalized by replacing some circles with straight lines. Viéte [Canon
mathematicus seu Ad triangula cum adpendicibus, Lutetiae: Apud Ioannem Mettayer, Mathematicis typographum
regium, sub signo D. Ioannis, regione Collegij Laodicensis, p. 1579] solved the problem using circle inversions
before 1580. Two generations later, Descartes considered a special case in which all four circles are mutually tangent
to each other (i.e. pairwise). In this paper, we consider the general case in two and three dimensions, and further
generalizations with ellipsoids and lines. We believe, we are the first to explicitly find the polynomial equations for
the parameters of the solution sphere in these generalized cases. Doing so is quite a challenge for the best computer
algebra systems. We report later some comparative times using various computer algebra systems on some of these
problems. We also consider conic tangency equations for general conics in two and three dimensions.

Apollonius problems are of interest in their own right. However, the motivation for this work came originally from
medical research, specifically the problem of computing the medial axis of the space around a molecule: obtaining
the position and radius of a sphere which touches four known spheres or ellipsoids.
© 2002 IMACS. Published by Elsevier Science B.V. All rights reserved.
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1. Introduction

Perhaps the best introduction to the Apollonius Circle Problem is in Courant and Robbins ([7], pp. 125
and 161). They describe the circle inversion technique, among other approaches to the general and special
problems. Many people worked on the Apollonius Circle questions in the 20th century, including Boyd
[3], Coxeter[6], Kasner and Supnick[11], and Pedoe[15]. Frederick Soddy, a Nobel Prize winner in
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Fig. 1. Special case, two dimensions, where all circles are mutually tangent; solution circle: innermost.

chemistry in 1921, expressed a solution to the special case as a theorem in the form of a poem, “The Kiss
Precise,” which was published in the journalNature[18]. Soddy proved that for four mutually tangent
circles the curvatures are related by
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(which was known to Descartes) and similarly forn + 2 mutually tangentn-spheres in (n + 1)-space:
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Recently, Lagarias et al.[13] have written a paper describing packings of such circles/spheres in hyper-
bolic n-space and other geometries. Roanes-Lozano and Roanes-Macias[17] have a different approach
to some of the questions we ask here (seeFigs. 1 and 2).

Fig. 2. General case, two dimensions, solution circle is tangent to the original three, which are arbitrarily placed. In general there
are eight solutions, based on each of the originals being inside or outside the solution.
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Fig. 3. Left: medial axis (lines) for a very simple two-dimensional molecule (gray atoms) with one medial disc shown (dashed
circle). Right: the diameter of the enclosing (dashed) circle around this molecule quickly confirms that it is too big to fit into the
pocket in the molecule on the left.

2. Biochemical motivation

Apollonius problems are of interest in their own right. However, the motivation for this work came
originally from medical research, specifically the problem of computing the medial axis of the space
around a molecule: obtaining the position and radius of a sphere which touches four known spheres or
ellipsoids (Fig. 3).

All life forms depend on interactions between molecules. X-ray crystallography and nuclear magnetic
resonance (NMR) yield the three-dimensional structure of many large and important proteins. The coor-
dinates of atoms within these molecules are now available from public databases and can be visualized
on computer displays.

Within these molecules there are receptor sites, where a correctly shaped and correctly charged hormone
or drug (often referred to as a “ligand”) can attach, distorting the overall shape of the receptor molecule
to cause some important action within the cell. This is similar to the concept of the correct key fitting
into a lock. However, in biochemistry, the “lock” often changes shape slightly to accommodate the key.
Moreover, there are often several slightly differently shaped keys that fit the lock, some binding to the
receptor strongly and others binding weakly.

For instance, the shape of the blood’s haemoglobin molecule means an oxygen molecule binds weakly
to it, so the oxygen can be released where needed, whereas carbon monoxide, being a slightly different
shape, binds very strongly to the same site on haemoglobin. This can be fatal.

2.1. Automated docking algorithms

Identifying which naturally occurring ligand molecules fit into which receptor is a very important task
in biochemistry and pharmacology. Moreover, inrational drug designthe aim is often to design drugs
which better fit the receptor than the natural hormone, so blocking the action of the natural hormone. The
design of the ACE inhibitor used to reduce blood pressure is a good example of this.

