The LogicGuard
Stream Monitor Specification Language™

Tutorial and Reference Manual
(Version 1.04)

Wolfgang Schreiner, Temur Kutsia, David Cerna
Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria
Wolfgang.Schreiner @risc.jku.at, Temur.Kutsia@risc.jku.at
David.Cerna@risc.jku.at

Michael Krieger, Bashar Ahmad
RISC Software GmbH, Hagenberg, Austria
Michael.Krieger @risc-software.at, Bashar. Ahmad @risc-software.at

Helmut Otto, Martin Rummerstorfer, Thomas Gossl
SecureGUARD GmbH, Linz, Austria
hotto @secureguard.at, mrummerstorfer @secureguard.at
tgoessl @secureguard.at

January 16, 2017

Abstract

This report describes the design and use of the LogicGuard language for specifying
stream monitors. These monitors observe streams of values (e.g., messages flowing through
anetwork connection) and check whether the streams fulfill desired safety properties. These
properties are described on a very high level of abstraction in a purely declarative way by no-
tions that are derived from classical predicate logic, in particular by logic formulas that are
quantified over stream positions. To raise the level of abstraction, auxiliary internal streams
can be specified whose values are constructed from the values on the external streams by
notions that are thar are similar to classical set builders. From the abstract specifications
automatically executable monitors are generated which surveil the streams in real time and
trigger warnings if violations of the specified properties are observed.

*Supported by the Austrian Research Promotion Agency (FFG) in the frame of the BRIDGE program by the projects
832207 “LogicGuard” and 846003 “LogicGuard II”.

mailto:Wolfgang.Schreiner@risc.jku.at
mailto:Temur.Kutsia@risc.jku.at
mailto:David.Cerna@risc.jku.at
mailto:Michael.Krieger@risc-software.at
mailto:Bashar.Ahmad@risc-software.at
mailto:hotto@secureguard.at
mailto:mrummerstorfer@secureguard.at
mailto:tgoessl@secureguard.at

Contents 2
Contents
Introduction 4
A Quick Start 5
The Execution Model 10
Some Sample Specifications 16
Future Work 21
Running the System 23
Lexical and Syntactic Analysis 27
B.1 IncludeFiles. e 27
B2 Comments e e e e 28
B3 Tokens e e 28
Type System 28
Specifications 29
Declarations 29
E.1 TypeDeclarations e 30
E.2 Logical Declarations e 31
E.3 Value Declarations e 31
E.4 Position Declarations e 32
E.5 Stream Declarations e 33
E.6 Monitor Declarations 34
Formulas 35
F1 AtomicFormulas 35
F2 Propositional Formulas 36
F3 Conditional Formulas 37
F.4 Quantified Formulas 38
E5 Formulas with Local Bindings 38
Terms 39
G.1 BasicTerms e 39
G.2 Conditional Terms e 40
G.3 Quantified Position Terms 41
G.4 Quantified Value Terms 42
G.5 Quantified Stream Termso 43
G.6 Terms with Local Bindings 44

Contents 3
H Monitors 45
I Evaluation Modes 46
J Binders 46
K Parameters 47
L Quantified Variables 49
M ANTLR 4 Grammar 52

1 Introduction 4

1 Introduction

The goal of the LogicGuard project [1] is the development of a language that allows

e to specify properties of (potentially infinite) streams of values on a very high level of
abstraction, and

e to generate executable monitors that observe the streams at real time for violations of these
properties.

Our target are streams of messages that flow through network connections and are to be moni-
tored for the violation of security properties.

To achieve the high level of abstraction, the specification language is purely declarative, i.e.,
it describes properties, not programs (even not in the form of e.g. recursive function definitions,
which also have an operational flavor). Furthermore, we rely on formalisms that are widely
known and well understood, not on unfamiliar special-purpose concepts. More precisely, the
LogicGuard specification language (of which earlier forms are described in [2, 3]) is based
on the classical notions of first-order predicate logic and set theory. Logical formulas that are
quantified over stream positions describe properties of streams by relating the values of messages
at different stream positions with each other. These properties are not necessarily expressed
in terms of the original low-level streams: one may apply stream builders that are similar to
classical set builders to raise the level of abstraction by constructing new streams whose values
e.g. comprise multiple values of the original stream. By these concepts complex properties can
be specified in a very elegant way.

The current version of the LogicGuard system indeed implements (on top of the .NET frame-
work and the programming languages F# and C#) the full language as described in this report
(including the “history pruning” optimization that was described in [5] for an earlier version of
the language). The current state of the system is always visible on the project’s home page

http://www.risc.jku.at/projects/LogicGuard?2

In a nutshell, our goals have been achieved: with the LogicGuard language and system we are
able to monitor live network traffic for the violations of properties specified on a very high level
of abstraction.

The remainder of this document is structured in two parts, a tutorial (Sections 2-4) and a
reference manual (Appendices A—M). In Section 2 we give by a very simple example a quick
introduction into the practical use of the language. In Section 3, we describe some principles
underlying the design and implementation of the language as a basis for understanding the op-
erational behavior of runtime monitors created from specifications. Section 4 demonstrates by
more comprehensive examples some more advanced features of the language. In Section 5 we
describe those aspects of the language and the implementation that still need further elaboration.

In Appendix A, we describe how to run the LogicGuard system. In Appendix B, the lexi-
cal syntax of the language is presented while in Appendix C its static type system is sketched.
Appendices D-L describe the context free grammar of the various phrases of the language and
explain their informal semantics and pragmatic use. Finally Appendix M documents the lan-
guage’s formal grammar in the notation of the ANTLR 4 parser generator [4] that was used to
produce the lexical and syntactic analyzer of the system.

http://www.risc.jku.at/projects/LogicGuard2

2 A Quick Start 5

2 A Quick Start

For the impatient reader, we demonstrate by some simple examples what the specification lan-
guage and monitoring system is all about.
First, let us assume that for a given stream /P of integers, e.g.,

2,3,5,-1,6,5,4,-1,2
we would like to check whether the stream S derived from /P by adding one to every value
3,4,6,0,7,6,5,0,3

does not contain any zeros (this property is in above example violated by the two stream posi-
tions 3 and 7).

In order to generate a corresponding monitor, we write the specification which is depicted in
Figure 1 and contained in the plain text file quick. 1gs.

This specification first declares an external type int (this is only used for type checking;
system does not care the values of this type are), then a predicate IsLogical, and finally a
function Increment. These functions are not defined in the specification but are provided by an
external .NET library. They could e.g. be provided by a C# class

using System;
namespace External

{
class IntFunctions
{
public static bool IsZero(Int64 m) { return m == 0; }
public static Int64 Increment(Int64 m) { return m+l; }
public static bool Print(Int64 m)
{ Console.WriteLine("Print: " + m); return true; }
}
}

that is compiled to a library file External .d11. For debugging purposes, the specification also
declares the external predicate Print which always returns true but also prints its argument as a
side effect.

The specification then declares the external integer stream IP which will be filled with values
from an external source (the name IP is determined by the runtime engine, see below). It also
defines the internal integer stream S that is constructed by reading in stream IP the value at
every position x in IP, incrementing this value, and placing the result in S. The notation in the
definition resembles the conventional set builder notation

S :={x €lIP : Increment(x)}

that builds from a set /P another set S.

2 A Quick Start

e
// quick.lgs
// a quick start into LogicGuard

//

// Copyright (C) 2011- Project LogicGuard (RISC, RISC Software, SecureGUARD).
// All Rights Reserved. See http:///www.risc.jku.at/projects/LogicGuard/

[e e

// an externally defined type
type int;

// an externally defined predicate
logical IsZero(value<int> x);

// an externally defined function
value<int> Increment(value<int> x);

// for debugging: an externally defined predicate
// that returns always "true" but prints its argument as a side effect
logical Print(value<int> x);

// we use the integer engine
stream<int> IP;

// stream S that adds one to the elements of IP
stream<int> S = stream<IP> x : Increment(@x);

// monitor that just prints the streams
monitor<S> PrintS = monitor<S> x: Print(@x);

// a monitor that checks that there is no zero on S
monitor<S> M = monitor<S> x: !IsZero(@x);

/s

// end of file
[/ e

Figure 1: A Simple Specification

2 A Quick Start 7

LogicGuard 1.01 (November 16, 2015)
Copyright (C) 2011- Project LogicGuard (RISC, RISC Software, SecureGUARD)
All Rights Reserved. See http:///www.risc.jku.at/projects/LogicGuard2/
Parsing specification <quick.lgs>.
Reading file <u:\projects\logicguard-2014\logicguard2\ap2\logicguard2\main\specs
\quick.lgs>.

No syntax errors.

No type errors.

No analyzer errors.

Monitoring started.

0: 2#103

Print: 3

1: 3#105

Print: 4

2: 5#107

Print: 6

3: -1#111

Print: 0

VIOLATION<M>: position<S> x=3

4: 6#113

Print: 7

5: 5#117

Print: 6

6: 4#123

Print: 5

7: -1#129

Print: 0O

VIOLATION<M>: position<S> x=7

8: 2#130

Print: 3

Message trace is completed.

Press <ENTER> to continue.

Figure 2: A Monitor Execution

2 A Quick Start 8

The specification declares a monitor M which, for every position x in S, checks whether the
stream value at that position is not zero (and reports a violation, otherwise). The notation in the
definition resembles the logical notation for universal quantification

M o Vx €S : —IsZero(x)

which defines predicate M to be true if all elements in S have the desired property (the analogies
between S and S and between M and M are simplified, because in the specification variable x
actually denotes stream positions, not stream values; see Section 4 for closer analogies).

For debugging purposes, the program also declares a “pseudo-monitor” PrintS that prints
the content of S and does not report a violation.

The stream to be checked may be contained in a file quick. txt with the following contents:

103
105
107
-1 111
6 113
5 117
4 123
-1 129
130

Ul w N

The first element of every line represents a value of the stream, the second element represents
the time of that value (which is not used in our example).
We may then start the program from the command line as follows:

LogicGuard -engine int -verbose
-input Main/traces/quick.txt quick.lgs External.dll

The command line option -engine int indicates the use of the “integer engine” that reads
files in the format given above and generates a corresponding stream IP of integer values. The
argument quick.1lgs denotes the name of the specification file, the argument quick. txt the
name of the stream file; the argument External.dll denotes the library where the definitions
of the external functions and predicates can be found.

The output of the program is then as depicted in Figure 2. After having printed the startup
message, the system reads the specificaton and parses, type-checks, and analyzes it. It then
translates the specification into an executable monitor and starts the monitor feeding it the values
from the stream file. During the execution of the monitor, each value in the external stream IP
is printed in the following format:

(position): {value) # (time)

For every value in the external stream IP, the pseudo-monitor PrintS just prints the corre-
sponding value in the internal stream S. The real monitor M, however, reports two violations for
positions x = 3 and x = 7 in S. When the message trace is completed, the program terminates.
While above example illustrated some general principles of the monitoring language, we are
now going to demonstrate the usage of the system for monitoring a live stream of network

2 A Quick Start 9

A G LR PP
// network.lgs

// a minimal specification to test network traffic

//

// Copyright (C) 2011- Project LogicGuard (RISC, RISC Software, SecureGUARD).
// All Rights Reserved. See http:///www.risc.jku.at/projects/LogicGuard/

J e

// an externally defined type
type datagram;

// we use the ip engine
stream<datagram> IP;

// a monitor that invokes a dummy predicate on every message of IP
monitor<IP> M1 = monitor<IP> x: true;

[/ e
// end of file

/] ==

Figure 3: A Simple Network Traffic Specification

LogicGuard 1.0 (October 26, 2015)

Copyright (C) 2011- Project LogicGuard (RISC, RISC Software, SecureGUARD)
All Rights Reserved. See http:///www.risc.jku.at/projects/LogicGuard2/
Parsing specification <network.lgs>.

Reading file <u:\projects\logicguard-2014\logicguard2\ap2\logicguard2\main\specs
\network.lgs>.

No syntax errors.

No type errors.

No analyzer errors.

Monitoring started.

Press any key to stop monitoring.

