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Abstract

This document describes the use of the RISC ProofNavigator, an interactive prov-
ing assistant for program and system reasoning developed at the Research Institute
for Symbolic Computation (RISC).
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Chapter 1

Introduction

This document describes the use of the RISC ProofNavigator, an interactive prov-
ing assistant for program and system reasoning developed at the Research Institute
for Symbolic Computation (RISC).

Background In the last two decades, a variety of interactive proving assistants
and automatic theorem provers have emerged, e.g. PVS [12, 14], Isabelle [11, 9],
Coq [3, 7], or also the Theorema system developed at RISC [4, 18]; see [19]
for a comparative overview. Thus naturally the question arises what exactly the
motivation is to develop yet another such tool. The overall context of the work
presented in this document is the long-term objective to develop a program and
system exploration environment that has a formal reasoning component at its core.
Based on a number of use cases derived from the demands of such an environment
(some of these cases are presented in this document), the author evaluated from
2004 to 2005 several prominent systems. The results were mixed.

While we achieved some quite good success (most notably with PVS), we also en-
countered various problems and nuisances, especially with the navigation within
proofs, the presentation of proof states, the treatment of arithmetic, and the general
interaction of the user with the systems; we frequently found that the elaboration
of proofs was more difficult than we considered necessary. Without any doubt,
some of these problems were caused by the author’s inabilities and could be over-
come by more training and experience with the corresponding systems (we only
spent a couple of weeks on each) but such a demand already represents a con-
siderable hurdle e.g. in educational scenarios. We felt that the learning curve for
using a proving assistant should not be so steep.

From these experiments, we also draw a couple of important conclusions for the
pragmatics of using a proving assistant:
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• Convenient navigation in large proof trees is essential; the user gets easily
lost in large proofs.

• The aggressive simplification of proof state descriptions and their comfort-
able presentation is important; the user quickly looses the intuition about
the high-level proving problem represented by a proof state.

• Decent automation in dealing with arithmetic is important; a subtype re-
lationship between integers and reals simplifies some proofs considerably
(compared to the necessity to construct mappings between these types).

• Automatic search for proofs based on elaborate strategies is rarely of much
help; typically it is the combination of semi-automatic proof decomposition,
critical hints given by the user, and the application of decision procedures
for ground theories that shows practical success.

Not all of the existing proving assistants meet these demands equally well; all
in all, we were most satisfied with PVS (consequently various concepts in the
RISC ProofNavigator were designed after the model of PVS, also its specification
language is close to that of PVS). However, the PVS user interface has apparently
come of age and the software is not open source which is especially a problem for
its integration into a larger context.

The RISC ProofNavigator Based on above investigations the author estimated
that it would be fruitful to write from scratch a proof assistant according to his
taste. Furthermore, this task should be possible with reasonable effort by mak-
ing use of existing software that decides about the satisfiability of formulas over
certain combinations of ground theories (and potentially performs related tasks
such as formula simplification and counterexample generation); the really hard
core logic and mathematics is in this software, not in the assistant itself. Dur-
ing the last couple of years, a couple of tools for solving this SMT (satisfiability
modulo theories) problem have emerged, see the recently established SMT-LIB
initiative and the associated SMT-COMP solver competition series [17]. After a
(rather) short evaluation, we decided to use the Cooperating Validity Checker Lite
(CVCL) Version 2.0 as a promising candidate [2, 1]; it is open software, supports
the most important theories needed for program verification, apparently shows
good results, and its specification language is already close to that of PVS.

Thus we started in started in the fall of 2005 with the development of a new prov-
ing assistant. This document describes the result of our efforts called RISC Proof-
Navigator [15, 16] that aims to meet the demands addressed above. The system is
freely available under the GNU Public License at
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http://www.risc.uni-linz.ac.at
/research/formal/software/ProofNavigator

It has been reasonably well tested with (also large) verification examples but is
certainly not free of bugs; error reports may be sent to the author at

Wolfgang.Schreiner@risc.uni-linz.ac.at

who commits himself to the maintenance of the software.

While most proving assistants are written in (semi-)declarative languages such as
ML, Lisp, or Mathematica, the RISC ProofNavigator is implemented in Java, pri-
marily for the following reasons: this language has free implementations with
good performance on virtually every kind of machine, uses a runtime system
with garbage collection (in the beginning of the 1990s still the exclusive domain
of declarative languages and then a major reason to use these languages), has a
rather clear semantics and supports modern programming language principles (a
type system with interfaces and inheritance), is well supported by development
frameworks, tools, and libraries, and has a large user community, in industry as
well as in academia (many students nowadays learn programming in Java). These
advantages are (for our purpose) more important than those of declarative lan-
guages, such as the simpler declarative semantics (ML) or the possibility to write
programs in a rule-based style (Mathematica).

The graphical user interface of the RISC ProofNavigator is written with the help
of the Eclipse Standard Widget Toolkit (SWT) which provides a Java wrapper
for a native widget set of the underlying machine such that the user interface
is responsive and good-looking; the SWT “browser” component is also the core
of the system’s presentation of proof states (which are rendered as documents
containing a combination of XHTML and MathML [6]).

Document Structure The remainder of the document is split in two parts:

• Chapters 2–4 essentially represent a tutorial for the RISC ProofNavigator
based on examples contained in the software distribution; for learning to
use the system, we recommend to study this material in sequence.

• Appendices A–F essentially represent a reference manual with a full expla-
nation of the system’s specification language and the commands for creating
proofs; this material can be studied on demand.
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Third Party Software The RISC ProofNavigator uses the following third party
software; detailed references can be found in the README file of the distribution
listed on page 111:

• CVC Lite 2.0

• RIACA OpenMath Library 2.0

• General Purpose Hash Function Algorithms Library

• ANTLR 2.7.6b2

• Eclipse Standard Widget Toolkit 3.3

• Mozilla Firefox 2.0.X or SeaMonkey 1.1.X

• GIMP Toolkit GTK+ 2.X

• Sun JDK 5.0

• Tango Icon Library

Many thanks to the respective authors for their great work.
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User Interface

In the following we explain the main points of interaction with the user interface
of the RISC ProofNavigator. We assume that the system is appropriately installed
(see Appendix C) such that after typing

ProofNavigator &

a window pops up that displays the startup screen shown in Figure 2.1.