The use of computer algorithms to select a potential drug from thousands of known ligands for a particu-
lar receptor is receiving much research interest by several groups. Some aims for such an algorithm include
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• helping to identify potential binding sites in proteins,
• estimating if a ligand can reach the binding site,
• predicting the ligand’s most suitable orientation in the site,
• determining how good a fit the ligand would be, compared to other known ligands.

Software such as DOCK 4.0[8] is being used by pharmaceutical companies. For larger molecules,
methods have been investigated such as Ackermann et al.[1] which use a numerical best-fit estimate.

2.2. The medial axis

We present here another approach, the “medial axis”. The medial axis is defined as the locus of the
center of a maximal disc (in two-dimensional), or sphere (in three-dimensional) as it rolls around the
interior or exterior of an object. It is effectively a skeleton of the original object, and has been found helpful
in computer aided engineering for meshing, simplifying and dimensionally reducing components.

In the medial axis of a molecule the medial edges or surfaces are equidistant from the atoms which the
sphere touches, and the radius of the medial sphere varies to be maximal (Fig. 3). This is different from
the Conelly surfaces, where a probe sphere of constant size is used. As the images below demonstrate, the
medial axis approach leads to the Apollonius type questions of spheres touching other spheres, ellipsoids,
or lines.

3. Mathematical approach

We are interested in the general Apollonius problem, a solution circle (or sphere) to be tangent to the
original ones, which are arbitrarily placed. We want to “know” the solution symbolically and algebraically.
That is, for the radius and for each coordinate of the center, we want an equation expressing it in terms of
the symbolic parameters of the three (four) given circles, ellipses, or lines (spheres, ellipsoids). Ideally,
the equation will be of low degree so that if numerical values are plugged in for the symbolic parameters
of the given shapes, a relatively simple one variable equation will result. We will see later that in some
cases we can attain this ideal, but in others we compromise by assuming that the lines or ellipsoids are in
certain important but special orientations.

We begin with a system of polynomial equations

f1(x, y, z, a, b, . . . ) = 0

f2(x, y, z, a, b, . . . ) = 0

f3(x, y, z, a, b, . . . ) = 0

. . .

expressing the intersection and tangency conditions. Suppose thatx, y, andz are the desired variables
of the solution circle (sphere) and thata, b, . . . are the parameters of the given figures. For each ofx,
y, z in turn we want to derive from the system{fi} a single equation, theresultant, containing only it
and the parametersa, b, . . . To accomplish this elimination, we use either Gröbner Bases or methods
from the theory of resultants. Gröbner Bases are fairly well known (see for instance[2]), but here is
a brief description: from a set of polynomials, for example, the{fi} above, we generate anideal by
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taking all sums of products of other polynomials with the elements in the set. Then analagous to the
basis of a vector space, a certain set of polynomials that are “better” generators than the original{fi}
can be produced. If this Gröbner Basis is chosen carefully, it will contain the desired resultant. Resultant
methods are less well known, especially the apparent method of choice, the Bezout–Cayley–Dixon–KSY
method[4,12,14], which we describe in subsequent sections.

We shall compare solutions done with computer algebra systems Maple 6, Mathematica, CoCoA 4.0
[5], and Fermat 2.6.4[9].

4. The Cayley–Dixon–Bezout–KSY resultant method

Here is a brief description. More details are in[12].
To decide if there is a common root ofn polynomial equations inn − 1 variablesx, y, z, . . . andk

parametersa, b, . . .

f1(x, y, z, . . . , a, b, . . . ) = 0

f2(x, y, z, . . . , a, b, . . . ) = 0

f3(x, y, z, . . . , a, b, . . . ) = 0

. . .

• Create the Cayley–Dixon matrix,n × n, by substituting some new variablest1, . . . , tn−1 into the
equations in a certain way.

• Computecd = determinant of the Cayley–Dixon matrix (a function of the new variables, variables,
and parameters).

• Form a second matrix by extracting the coefficients ofcd relative to the variables and new variables.
This matrix can be large; its size depends on the degrees of the polynomialsfi .

• Ideally, let dx = the determinant of the second matrix. If the system has a common solution, then
dx = 0. dx involves only the parameters.

• Problem: the second matrix need not be square, or might have det= 0 identically. Then the method
appears to fail.