0: from 193.170.38.171:55263 to 65.52.0.51:5671 (37 bytes)#1428922916490
from 65.52.0.51:5671 to 193.170.38.171:55263 (0 bytes)#1428922917491
from 65.52.0.51:5671 to 193.170.38.171:55263 (37 bytes)#1428922917491
from 193.170.38.171:55263 to 65.52.0.51:5671 (0 bytes)#1428922917491
from 193.170.38.171:55493 to 193.170.37.138:80 (0 bytes)#1428922939494
from 193.170.37.138:80 to 193.170.38.171:55493 (0 bytes)#1428922939494
from 193.170.38.171:55493 to 193.170.37.138:80 (0 bytes)#1428922939494
from 193.170.38.171:55494 to 193.170.37.223:995 (0 bytes)#1428922940899

NO VT WN =

Message trace is completed.
Press <ENTER> to continue.

Figure 4: A Monitor Execution

3 The Execution Model 10

1o 1 %) 13 14 15 te 17

M

'
{2,3,6,...)

Figure 5: The Static View of a Monitor

traffic. For this purpose, we take the specification in Figure 3 that describes a minimal network
monitor that processes every IP datagram by applying the dummy predicate true to it. While
this monitor will thus certainly not detect any property violation, we can nevertheless start it as
follows:

LogicGuard -engine ip -verbose
-interface FODEF1D6B70D network.lgs External.dll

The command line option -engine ip indicates that we would like to monitor IP datagrams
while the option -interface denotes by six pairs of hexadecimal digits the address of the
network interface from which we would like to capture these datagrams (on a machine running
Microsoft Windows, executing ipconfig /all displays every available network interface and
its address under the title “Physical Address”). By using the option -verbose every datagram
observed on the interface is printed in the format depicted in Figure 4 indicating the source and
destination IP address and the size of its payload. The monitoring stops when on the console
any key is pressed.

By applying more complex specifications, we can thus monitor live network traffic for the
conformance to specific securicy policies.

3 The Execution Model

Before we delve deeper into the details of the specification language, we are going to describe
the problem that it addresses; without going into too much formal detail, we would like to convey
an intuitive picture of how runtime monitoring is implemented as a basis for writing elegant and
efficient stream monitor specifications.

Monitors: The Static View Our goal is to describe monitors that accept “streams”, i.e., poten-
tially infinite sequences of messages, and determine whether the stream violates some expected
property. An example of such a stream may be the sequence of packets flowing through an In-
ternet connection where the desired property is the absence of any attempt to connect from the
Internet without appropriate authorization to some computer in the local network.

3 The Execution Model 11

Such a monitor is not very useful, if it just terminates when it has detected a violation; rather
it shall continue to investigate the stream for any more violations. Since the stream is potentially
infinite, the monitor may thus run for an unbounded amount of time and report an unbounded
number of violations. If we assume that each message in the stream can cause a violation of the
property, we may uniquely identify each violation with a stream position.

If we also assume that a monitor guards a single stream (as we will see, a monitor may also
guard multiple ones), then we can model the monitor by a function M from streams to sets of
stream positions (which identify property violations):

M : Monitor

Monitor := Stream — P(Position)

In other words, for a given stream s, M (s) denotes the set of violating positions of the stream.
This view is illustrated in Figure 5.

As already stated, a stream is a finite or infinite sequence of messages while a stream position
is just a natural number:

Stream := Message™ U Message®
Position := N

A message (v,t) carries an unspecified value v but also has a time t associated which indicates
when the message has arrived in the stream:

Message := Value X Time
Value := . ..
Time := N

Times are identified by natural numbers, because because we assume that a time can be only
measured by the discrete “ticks” of a digital clock. We assume that the messages (v;,#;) in a
stream are ordered according to their times, i.e., v; < v;;1; the inequality is not strict, because

two messages may arrive within the same clock tick.

Monitors: The Operational View While the static view of a monitor as a function from
streams to sets of stream positions represents a nice mathematical model, it does not adequately
capture the monitor’s operational behavior: actually, M observes only one message at a time;
for each message M decides (based on its current state resulting from the observations of the
previous messages), whether it can report some violations or not and then changes its state to
accommodate the new observation.

This view is illustrated in Figure 6. For every message received, the monitor reports a (poten-
tially empty) set of violating positions. Please note that a violating position may be reported at
any step, not only at the step corresponding to the position; furthermore, more than one position
at a time may be reported. For example, while in the figure position 3 is indeed reported in
step 3, position 2 is (together with position 6) reported in step 6.

3 The Execution Model 12

to 1 %) 13 7 15 te 17

Figure 6: The Operational View of a Monitor

The corresponding mathematical model of the monitor is a function M from messages to
answers which describe only part of the overall result:

M : MonitorStep
MonitorStep := Message — MonitorAnswer

MonitorAnswer := P(Position) X (done + next of MonitorStep)

For a given message m, M (m) denotes a pair of a set of violating positions and an indication
about the future of the monitor: it either just terminates (result done) or it switches to a new
state M’ in which it is ready to accept the next message (result next(M")).

For an initial state My of the monitor and a stream mq,m1,. .. of messages, we thus retrieve
by repeated monitor application

My(mo) = (po,next(My))
M (my) = (p1,next(M3))
M>(ma) = (p2,next(M3))

a sequence of sets of violating positions pg, p1, p2,. . . whose union denotes the set of all violating
positions reported by the monitor.
We can describe the operational behavior of the monitor more precisely by the following

function:
run : MonitorStep X Stream X N — P(Position)

run(M, s,n) =
if n = 0 then
0
else
let m := head(s)
match M (m) with
| (rs,done) — rs
| (rs,next(M’)) — rs Urun(M’,tail(s),n — 1)

3 The Execution Model 13

Given a monitor M and stream s, run(M,s,n) denotes the set of violating positions that M
reports in n steps.

Monitors from Specifications Actually our goal is not to program a monitor M from scratch
but to have it generated from an abstract specification S. The meaning [S] of S can be formally
defined by a denotation function

[.] : Specification — Monitor

In other words, [S] is the static view of a monitor described above.
However, the implementation T(S) of S can be only constructed by a translation function

T : Specification — MonitorStep

In other words, T(S) is the operational view of a monitor described above.
Denotation and translation are related by the following constraint:

VS € Specification,s € Stream,n € N :
run(T(S),s,n) C [S](s)

In other words, any execution of 7(S) may only report positions that are considered as violating
by [S]. The converse is not necessarily true, i.e., [S] may consider a position as violating that
is never reported by 7(s). The reason is that, while the denotation [.] has a “global” view on
an infinite stream s, T only sees a finite prefix and not every property that is violated by s is
necessarily also violated by any finite prefix of s. As a principle restriction, a monitor may only
detect violations of so-called safety properties for which it is sufficient to consider finite prefixes.

The Components of a Specification We are now going to look in somewhat more detail into
the structure of a specification. A specification is composed of various kinds of syntactic phrases,
most important:

e Monitors: a single specification may describe multiple monitors.

e Streams: the monitors may observe multiple streams which may be
— external: their messages come from external sources;
— internal: their messages are internally constructed.

e Formulas: a formula describes a property that has to be satisfied by the messages of some
stream(s).

e Terms: aterm describes a value (object) that can be computed from the messages of some
stream(s).

Like monitors, the meaning of all these phrases can be denotationally defined by a global
view on the streams. In the implementation, however, each entity is translated to an operational

3 The Execution Model 14

“engine” which is similar to a monitor as described above; the difference is only in the kind of
objects that the engines return at every step and upon termination:

MonitorStep := Present — MonitorAnswer
MonitorAnswer := P(Position) X (done + next of MonitorStep)
StreamStep = Present — StreamAnswer
MonitorAnswer := P(Message) X (done + next of StreamStep)
FormulaStep := Present — FormulaAnswer
FormulaAnswer := done of Bool + next of FormulaStep
TermStep := Present — TermAnswer

TermAnswer := done of Value + next of TermStep

Different from the previous simplified explanation, the individual engines actually do not only
accept as arguments a single message but a “present” p which essentially contains the overall
state of all streams (the external as well as the internal ones) at the current step. The reason is
that we want e a single copy of the streams’ state (rather than each engine creating its own copy)
in order to be able by a central optimization to prune this copy as much as possible and thus
bound the memory of the computation (see below).

The individual engines now produce the following results:

1. For a monitor engine M € MonitorStep, M (p) denotes the set of violating positions re-
ported in the current step and the next state of the engine.

2. For an internal stream engine S € StreamStep, S(p) denotes the set of messages produced
in the current step and the next state of the engine.

3. For a formula engine F' € FormulaStep, F(p) either denotes a truth value or the next state
of the engine.

4. For a term engine T € TermStep, T(p) either denotes an object or the next state of the
engine.

While monitors and streams thus produce answers at every step, formulas and terms produce a
result only at the termination of the corresponding engine; until this is the case, these engines
produce no answer.

The whole specification is thus translated to a set of interacting engines of above kind; from
their composition, the reported violations emerge from the overall engine.

Monitor State and History Pruning The state of the overall monitoring engine consists of
the states of the individual sub-engines and of the histories of all streams (see Figure 7); to these
histories, in every step new messages may be added from external sources or by the internal
stream engines. Without further optimization, for infinite streams eventually the memory of the
machine running the monitor would be filled.

3 The Execution Model 15

i past messages | current messages

| - - :
!

sl LI PE]] —i
| \
o os L]] Y
| - |
s |
! v ‘
s 1 i
1 - |
i ssL LI L[] stream histories engine states |
Lomm o - Y o ________!.

Figure 7: The State of a Monitor

However, the implementation incorporates the analysis and optimization described in [5]
which is for certain kinds of specifications able to determine bounds on the number respec-
tively age of messages that need to be preserved in the histories of streams. The analysis passes
these bounds to the execution engine which after every execution step (triggered by the arrival
of a message on an external stream) prunes the histories of the stream correspondingly; thus
perpetual monitors running over infinite streams become possible. Specifications, for which the
analysis is not able to determine an appropriate bound are rejected (unless the command line
option -execute is used, see Section A).

The history pruning analysis succeeds, if in every nested quantification the position variable
y introduced by an inner quantifier is related in a particular way to the position variable x intro-
duced by the outermost quantifier (typically a monitor or a stream quantifier) such as in the
specification fragment

monitor<S> M =
monitor<S> x ...

exists<S> y with ... : // with x <(=) _, with x-T <(=)# _

The relationship has to be such that

e both positions x and y refer to the same stream and there exists an upper limit on the
position difference x — y; this is in particularly true, if the introduction of variable y is
accompanied by a clause with x <= _orwith x < _ (which indicates that the difference
is at most 0); and/or

e positions x and y refer to arbitrary (also different) streams but there exists an upper limit
on the time difference #x — #y between the time #x when a message arrived at position x
and the time #y when a message arrived at position y; this is in particular true, if the
introduction of variable y is accompanied by a clause x-T <=# _ or x-T <# _ (which
indicates that the time difference is at most 7" respectively 7 — 1 time units).

4 Some Sample Specifications 16

In the first case, to evaluate the inner quantifier no history at all has to be preserved for stream S;
in the second case, only those messages have to be preserved that are at most 7' (respectively 7 —
1) time units older than the message that has arrived last on S.

Bounds can also be established in multiple stages via indirect relationships of position vari-
ables such as in

monitor<S> M =
monitor<S> x ...
exists<S> y with x-100 <# _ :
exists<S> z with y+30 <# :

where an upper bound 100 can be established for the time difference #x — #y and therefore also
an upper bound 70 can be established for the time difference #x — #z.

In Section 4 we will discuss how specifications with unbounded history requirements that are
rejected by the history pruning analyzer can be transformed into logically equivalent specifica-
tions that cope with a limited amount of stream history and are thus accepted.

4 Some Sample Specifications

We continue with some more examples on integer streams that elaborate more features of the
specification language. We use the following declarations:

type int;
stream<int> IP;

logical IsZero(value<int> x);
logical IsOne(value<int> x);
logical IsTwo(value<int> x);
logical NotTooMuch(value<int> x);

value<int> Zero();
value<int> Square(value<int> x);
value<int> Append(value<int> x, value<int> y);

Our sample specifications thus check properties of a stream IP of int values with the help of a
couple of externally defined predicates and functions.