This window has three menus at the top:

File The menu entry “Read File” allows to read a sequence of declarations from
a file; “Restart Session” resets the system to its initial state; “Quit” lets the
system terminate.

Options The entry “No Automatic Simplification” switches off automatic for-
mula simplifications (which is useful for step-by-step proof presentations),
“Automatic Simplification” switches it on again. “Bigger Font” selects a
larger display font (which is mainly useful for demonstrations), “Smaller
Font” selects the default font again.

Help The entry “Online Manual” displays in the “Declarations” area the hyper-
text version of this document; the entry “About ProofNavigator” displays
the copyright message.

The main area of the window is split into three areas (whose borders may be
dragged by the mouse cursor):
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Figure 2.1: ProofNavigator Startup Window

Proof Tree This area illustrates the skeleton structure of the proof which is cur-
rently investigated respectively displayed. It mainly serves for easy naviga-
tion through a proof.

Declarations This area initially shows a copyright message. Later it displays
the declarations entered by the user in a pretty-printed form which closely
resembles the usual mathematical notation (while the output window below
shows a corresponding plain text notation). In proving mode, this area is
labelled “Proof State” and typically displays the open proof state currently
investigated by the user (the button “View Declarations” below this area is
then enabled to return to the declaration view).

Input/Output This area consists of an input field where the user may type in
declarations and commands, an output field where the effect of the user
input is shown as plain text, and a row of (possibly disabled) buttons.
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In the input field, some keys have a special interpretation:

Arrow Up Go to the previous command in the history buffer (a cyclic
buffer of the most recently entered commands).

Arrow Down Go to the next command in the history buffer.

Ctrl+a Go to the begin of the line.

Ctrl+e Go to the end of the line.

Tab Go to the next occurrence of template parameter [] (see page 17).

The button row consists of the following elements (from left to right):

Proof Navigation

[Previous Open State] This button triggers the command prev
described on page 88: the previous element in the list of open
proof states becomes the current state.
[Next Open State] This button triggers the command next de-
scribed on page 88: the next element in the list of open proof
states becomes the current state.

[Undo Command] This button triggers the command undo de-
scribed on page 88: the effect of the command executed in the
parent of the current state is undone.

[Redo Command] This button triggers the command redo de-
scribed on page 88: the effect of the undo command that led to
the current state is undone.

Proof Control

[Scatter State] This button triggers the command scatter de-
scribed on page 92: applying various proving rules, the current
state is scattered into a number of simpler proof states.
[Decompose State] This button triggers the proving command
decompose described on page 93: applying various proving
rules, the formulas in the current proof state are decomposed to
yield a single simpler proof state.
[Split State] This button triggers the command split described
on page 94: applying various proving rules to the goal of the cur-
rent state, this state is split into a number of proof states with
simpler goals.
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[Generate Counterexample] This button triggers the command
counterexample described on page 90: a possible refutation
of the current proof state is generated and displayed.
[Execute “auto” also in Sibling States] This button triggers the
command autostar described on page 97: the command auto
(see the next button) is applied to the current state and to its sub-
sequent siblings.
[Close State by Automatic Formula Instantiation] This button
triggers the command auto described on page 98: an attempt is
made to close the current state by the automatic instantiation of
the quantified formulas in the state.
[Simplify State] This button is only active if “No Automatic Sim-
plification” has been selected in the “Options” menu; it triggers
the command simplify described on page 99 to simplify all
formulas in the current state.
[Abort Prover Activity] This button aborts the current activity of
the prover as described on page 91.
[Command List] This button lets a menu pop up that displays
all available commands and command templates. By selecting a
command from this menu, the command is executed in the current
state. By selecting a template from this menu, the template is
copied into the input area for instantiating the template parameters
before execution.

Proof Exit

[Quit Proof] This button triggers the command quit described
on page 87: after confirmation by the user, the current proof is
terminated and saved to file.

By invoking the system with

ProofNavigator --nogui

(see Appendix D) the system starts without the graphical user interface in plain
text mode: declarations and commands are entered on the command line (i.e. read
from the standard input stream) and results are printed in plain text form to the
standard output stream. Most system features are also available in this mode1.

1The only major exception is the functionality of the “Abort” button .



Chapter 3

Examples

In this chapter, we are going to illustrate the features of the RISC ProofNavigator
by a series of small examples of specifications and proofs. The examples (that
are included in the software distribution) are designed for consecutive study and
introduce language and system features on demand, i.e., at those points where they
are needed. A systematic presentation of these features is given in the appendix.

3.1 An Induction Proof

Our first example describes the proof of the formula

n

∑
i=0

i =
(n+1) ·n

2

using two axioms that uniquely characterize (“recursively define”) the summation
quantifier for every (natural number) upper bound of the summation domain:

0

∑
i=0

i = 0

n

∑
i=0

i = n+
n−1

∑
i=0

i (n > 0)

We start our proving session by typing the command

newcontext "sum";
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(note the trailing semicolon) in the input field. This command described on
page 83 starts a new session by erasing all previous declarations (if any) and creat-
ing a subdirectory sum of the current working directory in which the subsequently
created proof will be persistently stored after the session. The system is now in
“declaration mode” i.e. it accepts declarations that are entered by the user.