• However, we may continue[12,4]: find anymaximal rank submatrix; letksybe its determinant. Exis-
tence of a common solution impliesksy= 0.

• ksy = 0 is a sufficient equation, but one must be aware ofspurious factors, i.e. the true resultant is
usually a small factor ofksy. Indeed, finding the small factor without actually computingksyis very
desirable.

5. Two-dimensional Apollonius results

Problem 1. Three circles given, find a fourth tangent to all three.

First step: Given one circle A with center(ax, ay) and radiusar find equation(s) that a second “solution”
circle S,(sx, sy, sr) must satisfy to be tangent. We could begin by letting(x, y) be the point of intersection.
Then(x, y) is on the first circle iff(x−ax)2+(y−ay)2 = ar2, and on the second iff(x−sx)2+(y−sy)2 =
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Fig. 4. Two tangent circles.

sr2 (seeFig. 4). Using derivatives, tangency gives a third equation, so we may eliminatex, y. Thisfirst
stepgives the equation that the six parameters must satisfy for tangency.

However, the desiredfirst stepequation is geometrically obvious without going through the process
in the previous paragraph: fromFig. 4, the point of tangency is on the line connecting the centers. Each
center is on the circle with the other’s center and the sum of the two radii. Thus, the equation we want,
is obviously

(sx− ax)2 + (sy− ay)2 = (sr + ar)2

So, given three circles A, B, and C, the solution circle parameterssx, sy, srmust satisfy three equations:

(sx− ax)2 + (sy− ay)2 = (sr + ar)2

(sx− bx)2 + (sy− by)2 = (sr + br)2

(sx− cx)2 + (sy− cy)2 = (sr + cr)2

These are the equations for the case of interest to us, when each of the original circles is outside the
solution circle. Other possibilities involve changing some pluses to minuses above.

Second step(the solution): There are several ways to proceed. As pointed out in[7], one may expand
the previous equations and subtract to eliminate square terms, then solve for some variables and substitute
back. Then too, one may simplify the equations by assuming that one of the circles, say A, is centered
at the origin, as this is simply a translation, and furthermore thatar = 1, as this is just a change of
scale. However, for consistency and comparison of later more difficult cases, let us proceed with the fully
symbolic, Dixon–KSY method without substituting any constants. We used the computer algebra system,
Fermat 2.6.4[9] running on a Macintosh Blue and White G3 at 400 MHz. Think of the above as three
equations in the “variables”sxandsr and the “parameters”syplus the ninea, b, c parameters. Eliminate
sx, sr and obtain the resultant insy, i.e. the equationsymust satisfy in terms of the original data. It takes
about 3MB of RAM, 0.6 s. The answer, an irreducible polynomial, has 593 terms, is degree two insy.
Similar results obtain forsxandsr.

Problem 2. Three ellipses given, find a circle tangent to all three.
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Fig. 5. All eight solution circles (black and green) tangent to three given ellipses (red).

Fig. 8. Six solution conics tangent to five given ellipses.
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Again, the question is of interest in its own right mathematically. Biochemically, it may be useful to model
atoms by ellipses instead of circles. We assume the ellipses are all parallel to the axes (seeSection 7.1).

Write the equation of ellipse A and circle S, then the tangency equations:

a2
2(x − ax)2 + a2

1(y − ay)2 = a2
1a

2
2

(x − sx)2 + (y − sy)2 = sr2

a2
1(y − ay)(x − sx) − a2

2(x − ax)(y − sy) = 0

First step: Just as inProblem 1, we must eliminatex, y from the above. But it is not so easy now! The
point of tangency need not lie on the line connecting the centers.

Using again Fermat/Dixon/Mac G3, the elimination is completed using 2.1 s and about 3MB RAM.
The irreducible answer has 696 terms in the parametersax, ay, a1, a2, sx, sy, sr. Recall that this first step
was trivial in the three circles case and fit easily on one line.

Second step: For a fully symbolic solution, we would now produce three such 696 term polynomials,
one for each of three given ellipses A, B, C. Then we would get an equation for, say,sr by eliminatingsx
andsy. However, already in the Dixon–KSY algorithm at the early step of computingcd, the determinant
of the Cayley–Dixon matrix, Fermat exhausted all 700MB of RAM on the machine. Therefore, instead
of a fully symbolic solution, we made up numerical examples of three ellipses, with all parameters
integer. Each of the three equations now had only the three variablessr, sx, sy, between 36 and 92 terms.
We applied Dixon–KSY to get the equation forsr. The second matrix was 88× 88, with each entry a
polynomial over the integers insr only. The rank was 72. The determinant computation (by one method)
took 92 min, and the final answer had 169 terms.