Stream Filters In our first example, we transform the external stream IP to an internal stream S
by letting only the ones and the twos pass and by squaring the values that have passed:

stream<int> S =
stream<IP> x
value<int> m = @x
satisfying IsOne(m) || IsTwo(m)
Square(m) ;

4 Some Sample Specifications 17

The stream quantifier constructs a stream whose values occur in the same order as the positions
in stream IP over which the bound variable x is quantified. For every such position, we define
the local variable m that denotes the value that IP holds at that position; using that variable, we
check by the satisfying clause whether this value is a one or a two: if yes, then m is squared
and put onto the result stream.

A corresponding classical set definition would look as follows:

S = {m2 lx.m x €dom(UP) Am=IP(x) A(m=1V m=2)}

Hhere [P is a function from stream positions to stream values and dom(/P) denotes the domain
of IP, i.e., the set of positions in /P (however, the result S is here defined to be a set of values,
not a stream, thus the analogy breaks).

An input stream

2,1,0,0,0,2,1,0,2,0,2,0,2,1,2,1,2,0,2,0,2,1,2
18 thus transformed to the result stream

4000, 1010,4050, 1060, 408054100, 4120, 11304140, 1150,4160, 4180, 4200, 1210, 4220

where the subscripts denote the times when the values appear on S (they are the same as the
times of the corresponding values on IP).

Time Constraints The following specification then checks whether the ones in the previously
constructed stream S are not more than 50 time units apart:

monitor<S> M =
monitor<S> x :
IsOne(@x) =>
exists<S> y with x < _ <=# x+50 : IsOne(@y);

In this specification, for every position x in S (clause monitor<S> x) that denotes a one (clause
IsOne(@x)), it is checked whether there exists a another position y in S (clause exists<S>)
where also a 1 occurs (clause IsOne (@y)). This position must occur after x (clause x < _, the
underscore _ denotes the currently quantified variable) but its message must not occur more than
50 time units later than the message at x (clause _ <# x+50).

In classical predicate logic, we could write a similar definition as follows:

M :={x edom(S) : =(S(x)=1=>dyedom(S) : x <y AS;(¥) < S (x)+50A S(y) =1)}

Here M denotes the set of all positions that do not satisfy the desired property, S is a function
from stream positions to stream values, and S; is a function from stream positions to stream
times.

For above example stream, the property is violated for the underlines positions x = 3,9,13.
This is also the output produced by the system:

4 Some Sample Specifications 18

0: 2 #0

12: 2 # 120

VIOLATION<M>: position<S> x=3
13: 1 # 130

21: 1 # 210

VIOLATION<M>: position<S> x=9
22: 2 # 220

Message trace is completed.
VIOLATION<M>: position<S> x=13

The first two violations are reported when the allowed time bound has been passed, the last one
is reported when the stream terminates.

Message Combinations Let us assume we would like to transform a stream IP of decimal
digits like

0,1,2,3,0,4,5,6,7,0,8,0,0
to the stream S2 of numbers
123,4567,8,0

that i.e. we would like to compute the numbers that result from appending the digits between
successive occurrences of zeroes. This can be achieved by the following specification:

stream<int> S2 =
stream<IP> x

satisfying IsZero(@x)

value[seq,Zero() ,Append] <IP>
y with x < _
value<int> m = @y
while !IsZero(m)

m ;

Here the outer stream construct binds x to all positions of x with zero values and then computes
the resulting stream value by an application of value[seq,Zero() ,Append] as follows:

o The construct generates all positions y in IP that occur after x but only as long as the
corresponding stream value (which is assigned to a local variable m) does not hold a zero.
This yields a sequence of stream values

mi,my,...ny
where m is the value at the position after x and m,, is the last value that is not zero.

o From this sequence, the construct computes the value

Append (Append (Append (Zero (), m1), mp) ..., my,)

4 Some Sample Specifications 19

i.e., starting with the base value Zero (), the binary function Append is iteratively applied
to the previous intermediate value and to the next message value m; in order to produce
the next intermediate value until all messages have been consumed. Provided that Zero ()
denotes zero and Append (m,n) denotes 10m+n, we may thus compute the number whose
representation consists of the digits my,. .. ,m,.

Using the auxiliary monitor

monitor<S2> PrintS2 =
monitor<S2> x : PrintValue(@x);

the system thus produces for the sample content of IP shown above the following output that
illustrates the expected contents of S2:

0: 0 # 0

1: 1 # 10
2: 2 # 20
3: 3 # 30
4: 0 # 40
Value: 123
5: 4 # 50
6: 5 # 60
7: 6 #70
8: 7 # 80
9: 0 # 90
Value: 4567
10: 8 # 100
11: @ # 110
Value: 8
12: 0 # 120
Value: 0

Quantified Phrases Quantified phrases can be arbitrarily nested. For instance, the monitor

monitor<IP> M1 =
monitor<IP> x :
IsZero(@x) =>
exists<IP> y with x <
IsOne(@y) &&
forall<IP> z with x < _ < z :
IsTwo (@x)

<= x+100 :

verifies that every position x with value zero is followed within 100 time units by a position y
that has value one such that between x and y there are only positions z with value two.
There is also a rich variety of non-logical quantifiers. For instance, the monitor

monitor<IP> M2 =
monitor<IP> x :
IsZero(@x) =>
value<number> n = num<IP> y with _ < x until IsZero(@y) : true
NotTooMuch(n)

4 Some Sample Specifications 20

uses the num quantifier to determine the number n of messages that follow a zero message until
the next zero message (inclusive) and checks whether NotTooMuch(n) holds (here number
denotes the predefined type of the result of num).

The stream definition

stream<int> S3 = stream[seq,Zero(),Append]<IP> x : @x;
takes an input stream IP of digits
1,2,3,4,5,6,...

and constructs (for the same definitions of Zero and Append as indicated above) the stream S3
with values

0,1,12,123,1234,12345,123456

The quantified phrase stream[seq,Zero() ,Append] thus behaves like the previously intro-
duced phrase value[seq,Zero() ,Append] except that not only the final combination result is
returned as a single value but the sequence of all intermediate results is returned as a (potentially
ifinite) stream of values.

Unbounded Stream History The monitoring of “backward-oriented” specifications may re-
quire an unbounded amount of stream history such that the history analysis rejects the specifica-
tion. However, frequently such specifications can be easily transformed into logically equivalent
ones that are “forward-oriented” such that the analysis succeeds and the specification is accepted
for monitoring.

For instance, take a specification of form

monitor<S> M =
monitor<S> x : P(@x) =>
position<S> y = max<S> y with _ < x : Q(@y)
R(@x,@y)

which checks all subsequent occurrences of messages with properties Q and P whether they
satisfy some common property R. This specification is rejected because the max quantifier looks
“backward” arbitrarily far in the stream. However, rewriting the specification as

monitor<S> M =
monitor<S> y : Q(@y) =>
position<S> x = min<S> x with y < _ : Q(@y)
R(@x,@y)

we get a characterization of the same property where the min quantifier looks “forward”; this
specification copes without stream history and is thus accepted by the analyzer.

However, not all specifications can be transformed in this simple way. For instance, take a
specification of form

monitor<S> M =
monitor<S> x : P(@x) =>
exists<S> y with _ < x : Q(@y) && R(@x,Q@y)

5 Future Work 21

where monitor M checks whether every occurrence of a message with property P is preceded
by a message with property Q such that both messages are related by property R. Monitoring
this specification would require the preservation of an unlimited amount of stream historys; it is
thus rejected by the analyzer.

If we could provide a time bound 7" such that the observation of Q would have to precede that
of P by at most T time units, then we could write a specification

monitor<S> M =
monitor<S> x : P(@x) =>
exists<S> y with x-T <# _ < x : Q(@y) && R(@x,@y)

which would be accepted by the history pruning analyzer because only messages have to be
preserved that are not more than 7' time units older than the youngest message.

If, however, no such time bound can be given, the same specification can be still expressed in
the more clumsy form

stream<T> S® = stream(F,B,seq)<S> x satisfying P(@x) || Q(@x): @x
monitor<SO> M = monitor<SO> x: RO(E@x)

where all observations of messages with property P and Q are “registered” in a stream Sy whose
elements of some type T capture all observations of Q and the last observation of P; the external
function F creates the next element on that stream from the previous element on the stream
and the next message observed. The monitor M checks with some external predicate Ry every
element of that stream whether the last registered observation was a message with property P
that was not been preceeded by an observation of a message with property Q such that the two
messages are related by property R.

While this is a more “indirect” form of specification that also relies on external functions
and predicates, it can nevertheless express the property of interest. In fact, the same technique
can be applied to transform any kind of backward looking specification into a forward looking
one: we traverse the stream that is monitored and create from all the observations with the
help of externally defined functions another stream whose elements capture the information that
interests us; this stream is then further processed for violations of certain criteria by externally
defined predicates.

5 Future Work

With the current version of the language and its prototypical implementation, we are able to gen-
erate from high-level specifications perpetually running monitors that check live network traffic
for the violations of complex properties; corresponding applications are going to be reported
elsewhere.

The history analysis and pruning technique applied in the prototype makes sure that certain
properties can be effectively montitored for an indefinite amount of time, because only a limited
amount of stream history is preserved during the execution of the monitor. However, while this is
a necessary condition to let the execution of a monitor cope with a bounded amount of memory,
it is not a sufficient one. Take e.g. the specification

References 22

monitor<S> M = monitor<S> x: exists<S> y with x < _ : P(@x,@y)

where every message arriving on stream S at some position x gives rise to a new monitor instance
that waits for the arrival of another message at a position y > x such that P holds for the pair of
messages. If the existence of such a y is not guaranteed, the number of instances that have to be
preserved and executed can grow without bound.

Our future work will thus focus on the analysis of specifications with respect to the space
complexity of their monitoring such that for those specifications where no upper space bound
can be statically determined, the user is warned that monitoring the specification might not be
possible with a limited memory budget.

Furthermore, we have not yet addressed the analysis of upper time bounds for the analysis of
a specification per incoming message such that we can guarantee certain real-time constraints of
the monitor; since the amount of time required for processing a message depends on the number
of monitor instances that have to be evaluated, the space complexity analysis sketched above is
also a prerequisite for the time complexity analysis.

Moreover, the current evaluation strategy is in those situations very inefficient where for dif-
ferent values of the outermost monitoring variable, the multiple evaluation of inner quantified
phrases unnecessarily duplicates work. We will consider combinations of static analysis and run-
time optimizations to avoid such repeated evaluations. Ultimately, we plan to investigate static
optimizations to translate specifications whose evaluation is inefficient into logically equivalent
ones that can be monitored in a more efficient way.

References

[1] RISC Institute, RISC Software, and SecureGUARD. LogicGuard II. The Optimized Check-
ing of Time-Quantified Logic Formulas with Applications in Computer Security. 2014. URL:
http://www.risc. jku.at/projects/LogicGuard2/.

[2] Temur Kutsia and Wolfgang Schreiner. LogicGuard Abstract Language. Tech. rep. 12-08.
Johannes Kepler University, Linz, Austria: Research Institute for Symbolic Computation
(RISC), 2012. urL: http://www.risc. jku.at/publications/download/risc_
4552/2012-LG-abstract-language.pdf.

[3] Temur Kutsia and Wolfgang Schreiner. Translation Mechanism for the LogicGuard Ab-
stract Language. Tech. rep. 12-11. Johannes Kepler University, Linz, Austria: Research
Institute for Symbolic Computation (RISC), 2012. urL: http://www.risc. jku.at/
publications/download/risc_4601/2012-LG-translation-TR.pdf.

[4] Terence Parr. ANTLR. 2014. urL: http://www.antlr.org.