We now enter a constant declaration (note the trailing semicolon)

sum: NAT->NAT;

which introduces a function sum from the natural numbers to the natural numbers
(denoted by the builtin atomic type NAT). This function will take the role of the
summation quantifier: given a number n, it shall return ∑n

i=0 i. We correspondingly
declare two axioms

S1: AXIOM sum(0)=0;
S2: AXIOM FORALL(n:NAT): n>0 => sum(n)=n+sum(n-1);

Each axiom consists of a name (e.g. S1) and of a formula (a boolean expression)
which is from now on assumed true (e.g. sum(0)=0). The language for writing
formulas includes builtin constants (e.g. 0 and 1), functions (e.g. + and -), predi-
cates (e.g. = and <), logical connectives (e.g. the implication =>) and quantifiers
(e.g. the universal quantifier FORALL).

Finally we declare the formula

S: FORMULA FORALL(n:NAT): sum(n) = (n+1)*n/2;

where the keyword FORMULA (rather than AXIOM) indicates that the truth of this
formula needs proof.

Each time a constant is declared, the “Declarations” area is updated by a pretty-
printed version of the declaration such that it ultimately looks as follows:

The box to the left of each declaration is an active element; by moving the mouse
cursor over it it turns blue and reveals a menu that exhibits a number of commands
applicable to the declaration. In the case of function sum and axioms S1 and S2
the only commands displayed are for printing the declarations in text form in the
output area. For formula S, the menu is more interesting:
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Figure 3.1: The System in Proving Mode

By selecting the menu entry “prove S” (or alternatively typing the command
prove S; in the input field), the system switches from “declaration mode” to
“proving mode” and start a proof of formula S. The screen now displays the con-
tent shown in Figure 3.1.

Proving the Formula The proof consists of a single state with label [tca] which
is indicated as the “current state” by the red line in the “Proof Tree” area. The
three-character state label helps to uniquely identify a state within a proof; it is
automatically generated and does not carry any meaning.
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The “Proof State” area presents the state as1

The presentation consists of the value constants visible in the state2 (sum) and of
two sequences of labelled formulas: the assumptions (formulas [lxe] and [d3i])
and the goals (formula [byu]) separated by a horizontal line. The assumptions
are obviously the contents of the axioms S1 and S2; the goal is the content of the
formula S to be proved.

The logical interpretation of this presentation is that of a sequent (see page 79);
simply put our task is to prove that the conjunction of the assumptions (the for-
mulas above the line) logically implies the disjunction of the goals (the formulas
below the line). In our example, we thus have to prove that from the assumptions
[lxe] and [d3i] the goal [byu] follows3.

A formula label consists typically of three characters that are automatically gen-
erated from the text of the formula (such that the same formula in different states
has the same label) and does not carry any meaning. Formula labels are active el-
ements; by moving the mouse cursor over a label, it turns blue and reveals a menu
with a list of proof commands that are applicable to this formula. For instance,
the following menu associated to goal [byu]

lists (among others) the command induction [] in byu which applies the
proof technique of mathematical induction (see page 95) to formula [byu]; this
formula must be a universally quantified formula with a variable from the domain
of natural numbers. Actually, the menu entry is just a template with a parameter

1The output field displays a plain text description of the state.
2By clicking on the link “with types”, one may investigate the types of the constants.
3If there is just a single goal, this goal has to be implied. If there is no goal at all, the formula

“false” has to be implied (which corresponds to a proof by contradiction).
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indicated by the token [] that has to be instantiated by the name of the variable
on which to run the induction (in general, the quantifier may bind more than one
variable). Selecting the template from the menu copies the template into the input
area; the cursor is already placed on the parameter4 such that one just has to type
the variable name n to get the full command

induction n in byu;

We might have typed in the command also directly on the command line; the
formula menu just provided a convenient short-cut which saves us some typing
effort (we will discuss later the various possibilities to enter a proof command).
When the “Enter” key is pressed, the command is executed which updates the
“Proof Tree” area to:

The original proof state [tca] is now labelled by the command “induction n in byu”
applied in that state; furthermore it has received two children [dbj] and [ebj] which
represent two proof obligations that replace the original obligation: the induction
base and the induction step.

The induction base [dbj] was automatically proved by the external decision pro-
cedure CVCL which is indicated by the blue color and the comment “proved
(CVCL)”. Clicking on the corresponding line in the “Proof Tree” shows this al-
ready proved state in more detail:

4If the template has multiple occurrences of [], pressing the “Tab” key moves the cursor to
the next occurrence.
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Apparently the new goal [nfq] is an instantiation of the original goal where the
variable n is replaced by the constant 0 (a red bar is shown to the right of the goal
to indicate that this is a formula that did not occur in the parent state). Since this
goal is (after a bit of simplification) implied by the assumption [d3i], the system
was able to prove it without human intervention.

Clicking on the line with label [ebj] in the proof tree returns our focus to the proof
state that actually requires our attention:

This state represents the induction step; it contains the declaration of a new natural
number constant n0, an additional assumption [zkc] (representing the version of
the original goal where the variable n is instantiated by n0) and a new goal [hsf]
(representing the version of the original goal where the variable n is instantiated by
the term 1+n0); red bars are shown to the right of these two formulas to indicate
that they are new.

Actually, the system implicitly simplifies all formulas before it presents them to
the user. Thus the formulas [zkc] and [hsf] are not syntactically equal but only
logically equivalent to the instantiations

(1) sum(n0) = (n0+1)·n0
2

(2) sum(1+n0) = ((1+n0)+1)·(1+n0)
2

of the original goal. While it is easy to see that formula [zkc] is derived from
Equation (1) by simple arithmetic, it is not so easy to see that formula [hsf] is
indeed equivalent to Equation (2). The derivation

sum(1+n0) = ((1+n0)+1)·(1+n0)
2 = (n0+2)·(n0+1)

2

= n2
0+3n0+2

2 = (n2
0+n0)+2n0+2

2
(1)
= 2sum(n0)+2n0+2

2
= sum(n0)+n0 +1 = 1+ sum(n0)+n0

shows that this is indeed the case under the assumption that Equation (1) holds
(which is used in one step of the derivation). Such automatically performed trans-
formations may help to considerably simplify a proof state, but their correctness
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may not always be immediately obvious to the user. Later we will also show a
version of the proof with automatic simplification turned off.