However, more realistic examples will probably have parameters that are decimals or “floats”, not
integers, with some error tolerance. So, alternatively, we forgoed the Dixon–KSY method in the previous
paragraph. We took the three equations insr, sx, sy with 36–92 terms and solved numerically with a
multivariate Newton’s method. This converges in a few seconds. One example is shown inFig. 5, with
all eight solution circles.

6. Three-dimensional Apollonius results

Problem 3. Four spheres given, find a sphere tangent to all.

Analogous to the circles in two-dimensional space:

(sx− ax)2 + (sy− ay)2 + (sz− az)2 = (sr + ar)2

(sx− bx)2 + (sy− by)2 + (sz− bz)2 = (sr + br)2

(sx− cx)2 + (sy− cy)2 + (sz− cz)2 = (sr + cr)2

(sx− dx)2 + (sy− dy)2 + (sz− dz)2 = (sr + dr)2

By elimination, get an equation forsr in terms of thea, b, c, d variables, etc. The answer has 18,366
terms and is quadratic insr.
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Several people used their favorite CAS to work on this problem. Cejtin[10] used a Gröbner Basis
library written in Scheme. He used an elimination-ordering. To get the equation forsr took just over
1 h and about 50MB of RAM. Doing it for the special case whereax, ay andaz are all= 0 took 46 s
and used a bit under 8MB of RAM. Solving forsx took 1.75 h CPU time and used 60MB RAM. In the
ax = ay = az= 0 special case it took 300 s CPU time and used under 13MB of RAM. All of these times
are on an 400 MHz Pentium II machine.

Coauthor Stephen Bridgett ran Mathematica with the simplified version of the equations (i.e.ax =
ay = az = 0) with theSolvecommand. Computingsy took 4.6 h and 41MB RAM. It could not do the
full problem.

Israel[16] ran Maple 6with (Gröebner) on a Sun SPARC Solaris. Maple gave up after 42 min, using
647MB RAM. On the simplified problemax = ay = az= 0 it completed in 14 min using 574MB RAM.

Coauthor Lewis tried the full problem with CoCoA 4.0 on the same Macintosh as above. Using Gröbner
bases and theElim command, the full problem was solved forsr in 95 min and 29MB RAM.

Coauthor Lewis tried the full problem with Fermat/Dixon/Mac G3. Computingsr took 1.7 s and
5MB of RAM. Parameterssx, sy, andsz took essentially the same amounts of time and space. This
is with Fermat 2.6.4, released in January 2002. These times are approximately a 6-fold improvement
over the earlier version of Fermat, and a 10-fold improvement in space. Note that even the times
from an earlier version of Fermat (10 s) are two orders of magnitude faster than any competitor
above.

Problem 4. Four ellipsoids given, find a sphere tangent to all.

Similar to two-dimensional case of three ellipses. Define the ellipsoid by semi-axesa1, a2, a3, center
(ax, ay, az). (So, the ellipsoid is parallel to the axes. But seeSection 7.1.) Let (x, y, z) be the point of
common tangency with a spheresx, sy, sz, sr. As before, the first step is to get two equations saying
(x, y, z) is on the ellipsoid and sphere, and two more from partial derivatives. Try to eliminate(x, y, z).
As before, we could consider first plugging inax = ay = az= 0 (the reduced case).

Bridgett and Cejtin both reported complete failure after many hours, even with the reduced case.
Fermat/Dixon solves the reduced case rather easily, 130 s using 113MB of RAM. As a challenge, Lewis
had Fermat/Dixon solve the full case. It took about 400MB of RAM and 438 min. Determinantcd had
1.8 million terms, and the final answer 80,372 terms.

Recall that this is all just step one.
Next, as with the ellipse case in two dimensions, we made up an example and ran a multivariate

Newton’s method. This finished rather easily and yields, for example,Fig. 6.

Problem 5. Four lines given, find a sphere tangent to all.

A line b is defined by a point on the line(bx, by, bz) and a vector (through the origin) parallel to the
line (bxn, byn, bzn) (seeFig. 7).