[5] Wolfgang Schreiner and Temur Kutsia. A Resource Analysis for LogicGuard Monitors.
Tech. rep. Johannes Kepler University, Linz, Austria: Research Institute for Symbolic
Computation (RISC), 2013. urL: http://www.risc. jku.at/publications/download/
risc_4958/typesystem.pdf.

http://www.risc.jku.at/projects/LogicGuard2/
http://www.risc.jku.at/publications/download/risc_4552/2012-LG-abstract-language.pdf
http://www.risc.jku.at/publications/download/risc_4552/2012-LG-abstract-language.pdf
http://www.risc.jku.at/publications/download/risc_4601/2012-LG-translation-TR.pdf
http://www.risc.jku.at/publications/download/risc_4601/2012-LG-translation-TR.pdf
http://www.antlr.org
http://www.risc.jku.at/publications/download/risc_4958/typesystem.pdf
http://www.risc.jku.at/publications/download/risc_4958/typesystem.pdf

A Running the System 23

A Running the System

If the program is started as
LogicGuard -help

it prints the following message which describes its appropriate usage:

LogicGuard 1.03 (June 6, 2016)
Copyright (C) 2011- Project LogicGuard (RISC, RISC Software, SecureGUARD)
All Rights Reserved. See http:///www.risc.jku.at/projects/LogicGuard2/
usage: LogicGuard [<options>] <specification> <dlls>
<specification>: path to monitor specification file
<dlls>: paths to dll files with functions for the monitor
<options>:
-include <dirs>: <;>-separated list of specification file directories
-input <file>: path to PCAP or text file for monitoring recorded traffic
-interface <mac>: MAC address in hex-form HHHHHHHH for live monitoring
-output <file>: path to log file to which all console output is copied
-engine <engine>: use monitor execution <engine> which can be one of:
ip: engine with IP messages captured live or read from PCAP file (default)
icmp: engine with ICMP messages captured live or read from PCAP file
dns: engine with DNS messages captured live or read from PCAP file
dhcp: engine with DHCP messages captured live or read from PCAP file
int: engine with integer messages read from plain text file
random: engine generating non-negative random integer messages
primitive: engine with primitive messages read from plain text file
-reportnumber <number>: report statistics every <number> messages
-reporttime <time>: report statistics every <time> ms
-csvout <file>: path to csv file to which statistics is written
-help | -h | -?: display this help and exit
-extended: display this help with extended options and exit
Press <ENTER> to continue.

The monitor reads its specification from the file (specification) (respectively from the files
subsequently included from this file); all specification files are looked up in the current work-
ing directory, respectively, if the option -include is given, from the directories given in the
semicolon-separated list (dirs). The definitions of the external operations (functions and predi-
cates) are included from the the dynamic link libraries in the list (d/ls) which must always include
the library External.dll which is shipped with the distribution. If the option "-output" is
given, the output printed on the console is also copied to the log file denoted as (file).

The (current) runtime engine monitors a single external stream which is named IP. If the
option -input is given, the traffic of this stream is read from the denoted (file); if the option
(interface) is given, the traffic is read live from the interface whose MAC address is denoted by
the hexadecimal number (mac). The nature of the traffic is determined by the kind of engine that
is employed.

A Running the System 24

o [fthe option -engine ip is given (or if the -engine option is omitted), the traffic consists
of a sequence of TCP/IP packets; in this case the content of (file) must be in the PCAP for-
mat. The packets are delivered as values of type LogicGuard.Engine.Message whose
Payload field has type LogicGuard.Engine.TCPIP. These types are documented by
the supplementary file Message. cs that is shipped with the distribution.

o [f the command line option -engine -icmp is given, the traffic consists of a sequence of
ICMP packets; also in this case the content of (file) must be in the PCAP file format. The
packets are delivered as stream values of the type LogicGuard.Engine.Message whose
Payload field is of type LogicGuard.Engine.ICMP. These types are documented by
the supplementary file Message. cs that is shipped with the distribution.

o [f the command line option -engine int is given, a plain text file is read which consists
of a sequence of white-space separated

(value) (time)

pairs where (value) denotes by an decimal integer literal a stream value (an integer of the
.NET type System.Int64) and (value) denotes by a non-negative decimal integer literal
the corresponding time. This engine is used for debugging and testing the system.

o [f the command line option -engine random is given, a sequence of integer messages
is produced by a random number generator. By default, this sequence is infinite (thus
the engine runs forever) and contains values in the range 0. ..100. Also this engine is
used for debugging and testing the system; its behavior can be further configured by some
extended options listed below.

o If the command line option -engine dns is given, the traffic consists of a sequence of
DNS packets; also in this case the content of (file) must be in the PCAP file format.
The packets are delivered as stream of values of the type LogicGuard.Engine.Message
whose Payload field is of type LogicGuard.Engine.DnsPacket. These types are pro-
vided by the file Message. cs that is shipped with distribution.

o [f the command line option -engine dhcp is given, the traffic consists of a sequence of
DHCP packets; also in this case the content of (file) must be in the PCAP file format.
The packets are delivered as stream of values of the type LogicGuard.Engine.Message
whose Payload field is of type LogicGuard.Engine.DhcpPacket. These types are
provided by the file Message. cs that is shipped with distribution.

o [f the command line option -engine primitive is given, a plain text file is read which
consists of a sequence of white-space separated (value) (time) pairs: (value) denotes a
value of the type indicated by the option -ptype (see the extended options below) and
(time) denotes by a non-negative decimal integer literal the corresponding time. This
engine is used for debugging and testing the system. The messages are delivered as
stream values of the type LogicGuard.Engine.Message whose Payload field has type
LogicGuard.Engine.PrimitiveValue. These types are documented in the supple-
mentary file Message. cs that is shipped with distribution.

A Running the System 25

If the command line option -reportnumber is provided, the monitor reports every (number)
messages some runtime statistics; if the option -reporttime is provided, the monitor reports
approximately every (time) time units some runtime statistics (actually, the statistics is only
reported after the first message has been processed that has arrived at least (time) units after the

last report).

If the program is started as

LogicGuard -extended

also the following options are printed:

extended <options>:

-stop

<step>: stop program after <step> which can be one of:

parse typecheck inline analyze execute
-print: print abstract syntax tree of specification
-pinline: print abstract syntax tree of specification after inlining
-panalysis: print result of history analysis
-noprune: prevent history pruning
-nobinder: disable binder optimization during history analysis
-execute: force execution even if history analysis shows unbounded history
-verbose: print messages during monitoring
-nowait: exit the program immediately.
-nowarn: don not show warnings.
-randnumber <number>: <random> generates <number> numbers (default infinity)
-randtime <time>: <random> runs for <time> ms (default infinity)
-randbound <bound>: <random> produces numbers up to <bound> (default 100)
-randdelay <delay>: <random> produces numbers every <delay> ms (default 0)
-randexp: <random> delays are exponentially distributed (default constant)
-buffer <number>: interface buffer may hold <number> messages (default 25000)
-timestream: enable time stream in ip live engine
-tsinterval <time>: generate null message if none in <time> ms (default 100)
-ptype <type>: primitive <type> if primitive engine is used (default Int32)
-space <p> <d> <v> : give upper bound on size of runtime representation

<p>:
<d>:
<v>:
:
-1:
0:
>0:

-time

<p>:
<d>:
<v>:
:
-1:
0:
>0:

probability that until/while predicate becomes true (> 0 and < 1)
expected number of messages per ms (floating point > 0)

true if detailed information is to be printed, false otherwise
execution bound

execute monitor in any case

execute monitor, if size is finite

execute monitor, if size is less than

<p> <d> <v> : give upper bound on number of instances created per step
probability that until/while predicate becomes true (> 0 and < 1)
expected number of messages per ms (floating point > 0)

true if detailed information is to be printed, false otherwise
execution bound

execute monitor in any case

execute monitor, if number is finite

execute monitor, if number is less than

Press <ENTER> to continue.

A Running the System 26

The extended options are mainly used for development and debugging purposes and should not
be needed in normal operation. They allow to terminate the monitor after a certain processing
step (option -stop), to print certain system information (-print, -pinline, -panalysis), to
control certain optimizations (-noprune, -nobinder, -execute), and to display all processed
traffic (-verbose).

The option -nowait terminates the program, when the monitoring is finished (because either
the external stream was terminated or the monitor only executed for a certain time limit) without
waiting for a key to be pressed by the user; the option -nowarn switches off all internal warnings
of the monitor (e.g., that the message buffer has become full or that a message could not be
processed within a given time bound).

Furthermore, the behavior of the random engine can be configured by the following options:

e If the option -randnumber is provided, the engine stops after (number) messages have
been generated.

o [f the option -randtime is provided, the engine stops execution after (time) milliseconds.

o If the option -randbound is provided, the engine produces values in the range O to
nm{bound).

o By default, messages are produced as fast as possible. However, if the option -randdelay
is provided, then the mean time between the arrival of two messages becomes (delay) ms
(in more detail, the arrival of messages follows an exponential distribution with parameter
A = 1/{delay)).

The live network interface buffers incoming messages before they are processed. The com-
mand line option -buffer determines the maximum (number) of messages that the buffer may
hold; if the buffer becomes full, additional messages are dropped (with a corresponding warning
being printed).

The behavior of the primitive engine can be configured by the option -ptype whose (type)
argument defines the primitive data type of the value read from the file. The default value
is Int32 ("System.Int32"). Acceptable types are "Boolean", "Byte", "SByte", "Char",
"Decimal”, "Double"”, "Single", "Int32", "UInt32", "Int64", "UInt64", "Int16", as
well as "UInt16" and "String". - The command line option -timestream produces auxiliary
messages in network live engines: if the engine has not captured any packet during the time
interval specified by the option -tsinterval (in milliseconds, default is 100 ms), a message
is generated whose payload is null and whose time stamp is the current system time. This
feature works for the live engines ip, icmp, dns and dhcp. If this option is enabled, the external
functions should be aware of the possibility of null values in messages.

The command line option -space applies an analysis to estimate an upper bound on the size
of the runtime representation of the monitor. This size is given in the form of a measure that
counts every occurrence of a quantifier in every instance of a quantified phrase stored in the
monitor. If the only contains quantified constructs up to depth 2 (e.g. a doubly nested forall
quantifier) this measure is identical to the number of phrase instances stored in the runtime
representation (which is also reported by the option -verbose), for larger quantifier depths the

B Lexical and Syntactic Analysis 27

measure is much larger than the number of instances. This analysis generally overapproximates
(possibly by a large margin) the size of the runtime representation.

Analogously, the command line option -time applies an analysis to estimate an upper bound
for the number of instances of quantified phrases created in each execution step of the moni-
tor; this is a rough measure for the execution time needed by the monitor for processing every
external message.

B Lexical and Syntactic Analysis

In this section, we describe the lexical analysis of a specification file, i.e., how the content of the
file is transformed into a sequence of tokens. This transformation proceeds in the three steps of

1. processing include files,
2. processing comments, and
3. tokenization,

which are described in the following subsections.

In the later sections, we will then describe the syntactic analysis of a specification, i.e., which
sequences of tokens generated by the lexical analysis represent correct specifications. This anal-
ysis is defined by a context-free grammar in the Extended Backus Naur Form (EBNF). Such a
grammar consists of production rules of form

(symbol) ::= alternative | ...| alternative

where in every alternative an occurrence of
[phrase |

denotes zero or one occurrence of phrase (an option) while an occurrence
{ phrase }

denotes arbitrary many (zero, one, or more) occurrences of phrase (a repetition).

B.1 Include Files

On the first level, the content of a specification file is considered as a sequence of lines. If a line
contains the string #include, it must have one of the forms

// #include "(path)"
#include "(path)"

with only white space before and after this form.

A line of the first form is removed from the content of the file.

In a line of the second form, {path) must denote the file system path of another specification
file. The content of this file is recursively processed in the same way and then replaces the

C Type System 28

#include line. It is an error, if a file includes itself directly or indirectly recursively. If the same
file is included multiple times (from the same file or from different files), it is only included at
the first occurrence of the corresponding #include; all subsequent occurrences are removed.

Every (path) is first considered relative to the current working directory of the system; if the
specified file is not found there and if the command line option -include (paths) is given (see
Section A), then each path in (paths) is prepended to (path); the first file that is found in this
way is read. It is an error, if no file can be found by this procedure.

B.2 Comments

On the second level (after include files have been processed), all comments are removed from
the content of a specification file.
A comment may be a single-line comment of form

// {anytext)

where {(anytext) is an arbitrary sequence of characters terminated by the end of the line or the
end of the file.
A comment may also be a multi-line comment of form

/* {anytext)
7‘:/

where {(anytext) is an arbitrary sequence of characters terminated by the fist occurrence of the
token “*/” (thus multi-line comments cannot be nested). It is an error, if there is no such
occurrence, i.e., if the file ends prematurely.

B.3 Tokens

On the third and final level (after comments have been removed), the content of the specifi-
cation file is transformed into a sequence of tokens. A token is either a terminal symbol of
non-whitespace characters (such symbols are subsequently depicted in teletype) or one of the
following two kinds of symbols whose constructions are depicted by regular expressions:

(ID) ::= [a-zA-Z][a-zA-Z_0-9]*
(TIME) ::= [0-9]+
Thus an identifier (ID) is a sequence of (upper- and lower-case) letters, decimal digits, and

the underscore character “_” which starts with a letter. A time literal (TIME) is a non-empty
sequence of decimal digits.