In order to close the resulting proof state, we have to apply the knowledge con-
tained in assumption [lxe]. By moving the mouse cursor over the label of this
formula, a menu is revealed that shows us two possibilities to achieve this:

The menu entry for the command auto lxe promises an automatic instantiation
of formula [lxe] while the entry for the command template instantiate []
in lxe asks for an explicit instantiation term for n. Although we may prefer the
simpler auto lxe, it is in our example easy to see that the required instantia-
tion term is n0 + 1 such that we may also select the template and instantiate it as
follows:

instantiate n 0+1 in lxe;

(as one can see in the output area, the plain text form of n0 is n 0).

In either case (regardless of choosing auto or instantiate), the system prints
in the output area

Proof state [k5f] is closed by decision procedure.
Formula S is proved. QED.
Proof saved (browse file S_index.xhtml).
Quit proof of formula S (use ’proof S’ to see proof).

which indicates that formula S has been proved and that the system has returned
to declaration mode. The menu of formula S is now



3.1 An Induction Proof 21

Its head line states that the formula has a proof with the following status (see
page 80): the proof is closed (it does not contain unproved states), trusted (it does
not depend on declarations that have been changed since the proof was created),
and absolute (it does not depend on other unproved formulas). Selecting the com-
mand proof S from the menu displays in the “Proof Tree” area the structure of
this proof:

All proof states are shown in blue indicating the successful completion of the
proof. We see that state [ebj] corresponding to the induction step is labelled by
the command instantiate n 0+1 in lxewhich has created a single child
state [k5f]; clicking on this state shows its presentation in the “Proof State” area:

This state contains a single additional assumption [lse] representing the version
of [lxe] where variable n is instantiated by the term n0 + 1. With the help of this
assumption, the external decision procedure CVCL was able to close the proof
state as indicated by the state comment “closed (CVCL)”. If the command auto
lxe is applied instead, the proof state contains a large number of automatically
deduced instantiations, among them the one shown above.

Switching Off Automatic Simplification As we have seen above, automatic
transformations of formulas are handy but may sometimes be confusing. We may
thus select the menu option “No Automatic Simplifications” which triggers the
execution of the command
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option autosimp="false";

which prevents in subsequently created proofs the automatic application of such
simplifications (automatic simplification may be again switched on during a proof).
We will now repeat above proof in this mode. We start by selecting in the menu
of formula S the entry “prove S: Construct Proof” and then answer the question

Formula S already has a proof
(proof status: trusted, closed, absolute)

Open existing proof (y/n)? n

by entering “n”. This starts a new proof with the following root state:

The only difference to the root state of the previous proof is the annotation “no
autosimp” which indicates that no automatic simplification is performed in the
course of this proof. We again execute

induction n in byu;

which yields two child states. As before, the first state [dbj] representing the in-
duction base is closed automatically. However, the second state [ebj] representing
the induction step now looks as follows:
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The formula [uaa] representing the induction hypothesis and the formula [tdk]
representing the induction goal have not been simplified; they are exact copies
of the original formula with the universally quantified variable n replaced by the
values n0 and n0 +1, respectively. If we now execute

instantiate n 0+1 in lxe;

with get the proof state

where the formula [lse] is the instantiated version of [lxe] without further sim-
plification. We may now select from the label menu of each formula, say [uaa],
the entry “Simplify Formula”; this triggers the command simplify uaawhich
yields a new state [uq6] with the simplified formula [zkc]:

Alternatively, we may just press the button (“Simplify State”) which triggers
the command simplify that simplifies all formulas in the current state (as the
default simplification mode always does): indeed, when we press this button, the
formulas are simplified in such a way that the external decision procedure recog-
nizes the goal as true and the proof state is closed.

Instead of pressing , we might have also chosen “Automatic Simplification”
from the “Options” menu to revert to the default simplification mode (which
would have also closed the proof state immediately); by switching the automatic
simplification mode selectively on and off, different parts of a (bigger) proof may
thus operate in different modes.
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Replaying a Proof The software distribution contains in directory examples
a text file sum.pn with the declarations given in this section and a subdirectory
examples/sum with the proof as shown above. Rather than typing in the dec-
larations manually, one may just go to examples, start the system and issue the
command

read "sum.pn";

or just select the file from the GUI’s menu entry “File/Read File”. The system
then reads the file, executes its declarations, and generates the output

read "sum.pn";
Value sum:NAT->NAT.
Formula S1.
Formula S2.
Formula S.
Proof read (proof status: trusted, closed, absolute).
File sum.pn read.

which indicates that the previously generated proof is now read from file. Actu-
ally, only a proof skeleton is read consisting of the commands performed to create
the proof: while the proof tree may be still displayed by command proof S,
clicking on the individual nodes of the tree only shows empty proof states. In or-
der to re-generate also the states, the proof has to be replayed. This is achieved by
simply executing the command prove S which will yield the following dialog:

prove S;
Formula S already has a (skeleton) proof
(proof status: trusted, closed, absolute)

Replay skeleton proof (y/n)? y
Proof state [dbj] is closed by decision procedure.
Proof state [k5f] is closed by decision procedure.
Proof replay successful.
Use ’proof S’ to see proof.

After typing “y” to the question “Replay skeleton proof (y/n)?”, the system exe-
cutes the proof commands while showing in the “Proof Tree” its progress. When
the proof has been replayed, also the proof states can be displayed again.

The system keeps automatically track of the status of the declarations on which a
proof depends; if some declaration has been changed since the time the proof was
generated, the proof status is shown as “untrusted” which indicates that the proof
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replay might give errors. Replaying an untrusted proof resets its status to “trusted”
(but possibly also from “closed” to “open”, because some proof commands may
yield errors such that some proof states cannot be closed any more). This au-
tomatic tracking of dependencies is a very helpful feature in the production of
real-world proof where it is frequently the case that during the proof development
some of the declarations change.