First step: Four equations that a point(x, y, z) must satisfy if it lies on the spheresx, sy, sz, r and the
line b and is the point of tangency of the line to the sphere:

(x − sx)2 + (y − sy)2 + (z − sz)2 − r2 = 0

bxn(x − sx) + byn(y − sy) + bzn(z − sz) = 0



110 R.H. Lewis, S. Bridgett / Mathematics and Computers in Simulation 61 (2003) 101–114

Fig. 6. Solution sphere tangent to four given ellipsoids.

Fig. 7. Parameterization of line tangent to sphere in three-dimensional space.
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byn(z − bz) − bzn(y − by) = 0

bxn(z − bz) − bzn(x − bx) = 0

The first equation says(x, y, z) is on the sphere. The second equation says that the vector(x − sx, y −
sy, z − sz) is perpendicular to the lineb. The third and fourth come from the fact that the cross-product
of the vectors(x − bx, y − by, z − bz) and(bxn, byn, bzn) is 0.

We applied Dixon–KSY to that system, easily eliminating(x, y, z) and got the resultantbres:

(−bzn2 − byn2 − bxn2)r2 + (byn2 + bxn2)sz2 + (((−2byn)bzn)sy+ ((−2bxn)bzn)sx

+ ((2by)byn+ (2bx)bxn)bzn+ (−2bz)byn2 + (−2bz)bxn2)sz+ (bzn2 + bxn2)sy2

+ (((−2bxn)byn)sx+ (−2by)bzn2 + ((2bz)byn)bzn+ ((2bx)bxn)byn+ (−2by)bxn2)sy

+ (bzn2 + byn2)sx2 + ((−2bx)bzn2 + ((2bz)bxn)bzn+ (−2bx)byn2 + ((2by)bxn)byn)sx

+ (by2 + bx2)bzn2 + (((−2by)bz)byn+ ((−2bx)bz)bxn)bzn+ (bz2 + bx2)byn2

+ (((−2bx)by)bxn)byn+ (bz2 + by2)bxn2

Second step: Now we need four linesa, b, c, d each with an equation like the above,ares, bres, cres,
dres. For a full symbolic solution, we want four resultants, in which one of each variablesx, sy, sz, r is
retained, along with all the parametersbxn, byn, bzn, bx, by, . . . , ax, ay, axn, . . . , cx, . . . Theoretically,
we could feed all four equations into the Dixon–KSY method to get the four equations one by one. This
seemed to be hopeless, given the 750MB of RAM available. We added the reasonable assumption that
the first linea is thex-axis,ax = ay = az= 0, axn= 1, ayn= 0, azn= 0. But this was still too large a
problem. We therefore considered in addition several special cases of actual biochemical interest.

Case 1. bx = by = 0, cz= dz= 0, bzn= 0. Lineb passes through a point on thez-axis, is in a plane
parallel to thexy-plane. Assume also linec and lined pass throughxy-plane. Fermat/Dixon completed
it. The answer forsxhas 394,477 terms and occupies a text file of 9.5MB.

Case 2. Three lines touch at a point, soax = ay = az = 0, bx = by = bz = 0, cx = cy = cz = 0.
The fourth line is oriented parallel to thex-axis but could be located anywhere, sodx = 0, dzn= dyn=
0, dxn= 1.

The second matrix in the Dixon method was 5× 5. The determinant took 140 s to compute and had
607,704 terms. It took 20 mins to compute its content, which had six terms. Dividing the content yields
the answer forsy. In total this took 168MB RAM. The answer forsyhas 282,741 terms and occupies a
text file of 5.8MB.

Problem 6. Four planes given, find a sphere tangent to all.

This is solvable by elementary geometry or vector algebra.

7. General conic tangency problems

Although not necessarily arising from biochemical considerations, it is reasonable at this point to try
to solve the equations resulting from tangency of general conics.
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7.1. Tangency of general conics in two dimensions

Consider two conics calledG andS. With symbolic parameters their equations are

agx2 + bg xy+ cgy2 + dgx + egy + fg = 0,

asx2 + bs xy+ csy2 + dsx + esy + fs = 0

Requiring that they be tangent adds the equation

(2agx + dg+ bgy)(bsx + 2csy + es) − (2asx + ds+ bsy)(bgx + 2cgy + eg) = 0

As before, the first step is to eliminatex andy from these three equations, keeping all symbolic coefficients.
Using the same Macintosh computer as before, Lewis found that Maple 6 was unable to get an answer in
10 h, that CoCoA 4.0 computed the answer (3210 terms) in about 5 min (Gröbner Bases,Elim command),
and Fermat/Dixon got the answer in 11 s. Both systems used under 10MB of RAM.