C Type System

From Section D on, we describe the context-free grammar of the specification language. How-
ever, only those specifications are legal that also conform to the static type system of the lan-
guage.

For the subsequent explanation, we define the auxiliary non-terminal symbols

D Specifications 29

(tid) ::= (ID)
(sid) ::= (ID)

for an identifier (tid) that denotes a type and an identifier (sid) that denotes a stream. Then, in a
nutshell, the type system assigns to every term (see Section G) one of the following types:

o value<tid>: the term represents a value whose type has name #id.

e stream<tid>: the term represents a stream whose values are of the type with name tid.

e position<sid>: the term represents a position in the stream with name sid.
Furthermore, every monitor (see Section H) has the following type:

e monitor<sidy,...,sid,>: the monitor surveys the streams with names sid,...,sid, and
reports violations as vectors of positions of these streams.

The type checker verifies that the usages of terms and monitors are consistent with the decla-
rations given by the user and rejects a specification, if this is not the case.

D Specifications

Grammar

(specification) ::= { [{declaration)] ; }

Description A specification is a sequence of declarations where every declaration is termi-
nated by a semicolon “;”. Multiple occurrences of ““;” without an intervening declaration are
also legal.

Every declaration introduces an identifier and assigns it a meaning. This identifier is known
in all subsequent declarations.

E Declarations

Grammar

{declaration) ::=
type {ID)
| logical (ID) = {formula)
| logical {ID) ([{parameter) { , {parameter) }])
| logical {UD) ([{(parameter) { , {parameter) } 1) = {formula)
| value < {tid) > {ID) = {term)
| value < (tid) > {ID) ([{parameter) { , {parameter) } |)
| value < (tid) > {ID) ([{parameter) { , (parameter) } |) = (term)
| position < {sid) > (ID) = (term)
| position < (sid) > {ID) ([{parameter) { , {parameter) } |) = (term)

E Declarations 30

| stream < (tid) > {ID)

| stream < {tid) > {ID) = {term)

| stream < (tid) > {ID) ([{parameter) { , {parameter) } |)

| stream < (tid) > {(ID) ([{parameter) { , (parameter) } 1) = (term)
| monitor < [{sid) {, (sid)} | > (ID) = {monitor)

Description Every declaration introduces an identifier (/D) and assigns it a meaning. There
are four separate identifier namespaces for the following four kinds of entities:

e Types,

e [ogical entities,

e Objects (values, positions, streams),

e Monitors.

The grammar can distinguish whether a particular occurrence of an identifier must denote a type,
a logical entity, an object, or a monitor. Therefore we may declare a type, a logical entity, an
object, and a monitor all with the same identifier. However, it is an error to have two declarations
for the same kind of entity with the same identifier.

In the following subsections, we describe the various kinds of declarations in more detail.

Pragmatics All declarations that define a value start their evaluations simultaneously with the
first message arriving on an external stream. In other words, it is not the case that the final value
of a definition must be available before the evaluations of the subsequent definitions can start.
E.1 Type Declarations
Grammar

type (ID)
Description This declaration introduces a new type with name (/D) that is different from all

other types.
There are two predefined types (that cannot be declared by the user):

o type time which denotes the type of message time terms (see Section G.1).
o type number which denotes the type of number terms (see Section G.4).
Pragmatics Within this specification, it is unknown how a user-declared type is externally

represented. However, the runtime system assumes that a value of this type can be converted
from/to the .NET type System.Object (which is true for all NET types).

E Declarations 31

Example The declaration
type int;
introduces a type int (which may or may not be mapped to the .NET type System.Int64).

E.2 Logical Declarations

Grammar

logical (ID) = (formula)
logical {ID) ([{parameter) { , (parameter) } |)
logical (ID) ([{parameter) { , {(parameter) } |) = (formula)

Description These declarations introduce a new logical entity with name (/D) from which a
logical formula can be constructed:

1. In the first declaration, a logical variable is introduced and defined to be equivalent to the
given (formula); an occurrence (ID) of this variable is a formula that denotes the truth
value of the defining (formula).

2. In the second declaration, an externally defined parameterized predicate is introduced; an
application (ID)(...) with the number and kinds of arguments that correspond to the given
parameters (see Section K) represents an “atomic formula”.

3. In the third declaration, also a parameterized predicate is introduced but internally defined
by the given formula; an application (ID)({term), ...) with the necessary number and
kinds of arguments is a formula that denotes the truth value of the defining {(formula) after
substitution of the formal parameters by the actual arguments.

Pragmatics The value of a logical variable is only computed once and shared by all occur-
rences of this variable. The value of an externally defined predicate is computed separately for
each application of the predicate by calling an external function with the same name whose
result type is the .NET type System.Boolean. Every application of an internally defined pred-
icate is inlined by substituting the appropriately instantiated formula for the application (the
instantiation makes sure that no argument is evaluated more than once).

Example The declaration
logical P(value<int> x) = forall<IP> vy : R(x, @y);

introduces an internally defined predicate P that takes a single value of type int as argument.

E.3 Value Declarations

Grammar

value < (tid) > (ID) = (term)
value < (tid) > {ID) ([{parameter) { , {parameter) }])
value < (tid) > (ID) ([{parameter) { , {parameter) } |) = (term)

E Declarations 32

Description These declarations introduce a new value variable or value function with name
(ID) and (result) type (tid) from which a term can be constructed:

1. In the first declaration, a value variable is introduced and defined to be equal to the given
(term) (which must denote a value of type (tid)); an occurrence (/D) of this variable is a
term that denotes the value of the defining (term).

2. In the second declaration, an externally defined value function is introduced; an appli-
cation (ID)(...) with the number and kinds of arguments that correspond to the given
parameters (see Section K) represents a “function application”.

3. In the third declaration, also a value function is introduced but internally defined by the
given (term) (which must denote a value of type (tid)); an application {ID)(...) with the
necessary number and kinds of arguments is a term that denotes the value of the defining
(term) after substitution of the formal parameters by the actual arguments.

Pragmatics The content of a value variable is only computed once and shared by all occur-
rences of this variable. The value of an externally defined value function is computed separately
for each application of the function by calling an external function with the same name whose
result type can be converted from/to the .NET type System.Object. Every application of an
internally defined function is inlined by substituting the appropriately instantiated term for the
application (the instantiation makes sure that no argument is evaluated more than once).

Example The declaration
value<int> F(value<int> x) = if P(x) then x else G(X);

introduces an internally defined function F that takes a single value of type int as argument.

E.4 Position Declarations

Grammar

position < {sid) > (ID) = {term)
position < {sid) > (ID) ([{parameter) { , {parameter) } |) = (term)

Description These declarations introduce a new position variable or position function with
name (/D) whose (result) value denotes a position in stream (sid) from which a term can be
constructed:

1. In the first declaration, a position variable is introduced and defined to be equal to the
given (term) (which must denote a position in stream (sid)); any occurrence (/D) of this
variable then is a term that denotes the value of the defining (term).

E Declarations 33

2. In the second declaration, a position function is introduced and internally defined by the
given (term) (which must denote a position in stream (sid)); an application {ID)(...) with
the number and kinds of arguments that correspond to the given parameters (see Sec-
tion K) is a term that denotes the value of the defining (term) after substitution of the
formal parameters by the actual arguments.

Pragmatics The value of a position variable is only computed once and shared by all occur-
rences of this variable. Every application of an internally defined position function is inlined by
substituting the appropriately instantiated term for the application (the instantiation makes sure
that no argument is evaluated more than once).

Example The declaration
position<IP> p = max<IP> p with q < _ <# q+1000: P(@p)

introduces a position variable p which denotes the largest position in stream IP such that P(@p)
holds where p occurs after position q but before 1000 time units after q.

E.5 Stream Declarations

Grammar

stream < {tid) > {ID)

stream < {tid) > {ID) = (term)

stream < (tid) > {ID) ([{parameter) { , (parameter) } |)

stream < (tid) > (ID) ([{parameter) { , (parameter) } 1) = (term)

Description These declarations introduce a new stream variable or stream function with name
(ID) and message type (tid) from which a term may be constructed:

1. In the first declaration, an externally defined stream variable is introduced; an occurrence
(ID) of this variable is a term that denotes this stream.

2. In the second declaration, an internal stream variable is introduced and defined to be equal
to the given (term) (which must denote a stream with message type (tid)); an occurrence
(ID) of this variable is a term that denotes the value of the defining (term).

3. In the third declaration, an externally defined stream function is introduced; an application
{ID)(...) with the number and kinds of arguments that correspond to the given parameters
(see Section K) is a term.

4. In the fourth declaration, also a stream function is introduced but internally defined by the
given term (which must denote a stream with message type (tid)); an application (ID)(...)
with the necessary number and kinds of arguments is a term that denotes the value of the
defining (term) after substitution of the formal parameters by the actual arguments.

E Declarations 34

Pragmatics An external stream variable is filled by the runtime environment. The content of
an internal stream variable is only computed once and shared by all occurrences of this variable.
Every application of an internally defined function is inlined by substituting the appropriately
instantiated term for the application (the instantiation makes sure that no argument is evaluated
more than once).

The value of an externally defined stream function is computed separately for each application
of the function in the following way: at every execution step, an external function with the same
name is called whose result type must be convertible from/to the .NET type System.Object[].
If the function returns a non-null result, this result denotes the set of messages that are delivered
by the stream in the current step. If the function returns null, this indicates that the stream has
terminated and the function must not be called any more for further messages.

Example The declaration
stream<int> S = stream<int> x in IP satisfying P(@x) : @x
introduces an internally defined stream variable S that contains those messages from stream IP
that satisfy the predicate P.
E.6 Monitor Declarations
Grammar
monitor < [(sid) {, (sid)}]| > {ID) = {monitor)
Description This declaration introduces a monitor with name (/D) that monitors the streams
(sid), ...; the monitor is defined by the monitor body (monitor) which must monitor the listed

streams.
At each step of the execution the monitor produces a set of

e violating positions, i.e., positions for which the monitoring formula has yielded the truth
value “false”, and

e warning positions, i.e., positions for which the monitoring formula has yielded the truth
value “unknown”.

Example The monitor
monitor<S1,S2> M = monitor<S1> x: monitor<S2> y: P(@x, @y);

monitors two stream S1 and S2; it reports all position pairs x and y as violations for which the
predicate P (@x,@Y) returns “false”.

F Formulas 35

F Formulas

Grammar

(formula) ::=
({formula))

| true

| false

| logical?

| defined (term)

| defined (formula)

| (ID)

| <ID) C[(term) { , {term) } 1)

| ! ({formula)
| (formula) && | [{(mode)] | {formula)
| (formula) || [[{(mode)]] {formula)
| (formula) =>[[{(mode)] | {formula)
| (formula) <=> [[(mode)]] {formula)
| if [[(mode)]] {formula) then (formula) else {formula)
| forall (variable) {formula)
| exists (variable) {formula)
| <(binder) : {formula)

Description A formula denotes a logical entity with truth values “true”, “false”, and “un-
known”. The value “unknown” indicates that some term on which the value of the formula
depends (see Section G) has no meaningful value. The formulas are listed above in the decreas-
ing order of the binding power of their operators; in particular, ! binds stronger than && which
binds stronger than | |.

F.1 Atomic Formulas
Grammar

({formula)) true

false

logical ?

defined (term)

defined (formula)

(ID)

D) C[(term) { , ({term) } 1)

Description The parenthesized formula ((formula)) just stands for (formula) itself. The for-
mulas true, false, and logical ? denote the logical values “true”, “false”, and “unknown”,

F Formulas 36

respectively. The formula defined (term) denotes “true”, if (term) does not denote “unde-
fined”, and “false”, otherwise. Likewise, defined (formula) denotes “true”, if (formula) does
not denote “undefined”, and “false”, otherwise.

The formula (/D) denotes the value of the logical variable (/D). The formula (/D) ([{term)
{ , (term) } 1) denotes the value of the internally or externally defined predicate (/D) when
applied to the values of the given terms.

Example The atomic formula

R(x, @y)

denotes the value of the binary predicate R when applied to the two given arguments.