This first example should have given a first intuition about the style of interaction
with the system. In the next section, we will illustrate more of its features by a
more elaborate example.

3.2 A User-Defined Datatype

This section deals with a constructive definition of the datatype “array” and the
proof that this definition is adequate with respect to the fundamental properties
that we expect of arrays. Such a datatype is useful for verifications of programs
operating on arrays; one such verification is shown in the next section. The def-
inition of the datatype also illustrates more features of the specification language
of our system.

This specification language already includes a type constructor ARRAY such that
we can build, given arbitrary types INDEX and ELEM, the type ARRAY INDEX
OF ELEM; the elements of this type map every value of type INDEX to a value of
type ELEM. For our purpose, we may define INDEX as NAT but then encounter
the problem that a programming language array has a finite length which needs to
be properly represented, too.

The Declarations These considerations lead us to the following type declara-
tions (see page 77):

INDEX: TYPE = NAT;
ELEM: TYPE;
ARR: TYPE = [INDEX, ARRAY INDEX OF ELEM];

These declarations introduce a type constant INDEX (which is identified with
NAT), a type constant ELEM (which remains undefined and is thus assumed to
denote a type different from all other types), and a type constant ARR. This type is
defined in the declaration as the domain of all binary tuples whose first component
is of type INDEX (representing the length of the array, i.e., the first index that is
not in use by the array) and whose second component is of type ARRAY INDEX
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OF ELEM (representing the actual content of the array, i.e. the mapping of array
indices to array elements).

In subsequent value declarations (see page 77), we introduce various auxiliary
constants whose values remain undefined and that serve as error signals:

any: ARRAY INDEX OF ELEM;
anyelem: ELEM;
anyarray: ARR;

We also define the following auxiliary function constant:

content: ARR -> (ARRAY INDEX OF ELEM) =
LAMBDA(a:ARR): a.1;

The declaration of a function constant is just the declaration of a value constant
of function type, in our case a constant content of type ARR -> (ARRAY INDEX
OF ELEM). The value of this function is defined by the function value expression
(see page 73) LAMBDA(a:ARR): a.1 which denotes the function that, given an
argument a of type ARR, returns its second component a.1, i.e. the content of the
array (the notation a.i denotes component i of tuple a; components are numbered
starting with 0).

With the help of these auxiliary notions, we define our core functions on arrays:

length: ARR -> INDEX =
LAMBDA(a:ARR): a.0;

new: INDEX -> ARR =
LAMBDA(n:INDEX): (n, any);

put: (ARR, INDEX, ELEM) -> ARR =
LAMBDA(a:ARR, i:INDEX, e:ELEM):
IF i < length(a)
THEN (length(a), content(a) WITH [i]:=e)
ELSE anyarray

ENDIF;
get: (ARR, INDEX) -> ELEM =
LAMBDA(a:ARR, i:INDEX):
IF i < length(a)
THEN content(a)[i]
ELSE anyelem

ENDIF;

The meaning of these definitions is as follows:
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• Function length takes an array as its argument and returns the array’s first
component, i.e., its length.

• Function new takes an index (natural number) n and returns an array (tuple)
of length (first component) n and content (second component) any (the tuple
expression (a,b) denotes a tuple of two components a and b , see page 75).

• Function put takes an array a, an index i, and an element e. The value of
the function is defined by a conditional expression of form IF E1 THEN
E2 ELSE E3 ENDIF; the expression denotes E2, if the boolean value E1 is
true, and E2, otherwise (see page 72). Consequently, if i is not in the index
range of a, the function returns the array anyarray (signalling an error);
otherwise it returns an array that is identical to a except that its content at
index i is e (the array update expression A WITH [I]:=E takes an ARRAY
value A, an index I in the domain of A, and an element E in the range of
A; it returns an ARR value that is identical to A except that it maps I to E,
see page 74).

• Function get takes an array a and an index i. If i is not in the index range of
a, the function returns the element anyelem (signalling an error); otherwise
it returns the element of the content of a at index i (the array value expres-
sion A[I] takes an ARRAY value A and an index I in the domain of A; it
returns the element of A at index I , see page 74).

Proving the Array Axioms The adequacy of these definitions is stated by the
following formula declarations (see page 78):

length1: FORMULA
FORALL(n:INDEX): length(new(n)) = n;

length2: FORMULA
FORALL(a:ARR, i:INDEX, e:ELEM):
i < length(a) =>
length(put(a, i, e)) = length(a);

get1: FORMULA
FORALL(a:ARR, i:INDEX, e:ELEM):
i < length(a) => get(put(a, i, e), i) = e;

get2: FORMULA
FORALL(a:ARR, i, j:INDEX, e:ELEM):
i < length(a) AND j < length(a) AND i /= j =>
get(put(a, i, e), j) = get(a, j);
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These declarations state that the functions defined above obey the laws expected
from arrays: length1 says that the request to allocate an array of length n indeed
yields an array of this length; length2 states that putting an element into an array at
a valid index does not change the length of the array; get1 says that consequently
looking up this array at that index yields the element put there; get2 says that
looking up this array at any other valid index yields the original element there.

The pretty-printed versions of the declarations are shown below:



3.2 A User-Defined Datatype 29

The strategy for proving formulas length1, length2, get1, and get2 is in all cases
the same: we expand the constants by their definitions and apply the usual decom-
position rules to get rid of the universal quantifier (FORALL) and of the logical
connectives implication (=>) and conjunction (AND). The resulting proof states
have only atomic formulas and the system can close these states automatically.
We demonstrate this strategy in detail by the proof of the most complex formula
get2 (the other proofs are analogous).