Second step: Continuing symbolically when each equation has 3210 terms seems hopeless, so we will
try a numerical example.

The web pagehttp://krum.rz.uni-mannheim.de/cabench/ca-challenge.htmlcontains several computer
algebra challenge problems, the second of which is exactly of this type: to find a conic that touches the
five given conics:

11689x2 − 9600xy+ 2169y2 − 2204198x + 908304y + 103910536= 0

11281x2 − 10800xy+ 4036y2 − 1981082x + 1110832y + 91469653= 0

221x2 − 264xy+ 144y2 + 11368x − 1056y + 269456= 0

17425x2 − 7560xy+ 17056y2 − 1635370x − 554456y + 50763289= 0

58825x2 − 6160xy+ 41764y2 + 4470090x − 1814952y + 98454609= 0

Proceeding as in earlier problems, we ran a multivariate Newton’s method and found six solutions in
about half an hour real time. All the conics are ellipses. The solutions are pictured inFig. 8.

7.2. Tangency of general conics in three dimensions

The equation of the general conic in three dimensions is

a1x
2 + a2y

2 + a3z
2 + a4xy+ a5xz+ a6yz+ a7x + a8y + a9z + a10 = 0.

Proceeding as in two dimensions, for step one we would take two such equations, derive two more
equations of tangency using partial derivatives, and try to eliminatex, y, z from the four equations. This
seems to be beyond the limitations of current algorithms and hardware, even if one of the equations is
rotated to eliminate the three cross-terms.

We want some reasonable simplifying assumptions. Let us assume first that one of the conics is a sphere
centered at the origin by translation. The four equations are

a1x
2 + a2y

2 + a3z
2 + a4xy+ a5xz+ a6yz+ a7x + a8y + a9z + a10 = 0

x2 + y2 + z2 + ds= 0

http://krum.rz.uni-mannheim.de/cabench/ca-challenge.html
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x(2a3z + a5x + a6y + a9) − z(2a1x + a4y + a5z + a7) = 0

y(2a3z + a5x + a6y + a9) − z(2a2y + a4x + a6z + a8) = 0

We then rotate the other conic to eliminate the cross-termsa4, a5, anda6. Fermat/Dixon solves this
problem in 1.3 min; the answer has 2525 terms. CoCoA 4.0 was unable to get an answer in 10 h. Next,
since rotations involve square roots and are somewhat problematical, let us try to put back the cross-terms.
With a4 present anda5 = a6 = 0, Fermat/Dixon finds the solution (6508 terms) in 9.2 min using 24MB
of RAM. With a4 anda5 present anda6 = 0, we make the further reasonable assumption thata10 	= 0
(since the sphere contains the origin), so we divide through and assume thata10 = 1. Then Fermat/Dixon
finds the solution (14,373 terms) in 97 min using 58MB of RAM. Leavinga10 as a symbolic parameter,
Fermat/Dixon finds the solution (14,373 terms) in 345 min using 68MB of RAM. The degree of the
resultant in each parameter is either 10 or 6 and the largest coefficient is 10,752.

We did not attempt to go on to step two in this case with numerical examples.

8. Summary

We were able to find equations for two- and three-dimensional problems of the Apollonius type, i.e.
finding circles or spheres tangent to some given circles, ellipses, spheres, ellipsoids, or lines. We found that
the Bezout–Dixon–KSY resultant is definitely the method of choice. For several problems our solutions
are fully symbolic, for others we had to add simplifying assumptions to get an answer within RAM
constraints. These problems arise from the biochemistry and pharmacology of molecules fitting against
molecules.

We also explored the tangency problem of general conics in two and three dimensions. The problem
in two dimensions is solved in complete generality, but in three dimensions we must add simplifying
assumptions. Our large polynomial solutions may be downloaded from Robert H. Lewis by writing to
the given e-mail address.
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