F.2 Propositional Formulas
Grammar

! (formula)

(formula) && [[(mode) 1] {formula)
(formula) || [[(mode)]] {formula)
(formula) => [[(mode) 1] {formula)
(formula) <=> [[(mode)]] (formula)

Description

1. The unary operator ! denotes logical negation as described by the following table (where
T denotes “true”, L denotes “false” and ? denotes “unknown”):

(formula) ‘ ! (formula)
T 1
1 T
? ?
2. The binary operators &&, | |, =>, <=> denote logical conjunction, disjunction, implication,

and equivalence as described by the following table:

D | 2) | D &&(2) | (1) || 2) | (F1)=>(2) | (fI) <=>{f2)
T T T T T T

T L 1 T 1 1

T | 2 ? T ? ?

1 T 1 T T 1

1 1 1 1 T T
L2 1 ? T ?
2T ? T T ?

? | 1 1 ? ? ?

2 | 2 ? ? ? ?

F Formulas 37

If the optional qualifier [(mode)] is not given or if it is [par], both parts of the formula
are evaluated simultaneously. If the qualifier is given as [seq], then first the first for-
mula is evaluated. If the result already uniquely determines the overall result, the second
formula is not evaluated (“short-circuit evaluation”).

Pragmatics The default evaluation mode of most propositional formulas is “parallel” to avoid
unnecessary delays in formula evaluations and the corresponding need for message buffering.
The “sequential” mode is provided mainly to allow “short-circuited evaluation” as is supported
in many programming languages where the evaluation of the second formula is only allowed
in a context where the first formula does not determine the result (i.e., if the evaluation of the
second formula might yield a runtime error, otherwise).

Example The formula
R(x) => P(x,y)

denotes an implication evaluated in the default “parallel” mode.

F.3 Conditional Formulas

Grammar

if [[(mode)] | {formulaO) then {(formulal) else {formula2)

Description This formula denotes conditional selection: if (formulaO) yields “true”, its value
is that of (formulal); if {formula0) yields “false”, its value is that of (formula2); if {formula0)
yields “unknown”, its value is “unknown”.

If the optional qualifier [{mode)] is not given, or if it is [seq] then (formula0) is evaluated
first to decide which of (formulal) or (formulaZ?) is to be evaluated (i.e., only one of the formulas
is evaluated). If the qualifier is given as [par], all formulas are evaluated in parallel; only when
the evaluation of (formula0) has completed, the remainder of the evaluation proceeds with only
one of (formulal) or {formula2).

Pragmatics The default evaluation for the conditional formula is “sequential” to support the
usual intuition that only one of the branches is evaluated; however, the “parallel” mode should
be considered to avoid unnecessary evaluation delays and corresponding stream buffering re-
quirements.
Example The formula

if P(x) then Q(x) else R(x)

essentially corresponds to the classical formula

(P(x) = Q(x)) A (=P(x) = R(x))

F Formulas 38

F.4 Quantified Formulas
Grammar
forall (variable) (formula)

exists (variable) (formula)

Description In both formulas, the body (formula) is evaluated in all contexts where the local
position variable introduced by (variable) is bound to the positions denoted by (variable) (see
Section L).

1. In the case of forall, if there is some instance of the formula body which yields “false”,
the result is “false”. If there is no such instance but an instance that yields “unknown”, the
result is “unknown”. Otherwise (i.e., if all instances yield “true”), the result is “true”.

2. In the case of exists, if there is some instance of the formula body which yields “true”,
the result is “true”. If there is no such instance but an instance that yields “unknown”, the
result is “unknown”. Otherwise (i.e., if all instances yield “false”), the result is “false”.

Pragmatics Both the elaboration of new formula instances and the evaluation of already cre-
ated instances proceeds simultaneously (for more details, see Section L).
Example The formula
forall<IP> x with y <= _ <=# x + 1000 : P(@x)
is true if the formula P (@x) is true for all positions x in stream IP starting with position y and
ending with the largest position that occurs not more than 1000 time units later than y.
F.5 Formulas with Local Bindings
Grammar
(binder) : {formula)

Description The body (formula) is evaluated in a context where a new variable has been in-
troduced and its value been defined by (binder) (see Section J).

Pragmatics The evaluation of the defining phrase in {(binder) and that of (formula) proceed
simultaneously; in order words, it is not the case that the variable introduced in (binder) must
have its ultimate value before the evaluation of (formula) can start.
Example The formula

value<int> y = F(@x) : P(y)

introduces a local value y defined as F(@x) for the evaluation of P(y).

G Terms 39

G Terms

Grammar

(term) ::=
((term))

| wvalue {tid) ?

| position (sid) ?

| stream/{tid) ?

| zero (sid)

| empty (tid)

| old

| new

| (ID)

| <ID) C[term) { , {term) } 1)

| [({ID)] @ {term)

| [ID)] # (term)

| if [[(mode)]] {formula) then (term) else (term)

| min (variable) {formula)

| max (variable) {formula)

| num (variable) {formula)

| value [(mode2) , {terml) , {ID)] {variable) (term2)

| stream [(mode)] {variable) {term)

| stream [(mode2) , {terml) , {(ID)] {variable) {term2)

| merge [(mode)] (variable) {term)

| (binder) : (term)

Description A term denotes an object whose values depend on the kind of term (terms may
denote values, positions, or streams). In any case, the value of a term may be “undefined”. The
terms are listed above in the decreasing order of the binding power of their operators.

G.1 Basic Terms

Grammar

((term))

value (tid) ?

position (sid) ?

stream (tid) ?

zero {sid)

empty (tid)

old

new

(ID)

D) C[(term) { , (term) } 1)

G Terms 40

[{ID)] @ {term)
[(ID)] # {term)

Description The parenthesized term ((term)) just stands for (term) itself. The constant
value (tid) ? denotes the “unknown” value of type (tid); position (sid) ? denotes the “un-
known” position of stream (sid); stream (tid) ? denotes the “unknown” stream with values
of type (tid). The constant zero (sid) denotes the initial position in stream (sid); empty (tid)
denotes the empty stream with values of type (tid).

The constant old may only occur in the until or while formula of a combining value
or stream term with evaluation mode [strict] (see Sections G.4 and G.5). It denotes the
previous value of the combination (before the combining function integrates the next value).

The constant new may only occur in the until formula of a combining value or stream
term with evaluation mode [strict] (see Sections G.4 and G.5). It denotes the current value
of the combination (after the combining function has integrated the next value).

The variable (/D) denotes the object (value, position, stream) to which it is assigned in the
current context.

The function application (ID) ([{term) { , (term) }]) denotes the result of the application
of the (value, position, stream) function to which it is assigned in the current context.

In the message value term [(ID)] @ (term), {ID) (if given) must denote a stream and (term)
must denote a position in that stream. The term then denotes the message that the stream holds
at that position.

In the message time term [(ID)] # (term), {ID) (if given) must denote a stream and (term)
must denote a position in that stream. The term then denotes the time of the message that the
stream holds at that position (a value of the predefined type time).

Pragmatics The constant zero (sid) may be used to denote in a quantified variable’s upper
bound (see Section L) by the phrase zero (sid) + (TIME) the time of (TIME) units after the
time of the initial message on stream (sid).

The type time is externally mapped to the .NET type System.Int64. The unit of time
depends on the runtime system; it typically is 100 ns (i.e, 107 time units take 1 s).
Example The term

@x

denotes the message at position x in that stream that is referenced by x. If that stream is IP, then

IP@x

means the same.

G.2 Conditional Terms
Grammar

if [[(mode) 1] (formula) then (terml) else (term2)

G Terms 41

Description In this term which denotes conditional selection both (terml) and (term2) must
denote the same kind and type of object: if (formula) yields “true”, its value is that of (terml);
if (formula) yields “false”, its value is that of (term2); if (formula) yields “unknown”, its value
is “unknown”.

If the optional qualifier [(mode)] is not given, or if it is [seq] then (formula) is evaluated first
to decide which of (terml) or (term2) is to be evaluated (i.e., only one of the terms is evaluated).
If the qualifier is given as [par], the formula and the terms are all evaluated in parallel; only
when the evaluation of the formula has completed, the remainder of the evaluation proceeds with
only one of the terms.

Pragmatics The default evaluation for the conditional term is “sequential” to support the usual
intuition that only one of the branches is evaluated; however, the “paralle]” mode should be
considered to avoid unnecessary evaluation delays and corresponding stream buffering require-
ments.

Example The term
if P(x) then F1(x) else F2(x)

returns one of the values F1(x) or F2(x).

G.3 Quantified Position Terms

Grammar

min (variable) {formula)
max (variable) (formula)

Description In both terms, the body (formula) is evaluated in all contexts where the local
position variable introduced by (variable) is bound to all positions denoted by (variable) (see
Section L).

1. In the case of min, if there is some position for which the formula body yields “true” and
for all smaller positions yields “false”, the term denotes this position. Otherwise the term
denotes “unknown”.

2. In the case of max,i f there is some position for which the formula body yields “true” and
for all bigger positions yields “false”, the term denotes this position. Otherwise the term
denotes “unknown”.

Pragmatics Both the elaboration of new formula instances and the evaluation of already cre-
ated instances proceeds simultaneously (for more details, see Section L).

G Terms 42

Example The term
min<IP> x with y <= _ <=# x + 1000 : P(@x)

denotes the smallest position x in stream IP for which P(@x) holds where x is in the range
starting with position y and ending with the largest position that occurs not more than 1000 time
units later than y.

G.4 Quantified Value Terms
Grammar

num (variable) {(formula)
value [(mode2) , {terml) , {ID)] {(variable) {term2)

Description In both terms, the body phrase ({formula) respectively (term2)) is evaluated in
all contexts where the local position variable introduced by (variable) is bound to all positions
allowed by the constraints in {variable) (see Section L).

In the case of num, the term denotes the number of positions for which the formula body
yields “true” provided that for all other positions the body yields “false”; this number is of the
predefined type number. If there is some position for which the formula body yields “unknown”,
also the result of the term is “unknown”.

In the case of value, (ID) must denote a binary value function f and (terml) and (term2)
must denote values. The function’s first parameter must have the same type as (terml) (which
must be also the result type of the function); its second parameter must have the same type as
(term2). The term then denotes the value that results from the combination of the value vy of
(terml) with all values resulting from the evaluations of (term2) (in the following description,
we assume that these are the values vy, v;,v3 listed in the increasing order of the corresponding
positions).

The mandatory evaluation specifier (mode2) describes how the combination proceeds. It can
have one of the following values:

e par: in this case, the two parameters of function f must have the same type. The order in
which the function is applied to the individual values vy, vy, v, v3 is completely undefined,
it could e.g. be

FU(f(v3,v1),v0),v2)))

The result is therefore only uniquely defined if f is both commutative and associative.

e seq: in this case, the two parameters of function f may have different types. The function
is applied in the increasing order of positions yielding the result

FF(f(o,v1),v2),v3)))

e strict: in this case, the function is applied in the same way as in seq. Additionally
however, during the evaluation the constants old and new are defined for access to the
current state of the combination in until and while formulas (see Sections G.1 and F.4).

G Terms 43

Pragmatics For the num term, the evaluation of all instances proceeds in parallel. The type
number is externally mapped to the .NET type System.UInt64.

Also for the value term in the evaluation modes par and seq, the evaluation of (terml) and
of all instances of {term2) proceed in parallel. However, in mode par the combination function
is applied whenever a new result becomes available, while in mode seq the intermediate results
are buffered until the combinations can be performed in the desired order.

In evaluation mode strict, first {terml) is evaluated. The evaluation of a new instance of
(term2) only starts after the evaluation of the previous instance (respectively of the initial value
(terml)) has been completed and its value has been integrated into the intermediate result.

Example The term
value[par,Zero(),Sum]<IP> x with y <= _ <=# x + 1000 : @x

combines the values @x for all positions x in the denoted range in an arbitrary order with the
initial value Zero () by application of the function Sum.

G.5 Quantified Stream Terms

Grammar

stream [[(mode)] | {variable) {term)
stream [(mode2) , {terml) , {ID)] {(variable) {term2)
merge [[(mode)] | {variable) {term)

Description In all terms, the body term ({term) respectively (term2)) is evaluated in all con-
texts where the local position variable introduced by (variable) is bound to all positions denoted
by (variable) (see Section L).

e In the first stream term, (term) must denote a value. The result is the stream of all values
of {term) for the denoted evaluations.