Selecting the command prove get2 from the menu of formula get2 yields the
initial proof state5

This state labelled [adu] consists of a single goal [vv6] representing the content of
formula get2. To expand in this proof state all occurrences of the defined constants
to their values, we apply the command (see page 102)

5The following screenshots of proof states were taken from the already completed proof; the
proof state headers listing the applied proof commands and the links to the generated child states
are initially not visible.
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expand length, get, put, content;

The command may be typed in the input area; alternatively, we may press the
“Command List” button [ , select from the popup menu the command template
expand [], instantiate the template parameter and hit the “Enter” key. Even
quicker, moving the mouse cursor over the label [vv6] reveals a formula menu
from which the more special template expand [] in vv6 can be selected and
instantiated; the resulting command performs instantiations only in this formula
(which has in the current state with a single formula the same net effect).

In any case, the expansion yields a single child state [c3b] of the following form:

The state has a single goal [d5q] which is the result of the expansion of all con-
stants in the parent’s goal [vv6]. The formula is now a bit clumsy; we become
unsure whether we have applied the right strategy and press the “Undo” button

to undo the effect (see page 88) of the expansion and return to the parent state
[adu] after discarding the generated state [c3b]. On the other hand, we were per-
haps too anxious and should unperturbedly proceed our path; pressing the “Redo”
button undoes the “Undo” (see page 88) and restores state [c3b]. In real-life
proofs, is perhaps the most often pressed button to investigate different proving
strategies; the existence of reassures us that the inadvertent use of this button
cannot cause any harm.

Our next goal is to simplify the proof state by getting rid of the universal quantifier
and of the logical connectives in the goal. The simplest way to achieve this is
pressing the “Scatter State” button which applies various proving rules in
order to scatter the current state to a number of simpler ones (see page 92). A less
aggressive strategy is pursued when pressing the “Decompose State” button
which applies fewer rules in order to decompose the formulas in the current state
yielding a single child state only (see page 93). These two buttons are frequently
applied in the initial stages of a proof; using has the advantage of quickly
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reducing a proof to interesting proof situations at the price of giving up explicit
control of the proving strategy; it is safer to apply first to get a simplified
version of the current state that can be investigated before scattering.

For our example the choice does not make any difference; pressing any of these
buttons yields the dialog

Proof state [qid] is closed by decision procedure.
Formula get2 is proved. QED.
Save this proof and overwrite the previous one
(y/n)? y

Proof saved (browse file get2_index.xhtml).
Quit proof of formula get2
(use ’proof get2’ to see proof).

This indicates that the remainder of the proof has been automatically completed
and that the system has returned to declaration mode.

By selecting the command proof get2 from the menu of formula get2, we see
the structure of the generated proof:

From state [c3b] a single child state was generated that was automatically proved
by the external decision procedure CVCL. Clicking on the corresponding node in
the tree displays the state as follows:

The state has four new constants a0, i0, j0, and e0 that replace the bound vari-
ables of the universally quantified goal [d5q] in the parent state (see page 109).
The resulting goal without quantifier was decomposed into three atomic formu-
las as assumptions and a single atomic formula (the equality of two conditional
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expressions) as a goal. This proof state was automatically closed by the decision
procedure; for a human, the corresponding reasoning steps are (although not really
difficult) tedious and error-prone.

This small example already illustrates a general strategy of how to work with the
system: to decompose a proof and get rid of quantifiers until sufficiently much
low-level knowledge in the form of atomic predicates is available such that a de-
cision procedure can automatically close the proof state. The task of the human
(and the difficulty in real-world proofs) is to expose this low-level knowledge by
guiding the overall proof construction; the task of the system is to make this pro-
cess as painless as possible and to take over (via an external decision procedure)
low-level reasoning on builtin datatypes (such as NAT or ARRAY).

Proving the Extensionality Principle We now turn our attention to another
interesting property that we expect of arrays and that requires some more work
from the user: we would like to prove the “extensionality principle” that two
arrays are identical if and only if they have the same length and hold the same
elements. For this purpose, we have first to introduce two axioms:

extensionality: AXIOM
FORALL(a, b:ARRAY INDEX OF ELEM):
a=b <=> (FORALL(i:INDEX):a[i]=b[i]);

unassigned: AXIOM
FORALL(a:ARR, i:INT):
(i >= length(a)) => content(a)[i] = anyelem;

The first axiom states the extensionality principle on the type constructor ARRAY
(this principle is not builtin into the system). The second axiom states that we may
assume that the content of an array outside the valid index range is the definite but
unspecified value anyelem such that content of two arrays of same length outside
their index range is the same.

With the help of these axioms we are going now to prove the following formula:

equality: FORMULA
FORALL(a:ARR, b:ARR):
a = b <=>
length(a) = length(b) AND
(FORALL(i:INDEX): i < length(a) =>
get(a,i) = get(b,i));

The pretty-printed versions of the declarations are shown below:
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To support the understanding of the following presentation, we already show the
structure of the proof that we are going to generate:

By selecting “Prove equality” from the menu of formula equality, we encounter
the initial state [adt] with two assumptions [1fm] and [gca] representing the ax-
ioms and the goal [hwd] representing the formula to be proved:

We expand the constant definitions by executing command expand length,
get, content yielding the state [cw2]:
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Rather than investigating this state in depth, we aim to quickly push forward to the
actual core problem by pressing the “Scatter” button which yields two child
states [qey] and [rey]. While the state [qey] (corresponding to the “left to right”
direction ⇒ of the proof) is automatically closed, we have to analyze state [rey]
(corresponding to the “right to left”direction ⇐) in more detail:

The state has a single goal [o4i] stating the equality of two arrays a0 and b0
(two new constants that were introduced for the universally bound variables in
the original goal). The assumption [3sb] states that their first components (the
array lengths) are equal. So what is missing to close the state is apparently the
knowledge that also their second components (the array contents) are equal. By
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executing the command assume b 0.1 = a 0.1 (see page 100) we can in-
troduce this knowledge as an assumption yielding a new state [zpt] (which is cor-
respondingly automatically closed) and another state [1pt] with a goal [5bh] that
represents the obligation is to prove this assumption:

The proof of this goal apparently depends on the knowledge contained in the uni-
versally quantified assumptions [1fm], [3p3], and [ruq] such that we may be at-
tempted to ask for an automatic instantiation of these formulas. Actually, the
“Auto” button (respectively the command auto, see page 98) implements
this feature. However, when we press this button, the system executes for a while
(if we get impatient, we may abort the execution by pressing the “Abort” button

) and finally terminates leaving the current state unchanged, which means that
the system could not find the right instantiation to close the proof state.