If (mode) is not given or seq, the values are ordered in the increasing order of the corre-
sponding positions; if (mode) is par, the order of the values is undefined (more precisely,
the values are placed on the result stream whenever they become available).

e Also in the second stream term, (term) must denote a value. This construct behaves
exactly like the value term described in Section G.4, except that its result is the stream of
all intermediate combination values. For instance, if (mode2) is seq, the stream consists
of the values

Vo

f(vo,v1)
f(f(vo,v1),v2)
ff(f(o,v1),v2),v3)

G Terms 44

e In the merge term, {term) must denote a stream. The result is the stream that is constructed
by merging the values of all the streams resulting from the denoted evaluations of (term).

If (mode) is seq, the streams are sequentially concatenated (if some stream is infinite, no
message from a subsequent stream will appear in the result stream); if (mode) is not given
par, the order of the messages is undefined (more precisely, the values are placed on the
result stream whenever they become available, i.e., the streams are then indeed “merged”).

In all cases, every messages in the result stream receives as its time the time of the execution
step, when the message has been delivered to the result stream.

Pragmatics It should be noted that the result streams can be finite or infinite.

The default (mode) for stream is seq, because the usual assumption is that stream values are
ordered according to the positions to which the quantified variable is bound; the default (mode)
for merge is par, because the term “merging” hints towards the non-deterministic combination
of stream values.

Example The term

stream[seq,Zero(),Sum]<IP> x with y <= _ <=# x + 1000 : @x

creates the stream of all partial sums of the values in stream IP in the denoted range.

G.6 Terms with Local Bindings

Grammar
(binder) : {term)

Description The body (ferm) is evaluated in a context where a new variable has been intro-
duced and its value been defined by (binder) (see Section J).

Pragmatics The evaluation of the defining phrase in {binder) and of {(term) proceed simulta-
neously; in order words, it is not the case that the variable introduced in (binder) must have its
ultimate value before the evaluation of {(term) can start.

Example The term
value<int> y = F(@x) : G(y)

introduces a local value y defined as F(@x) for the evaluation of G(y).

H Monitors 45

H Monitors

Grammar

{monitor) ::=
(formula)
| monitor (variable) {monitor)

Description A monitor denotes a set of position vectors each of which describes a combination
of positions in the monitored streams that violate a desired property. The elements of the set
emerge as soon as sufficiently many stream positions have been observed to be able to decide
that the property has been violated. Every element is either tagged as a true “violation” (if the
monitored property has indeed value “false”) or just as a “warning” (if the monitored property
has value “unknown”, i.e., if it has encountered some undefined term on which the value of the
property depends).

If the monitor is a plain (formula), the set is either empty or consists of a single position vector
of length 0. The (formula) then expresses a basic proposition (which may due to free or locally
introduced position variables also involve streams). If this property is false, the monitor returns
a position vector of length 0.

If the monitor has form monitor (variable) (monitor), then the (monitor) may have free oc-
currences of the position variable introduced by (variable) (see Section L). If the basic (monitor)
returns for some position p of this variable a position vector of some length n, p is prepended to
this vector yielding a position vector of length n + 1.

The “type” of a monitor is the sequence of stream identifiers denoted in the (variable) sec-
tions of the nested monitor clauses of which the monitor is composed. This sequence must
correspond to the sequence of stream identifiers of the monitor declaration (see Section E.6) in
which the monitor appears:

monitor<S;,S$y,...,S,>M =
monitor<S|> xj ...monitor<S,> x; ...monitor<S,> x, : {(formula)

Pragmatics Logically, a monitor is similar to a universally quantified formula, i.e., monitor
(variable) (monitor) is similar to forall (variable) (monitor). However, the later terminates its
evaluation with result “false” as soon as a violating position has been detected. On the contrary,
the former continues its evaluation to detect and report all violating positions.

Example The monitor defined as

monitor<> M1 = forall<S> x : P(@x);

is a plain formula that is true if stream S holds only values with property P. If some value does
not satisfy this property, the formula is false, and the monitor terminates with an empty position
vector as its result.

The monitor defined as

monitor<S> M2 = monitor<S> x : P(@x)

I Evaluation Modes 46

reports all positions p of stream S that do not satisfy property P by vectors of form (S = p).
The monitor defined as

monitor<S,T> M3 = monitor<S> x: monitor<T> y with x <# _: P(@x,Qy)

monitors two streams S and T for combinations of positions p in S and ¢ in T such that ¢
occurs in time later than p and the stream values at those positions violate property P. Violating
combinations of such positions are reported as vectors of form (S = p,T = g).

I Evaluation Modes

Grammar
(mode) ::= seq | par
{(mode2) ::= seq|par |strict

Description Various formulas (see Section F) and terms (see Section G) may contain evalua-
tion mode indicators. The exact meaning of the indicator is indicated in the description of the
corresponding phrase. Generally speaking:

e Mode seq indicates that the various parts of the phrase are to be evaluated “sequentially”,
i.e., the evaluation of a later part only begins when the evaluations of the previous parts
have been completed.

e Mode par indicates that the various parts of a phrase are to be evaluated “in parallel”, i.e.,
the evaluations of all parts begin as soon as the evaluation of the whole phrase begins.

e Mode strict in combining value terms (see Section G.4) and stream terms (see Sec-
tion G.5) starts the evaluation of one instance of the body term only after the evaluation of
the previous instance has terminated; this allows the use of constants old and new in the
until respectively while clause of the quantified variable (see Section L).

Pragmatics Parallel evaluation minimizes the delays in the evaluation of phrases and corre-
spondingly the requirements to preserve the histories of streams in memory. If the semantics of
the phrase allows parallel evaluation, mode par should be thus generally preferred. An excep-
tion may be the evaluation of conditional formulas (see Section F.3) and conditional terms (see
Section G.2) where the evaluation of both branches may be wasteful.

J Binders

Grammar

(binder) ::=
logical ({ID) = (formula)
| position < {sid) > {ID) = {term)
| value <<(tid) > {(ID) = {term)

K Parameters 47

Description A binder introduces a locally defined variable (/D) in a phrase and assigns it its
value. There are three kinds of binders:

1. A logical binder introduces a logical variable whose value is defined by a (formula).

2. A position binder introduces a position variable for a stream (sid) whose value is defined
by a (term) (which must denote a position in stream (sid)).

3. A value binder introduces a value variable of some type (tid) whose value is defined by
a (term) (which must denote a value of type (tid)).

An inner binding may override the definition of a variable given by an outer binding.

Pragmatics The value of a variable is shared by all subsequent occurrences of the variable,
i.e., multiple occurrences of a variable do not cause multiple evaluations of the defining phrase.
Furthermore, the introduction of a variable by a binding does not block the evaluation of the
phrase in the context of the binding; this evaluation starts even if the value of the variable has
not been defined yet and only blocks when this value is required.
The current implementation assumes that every stream is uniquely identified by a global iden-
tifier; for this reason, binders for stream variables are not supported.

Example The bindings in the phrase
value<int> v = F(@x) : logical p=P(v) : p & Q(Vv)

introduce a local value variable v and a logical variable p in the evaluation of p & & Q(F(v)).
The value of that phrase is the same as that of the phrase

P(F(@x)) && Q(F(@x))

However, while in the later phrase F(@x) is evaluated twice, it is only evaluated once in the
former one.

K Parameters

Grammar

(parameter) ::=
position < (sid) > {ID)
| wvalue < (tid) > {ID)
| stream < {tid) > {ID)

K Parameters 48

Description A parameter describes the kind of argument that a function (see Section E) ac-
cepts in the position of the parameter. There are three kinds of parameters:

1. A position parameter indicates that the argument must be a position for the denoted
stream (sid).

2. A value parameter indicates that the argument must be a value of the denoted type (tid).

3. A stream parameter indicates that the argument must be a stream whose values have the
denoted type (tid).

Position parameters that follow a stream parameter may refer to the identifier (ID) of the
stream parameter as their stream identifier (sid). The function may thus be applied to positions
from various streams.

Pragmatics In internally defined functions, arguments are inlined for the formal parameters.
In externally defined functions, parameters are handled as follows:

1. For a position parameter, the application of the function is delayed until the position
becomes available. If the position is undefined, the result of the function application is
undefined. Otherwise, the position is passed to the external function as a value of the
.NET type System.UInt64.

2. For a value parameter, the application of the function is delayed until the value be-
comes available. If the value is undefined, the result of the function application is un-
defined. Otherwise, the value is passed to the external function as a value of the .NET
type System.Object.

3. For a stream variable, the function can be invoked without delay with a value of the NET
type System.Object[] that contains the values that have appeared on the stream since
the last application of the function.

If the result of the function is not a stream, the function is thus only invoked once with
values that are available on the stream at the time of the function invocation.

However, if the result of the function is a stream, the function is invoked at every exe-
cution step with the values that are available on the stream since the last application (see
Section E.5).

Thus, if a function has a stream parameter, it should also have a stream result to be
pragmatically useful.

Example The function declaration

stream<int>
mergeAdd(stream<int> S1, stream<int> S2, value<int> v);

L Quantified Variables 49

describes the interface of an externally defined function that merges the values of two streams
into a result stream and adds a value to each result. The corresponding externally defined C#
function may have the following interface:

public static System.Object[]
mergeAdd(System.Object[] S1, System.Object[] S2, System.Int64 v)

L Quantified Variables

Grammar

(variable) ::= < {(sid) > {ID)
[with (bound) { and {(bound) }]
{ (constraint) }
[(until |while) (formula)) :

(bound) ::=
(boundvalue) {relation) _
| _ (relation) {boundvalue)
| (boundvalue) {relation) _ (relation) {boundvalue)

(boundvalue) ::= (term) [(+]| -) (TIME)]
(relation) ::= <|<=|<#|<=#

{constraint) ::=
satisfying (formula)
| <(binder)

Description A (variable) declaration may quantify certain formulas (see Section F), terms
(see Section G), and monitors (see Section H) with a position variable (/D) that runs over a
certain (finite or infinite) range of positions of the denoted stream (sid).

The evaluation of such quantified phrases proceeds by creating a sequence of bindings of
variable (ID) to all positions of the denoted range, from the lowest position in the range to the
highest one (in that order). For the generated binding, the various instances of the body of the
phrase are created and evaluated as required by the semantics of the phrase. The creation of new
bindings proceeds simultaneously with the evaluation of the instances: whenever a new binding
can be created, it is used for the creation of a new instance; this instance is added to the pool of
previously created instances and from now on takes part in their subsequent evaluations.

The evaluation of quantified phrases is subject to the following fundamental constraint:

A binding of a position variable to a stream position (and the corresponding in-
stance) is created only after that position has been observed in the stream, i.e.,
when the stream has received a value at that position.

L Quantified Variables 50

This constraint ensures that in an instance of the body of the quantified phrase the value at the
denoted stream position is already available such that the evaluation of the phrase is not blocked
by looking up this value; it also ensures that instances are created “in pace” with the elaboration
of the stream, i.e., that the system is not overloaded by a suddenly created large number of
instances that refer to the future of the stream (and probably will be immediately blocked by
looking up stream values at positions that are not yet available).

The range of the quantified positions may be constrained by an list of bound declarations that
are introduced by the keyword with and separated by and. Each such declaration has the form

(boundvalue) {relation) _ (relation) {boundvalue)

where either part before or after the token _ (which represents the quantified variable itself) can
be omitted. Each (boundvalue) can be one of the following:

1. A (term) that must denote a position: if a position relation (see below) is applied to
this position, this position must be on the same stream as the quantified variable; the
(boundvalue) then denotes this position. If a time relation (see below) is applied to this
position, this position may be on any stream; the whole phrase then denotes the time of
the value in this stream on this position.

2. A phrase (term)+{TIME) or {term)-{TIME) where (term) must denote a position (on any
stream): the (boundvalue) then denotes a time, more concretely, the time of the value in
that stream on that position plus/minus the offset indicated by the (TIME) literal.

Each (relation) can be one of the following:

1. A position relation < or <=: the position indicated to the left must be less than respectively
less than or equal the position to the right; both positions must be on the same stream.