Thus we have to to rely on our own wit and investigate the assumptions further. We
decide that the knowledge expressed in assumption [1fm] for two ARRAY INDEX
OF ELEM variables a and b actually applies to the two values a0.1 and b0.1 in our
goal. We thus select from the menu of [1fm] the template instantiate []
in 1fm which we complete to the command instantiate a 0.1, b 0.1
in 1fm whose execution yields the following state:
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This state contains an existentially quantified assumption [2sq]; by pressing the
“Scatter” button (or just the more predictable “Decompose” ) we get the
following state with assumption [lhm] that represents the version of the previous
assumption [2sq] where a new constant i0 replaces the variable i:

Lazy as can be, we again try automatic instantiation with the “Auto” button
and this time get the now already familiar termination dialog

Proof state [iub] is closed by decision procedure.
Formula equality is proved. QED.
Save this proof and overwrite the previous one
(y/n)? y

Proof saved (browse file equality_index.xhtml).
Quit proof of formula equality
(use ’proof equality’ to see proof).
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with the system returning to declaration mode. Selecting “Proof equality” from
the menu of formula equality shows the proof skeleton already depicted above.

As we can see from this proof, the automatic instantiation of universally quanti-
fied assumptions (or, dually, existentially quantified goals) is not a “cure for all”
strategy. The system applies a very simple strategy to instantiate such formulas by
a limited number of suitable terms and then attempts to close the resulting proof
state by a decision procedure that takes into account the formulas without quanti-
fiers only; if the right combination of instantiations cannot be found (which gets
more and more unlikely, the larger the number of quantified formulas in the proof
state is), the user must provide (at least some of) the “right instantiations” on her
own, which requires creativity and insight into the proof.

In the next section, we will investigate several proofs that require more such in-
sight from the user.

3.3 A Program Verification

Our next goal is the verification of a small program that represents the core of
linear search: the program finds the first index r at which a value x occurs in an
array a; r is −1, if x does not occur in a:

{olda = a∧oldx = x∧n = length(a)∧ i = 0∧ r =−1}
while i < n∧ r =−1 do

if a[i] = x
then r := i
else i := i+1

{a = olda∧ x = oldx∧
((r =−1∧∀i : 0≤ i < length(a)⇒ a[i] 6= x)∨
(0≤ r < length(a)∧a[r] = x∧∀i : 0≤ i < r ⇒ a[i] 6= x))}

Above program specification is given in the form of an Hoare triple [8] of the form
{I}P{O} which states the partial correctness of P: that, if the input condition I
holds before the execution of P, then the output condition shall O hold afterwards
(provided that P terminates).

The Verification Conditions By the rules of the Hoare calculus [8], we can
derive from above triple four verification conditions A, B1, B2, and C that have to
be proved:
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Input :⇔ olda = a∧oldx = x∧n = length(a)∧ i = 0∧ r =−1
Output :⇔ a = olda∧ x = oldx∧

((r =−1∧∀i : 0≤ i < length(a)⇒ a[i] 6= x)∨
(0≤ r < length(a)∧a[r] = x∧∀i : 0≤ i < r ⇒ a[i] 6= x))

Invariant :⇔ olda = a∧oldx = x∧n = length(a)∧
0≤ i≤ n∧∀ j : 0≤ j < i⇒ a[ j] 6= x∧
(r =−1∨ (r = i∧ i < n∧a[r] = x))

A :⇔ Input ⇒ Invariant
B1 :⇔ Invariant∧ i < n∧ r =−1∧a[i] = x⇒ Invariant[i/r]
B2 :⇔ Invariant∧ i < n∧ r =−1∧a[i] 6= x⇒ Invariant[i+1/i]
C :⇔ Invariant∧¬(i < n∧ r =−1)⇒ Output

Condition A states that the input condition establishes the loop invariant (a condi-
tion that is true before and after each iteration of the loop), conditions B1 and B2
state that the invariant is preserved by both branches of the conditional statement
in the loop body, condition C states that the invariant and the negation of the loop
condition establish the output condition. The notation F [a/x] denotes a version of
formula F where every free occurrence of variable x is replaced by term a (after a
suitable renaming of bound variables in F).

We are now, based on the definition of the datatype “array” given in the pre-
vious section, describing the formulation of these conditions in our system (the
software distribution includes the example presented in this section in directory
examples with the declarations listed in file linsearch.pn and the proofs
stored in subdirectory linsearch).