2. A time relation <# or <=#: the time (of the position) indicated to the left must be less than
respectively less than or equal the time (of the position) indicated to the right; both times
may be derived from positions on different streams.

For instance, in the following declaration of a quantified position variable x on stream S
<S> x with y <= _ <# y+1000

the range of x starts at position y (which must denote a position on S); it ends with the last
position whose time is not more than 1000 time units greater than the time of the value at
position y in stream S.

If there is more than one {bound), the constraints of the various bounds are combined; above
example is thus equivalent to the following variable declarations:

<S> x with y <= _ and _ <# y+1000
<S> x with _ <# y+1000 and y <= _

If a variable declaration is constrained by one more more (bound) declarations, the evaluation
of the quantified phrase is subject to the following constraint:

L Quantified Variables 51

The creation of bindings for a position variable (and thus the evaluation of the
quantified phrase) does not start before all positions that are directly referenced in
the (bound) phrases have been observed on their corresponding streams.

Thus in above examples the evaluation of the quantified phrase can only begin when the posi-
tion y has been reached in stream S; this is the only constraint, since only y is directly referenced
in the bound. In particular, it is not necessary that the last position whose time is not more than
1000 time units greater than the time at position y is reached (because not this position is directly
referenced in the bound but only its time; this time can be directly calculated from the time of
the value at position y).

When a binding for a variable has been generated, it may be transformed by a sequence of
(constraint) clauses of one of the following forms:

e satisfying (formula): this clause acts as a “filter”’; if for the generated binding the
(formula) evaluates to “true”, the binding is preserved; if the result is “false”, the binding
is discarded; if the result is “unknown”, the position becomes “unknown” (which may or
may not affect the evaluation of the quantified phrase).

o (binder): this clause extends/overrides the generated binding by the binding for another
local variable (see Section J); this binding may be used in the subsequent clauses of the
<variable> declaration and also in the body of the quantified phrase.

For example, in the variable declaration
<S> x value<int> m = @x satisfying P(m)

a local variable m is introduced that the denotes the value of stream S at the position assigned to
the quantified variable x; if this value does not satisfy the condition P(m), this position is not
considered in the evaluation of the quantified phrase.

The (variable) declaration may be terminated by a clause of one of the following forms:

e until (formula): if the (formula) is satisfied for the current position p of the quantified
variable, then p is the maximum of the quantification range (p itself is included in the
range); no more binding for a position greater than p will be generated

e while (formula): if the (formula) is not satisfied for the current position p of the quanti-
fied variable, then p is not part of the quantification range any more; furthermore, no more
binding for a position greater than p will be generated.

For example, let us assume that 3 is smallest position at which stream S holds a value that
satisfies predicate P. Then the variable declaration

<S> x until P(@x)
denotes the positions 0,1,2,3 while the variable declaration
<S> x while !P(@x)

denotes the positions 0, 1,2.

M ANTLR 4 Grammar 52

Pragmatics The unit of time for a (TIME) value is 1 tick of the .NET framework, which
corresponds to 100 ns. Therefore 1 ms consists of 10 thousand time units and 1 s consists of 10
million time units.

The concept of until respectively while clauses was introduced in order to replace fre-
quently required specification patterns such as

position<S> g = min<S> q with p <= _ : P(@x)
(quantifier) <S> x with p <= x <= q : Q(@x)

by the more efficient form
(quantifier) <S> x with p <= x until P(@x) : Q(@x)

In the first pattern, the evaluation of the (quantifier) phrase blocks until the upper bound q of
the quantification range becomes known; in order to evaluate the body Q(@x) of the phrase,
therefore all stream values of the quantification range have to be buffered. In the second form,
no buffering is necessary: each instance of Q(@x) can be evaluated as soon as the corresponding
binding for the quantified variable x has been generated.

M ANTLR 4 Grammar

In the following, we list the grammar used by the parser generator ANTLR 4 [4] to generate the
lexical and syntactic analyzer for the specification language.

J
// LogicGuard.g4

// LogicGuard ANTLR 4 Grammar

//

// Copyright (C) 2011- Project LogicGuard (RISC, RISC Software, SecureGUARD).
// All Rights Reserved. See http:///www.risc.jku.at/projects/LogicGuard/

f]

grammar LogicGuard;
options
{

language=CSharp3;
3

/] = e

// specifications

/] =
specification: (decls+=declaration EOS)* EOF ;

declaration:

EmptyDeclaration
| “type’ typeid

TypeDeclaration

| ’stream’ <’ typeid ’>’ streamid
StreamDeclaration

M ANTLR 4 Grammar

53

| ’stream’ ’'<’

typeid ’>’ streamid ’(’

StreamFunctionDeclaration

| ’stream’

'<’ typeid ’>’ streamid ’'(’ (params+=parameter (’,

StreamFunctionDefinition

| ’stream’ ’<’

typeid '>’ streamid ’=’ term

StreamDefinition

| ’logical’ logicalid ’'(’ (params+=parameter (’,

LogicalFunctionDeclaration

| ’logical’ logicalid ’'(’ (params+=parameter (’,

LogicalFunctionDefinition

| ’logical’ logicalid ’=

formula

LogicalDefinition

| ’value’

'<’ typeid ’>’ valueid '’

ValueFunctionDeclaration

| ’value’

'<’ typeid >’ valueid ’(’

ValueFunctionDefinition

| ’value’

'<’ typeid ’>’ valueid ’=

term

ValueDefinition

| ’position’

’<’ streamid ’>’ positionid '(’ (params+=parameter (’,

PositionFunctionDefinition

| ’position’

<

streamid ’>’ positionid ’'=

PositionDefinition

| ’monitor’ <’

(sids+=streamid (’,

MonitorDefinition

monitor:
formula

FormulaMonitor

(params+=parameter (’,

(params+=parameter (’,

(params+=parameter (’,’

sids+=streamid)*)? ’>’ monitorid ’

params+=parameter)*)? ')’

params+=parameter)*)? ’)’

params+=parameter)*)? ')’

params+=parameter)*)? ’)’ ’'=’ formula

params+=parameter)*)? ')’

params+=parameter)*)? ’)’

params+=parameter)*)?

term

monitor

| 'monitor’ variable monitor # QuantifiedMonitor

//

// formulas
//

formula:

"’ formula ’)’ #
| ’true’ #
| ’false’ #
| ’logical’ ’'?’ #
| ’defined’ formula #
| ’defined’ term #
| logicalid #
| logicalid '(’ (terms+=term (’,’ terms+=term)*
| 7! formula #
| formula ’&&’ formula #
| formula ’&&’ [’ seq ']’ formula #
| formula ’||’ formula #
| formula ’||’ [’ seq ']’ formula #
| formula ’=>’ formula #
| formula ’=>" '[’ seq ']’ formula #
| formula ’<=>’ formula #
| formula ’<=>" [’ seq ']’ formula #
| ’if’ formula ’then’ formula ’else’ formula #

ParenthesizedFormula
TrueFormula
FalseFormula
UnknownFormula
DefinedFormulaFormula
DefinedTermFormula
VariableFormula

)?)’ # ApplicationFormula
NotFormula
AndFormula
AndFormulaSeq
OrFormula
OrFormulaSeq
ImpliesFormula
ImpliesFormulaSeq
EquivalentFormula
EquivalentFormulaSeq
ConditionalFormula

term

!)!

term

term

M ANTLR 4 Grammar

54

"forall’ variable formula
’exists’ variable formula
binder ’:’ formula

'if’ ’[’ seq ']’ formula ’'then’ formula ’else’ formula # ConditionalFormulaSeq
ForallFormula
ExistsFormula
BinderFormula

S

term: termcore (’'[’ termannotation ']’)? ;
termannotation:

’position’ <
| ’value’ ’<’ typeid >’
| ’stream’ <’ typeid ’>’

streamid >’ # PositionTermType
ValueTermType
StreamTermType

termcore:

(" term ')’

'value’ <’ typeid >’ '?’
‘stream’ <’ typeid >’ ’7?’
"stream’ ’<’ typeid >’ ’empty’

'position’ <’ streamid >’ ’?’
’zero’ ’'<’ streamid ’>’

‘old’

‘new’

ident

ident (' (terms+=term (’,’ terms+=term)*)? ’)’

streamid '@’ term

'@’ term
streamid ’'#’ term
"#' term

"if’ formula ’then’ term ’else’ term

"if’ ’[’ seq ']’ formula ’'then’ term ’else’ term
'min’ variable formula

'max’ variable formula

‘num’ variable formula

'value’ [’ seq2 ’,’ term ’,’ valueid ']’ variable term
"stream’ ’[’ seq ’]’ variable term
"stream’ '[’ seq2 ’,’ term ’,’ valueid ']’ variable term
'merge’ '[’seq ']’ variable term
binder ’:’ term

;

seq:

"seq’ # SeqTag
| ’par’ # ParTag

seq2:
"seq’ # Seq2Tag
| ’par’ # Par2Tag

| ’strict’ # Strict2Tag

F o O OH W O OH O OH OH OH W OH KW KK H KW KK H R

ParenthesizedTerm
UnknownValueTerm
UnknownStreamTerm
EmptyStreamTerm
UnknownPositionTerm
ZeroPositionTerm
0ldValueTerm
NewValueTerm
VariableTerm
ApplicationTerm
ContentValueTerm
ContentValueTermCore
TimeValueTerm
TimeValueTermCore
ConditionalTerm
ConditionalTermSeq
MinPositionTerm
MaxPositionTerm
NumberValueTerm
CombineValueTerm
ConstructStreamTerm
CombineStreamTerm
MergeStreamTerm
BinderTerm

M ANTLR 4 Grammar 55

/e
// auxiliaries
e Gt EEEE R
binder:

’logical’ logicalid ’=’ formula # LogicalBinder
| ’position’ ’'<’ streamid ’>’ positionid '=’ term # PositionBinder

| ’value’ ’<’ typeid ’>’ valueid ’'=’ term # ValueBinder

parameter:

’position’ ’<’ streamid >’ positionid # PositionParameter
| ’value’ ’<’ typeid ’>’ valueid # ValueParameter
| ’stream’ <’ typeid ’>’ streamid # StreamParameter

variable:
’<’ streamid ’>’ positionid
(’with’ bounds+=bound (’and’ bounds+=bound)*)?
(constraints+=constraint)*
(until formula)?

until:
‘until’ # UntilTag
| ’while’ # WhileTag

bound:
boundvalue relation ’_’ # LeftBound
| ’_’ relation boundvalue # RightBound
| boundvalue relation '_’ relation boundvalue # LeftRightBound
relation:
<’ # LessPosition

| <=’ # LessEqualPosition
| "<#’ # LessTime
| ’<=#’ # LessEqualTime

boundvalue:

term # TermBoundValue
| term '+’ TIME # PlusBoundValue
| term -’ TIME # MinusBoundValue

y
constraint:

"satisfying’ formula # FormulaConstraint
| binder # BinderConstraint

M ANTLR 4 Grammar

typeid: ident;
streamid: ident;
logicalid: ident;
positionid: ident;
valueid: ident;
monitorid: ident;

ident: IDENT ;

/]

// lexical rules

/e

// reserve leading underscore for internal identifiers
IDENT : [a-zA-Z][a-zA-Z_0-9]* ;

TIME : [0-9]+ ;

EOS 1 ;' ;

WHITESPACE : [\t\r\n\f]+ -> skip ;
LINECOMMENT : ’//’ .*? ’\r’? (’\n’ | EOF) -> skip ;
COMMENT D T/% kP %0 s gkip

// matches any other character
ERROR : . ;

J] e
// end of file

e

	Introduction
	A Quick Start
	The Execution Model
	Some Sample Specifications
	Future Work
	Running the System
	Lexical and Syntactic Analysis
	Include Files
	Comments
	Tokens

	Type System
	Specifications
	Declarations
	Type Declarations
	Logical Declarations
	Value Declarations
	Position Declarations
	Stream Declarations
	Monitor Declarations

	Formulas
	Atomic Formulas
	Propositional Formulas
	Conditional Formulas
	Quantified Formulas
	Formulas with Local Bindings

	Terms
	Basic Terms
	Conditional Terms
	Quantified Position Terms
	Quantified Value Terms
	Quantified Stream Terms
	Terms with Local Bindings

	Monitors
	Evaluation Modes
	Binders
	Parameters
	Quantified Variables
	ANTLR 4 Grammar