First we declare the constants occurring in the verification conditions and the pred-
icates Input and Output in which these constants freely occur:

a: ARR; olda: ARR; x: ELEM; oldx: ELEM;
i: NAT; n: NAT; r: INT;

Input: BOOLEAN =
olda = a AND oldx = x AND n = length(a)
AND i = 0 AND r = -1;

Output: BOOLEAN =
a = olda AND
((r = -1 AND

(FORALL(j:NAT): j < length(a) => get(a,j) /= x))
OR



3.3 A Program Verification 39

(0 <= r AND r < length(a) AND get(a,r) = x AND
(FORALL(j:NAT): j < r => get(a,j) /= x)));

Since the verification conditions use different instantiations of Invariant, this pred-
icate does not directly refer to above constants but is provided with corresponding
parameters instead:

Invariant: (ARR, ELEM, NAT, NAT, INT) -> BOOLEAN =
LAMBDA(a: ARR, x: ELEM, i: NAT, n: NAT, r: INT):
olda = a AND oldx = x AND n = length(a) AND
i <= n AND
(FORALL(j:NAT): j < i => get(a,j) /= x) AND
(r = -1 OR (r = i AND i < n AND get(a,r) = x));

The four verification conditions can now be defined as follows:

A: FORMULA
Input => Invariant(a, x, i, n, r);

B1: FORMULA
Invariant(a, x, i, n, r) AND i < n AND r = -1
AND get(a,i) = x => Invariant(a, x, i, n, i);

B2: FORMULA
Invariant(a, x, i, n, r) AND i < n AND r = -1
AND get(a,i) /= x => Invariant(a, x, i+1, n, r);

C: FORMULA
Invariant(a, x, i, n, r) AND
NOT(i < n AND r = -1) => Output;

The parameterized predicate Invariant is applied to those arguments that corre-
spond to the instantiation values in the original definition, e.g. Invariant(a, x, i+1,
n, r) represents Invariant[a/a,x/x, i+1/i,n/n,r/r].

The pretty-printed versions of the declarations are shown below:
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We are now going to discuss the proof of each condition in turn, starting for better
understanding with a display of the the overall structure of each proof.

Verification Condition A The proof of verification condition A is very simple:

The root state [bca] consists of a single goal formula:
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We execute expand Input, Invariant and get the proof state[fuo].

Rather than investigating this state, we simply press the “Scatter” button which
generates a single state [bxg] which is automatically closed by the decision pro-
cedure.

Verification Condition B1 The proof of verification condition B1 is trivial:

The root state [p1b] consists of a single goal [en3] with two occurrences of the
predicate Invariant:

We execute expand Invariant which results in a single child state [lf6] that
is closed automatically.
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Verification Condition B2 The proof of verification condition B1 has the fol-
lowing structure:

Like in the proof of condition B1, the root state [q1b] consists of a single goal
[6kv] with two occurrences of the predicate Invariant :

We execute the command expand Invariant in 6ev which results in the
following state:
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Rather than investigating this state further, we press the “Scatter” button which
generates five children states of which four are closed automatically. Only the
state [a1y] requires our attention:

This state contains a universally quantified assumption [564]. We guess that this
assumption needs to be appropriately instantiated and press the “Auto” button
which generates a single child state [cch] that is automatically closed; thus the
proof is complete.

Verification Condition C The proof of condition C has a slightly more com-
plicated structure:

The root state [dca] has goal [zfg] with occurrences of the predicates Invariant
and Output.
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We use the command expand Invariant, Output in zfg to replace
these predicates by their definitions, which results in the following state:

As usual, we do not bother to investigate the structure of this state further but
immediately press the “Scatter” button which generates four children states of
which one is closed automatically. Of the three remaining states [dcu], [ecu], and
[fcu], the first one is as follows:



3.3 A Program Verification 45

The state has an universally quantified assumption [564]; thus it looks like as if
we need to use a proper instantiation of this formula. Before trying the “Auto”
button we remember the other two open states and ponder that they may have
similar structures. Rather than applying individually on each state, we press
the button which applies the auto command not only to the current state but
also to all its sibling states (see page 97). Our boldness is rewarded by the fact that
both [dcu] and [fcu] are automatically closed such that we only need to investigate
state [ecu] further:

This state has three assumptions [gkr], [orv] and [pkg] that start with the atomic
formula r = −1 (which, as we remember, denotes “element not found” in the
program). If r = −1, we can derive additional knowledge from the implications
[orv] and [pkg] (where r = −1 appears in the hypothesis of the implication such
that we can deduce its conclusion part); if r 6= −1, we may derive additional
knowledge from the disjunction [gkr] (because then the remaining clauses of the
disjunction must be true). Thus our further reasoning depends on the fact, which
of the two possibilities r =−1 or r 6=−1 is true and we have to split our our proof
correspondingly into two branches.

One way to proceed is thus to execute the command case r=-1 which gener-
ates two child states, one with the additional assumption r = −1, one with the
additional assumption r 6=−1 (see page 101). However, there also exists another
possibility: moving the mouse cursor over the labels of [gkr], [orv], and [pkg]
reveal popup menus that list applications of the command split to these formu-
las. This command “splits” the current state into several child states each of which
receives as an additional assumption one of the components of the disjunctive for-
mula to which the command is applied (see page 94, also an implication F ⇒ G
can be seen as a disjunction ¬F ∨G).
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Being lazy, rather than typing in case r=-1 on the command line, we select
from the menu of [pkg] the command split pkg. This yields two child states
of which one is automatically closed while the other with label [lel] still requires
our attention6:

This state has an existential assumption [1bb]. To get rid of the quantifier, we
press the “Scatter” button and get the state [lvn]:

This state contains a universally quantified assumption [564]; before investigating
the state any further, we try whether the automatic instantiation of this formula

6The reader may try the alternative path which leads to a slightly different but essentially
equivalent proof.
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with the “Auto” button does any good: indeed, a proof state [lap] is generated
which is automatically closed such that the proof is completed.

Having proved all verification conditions, the partial correctness of the initially
stated program is verified.

As shown in this proof, splitting proof states by case distinctions belongs to those
activities (apart from expanding definitions, finding instantiations of quantified
formulas, and introducing lemmas, see the next section) where human intervention
is required. Since such splits may have drastic consequences on the size of the
proof tree (and thus the complexity of the proof), the system does not try on its
own to split a proof state by disjunctive assumptions (the “Scatter” button
splits proof states by conjunctive goals only).

3.4 Another Verification

Our final example uses another program verification in order to illustrate some
more features of the system and subtle points of its use. The program to be verified
represents the core of the binary search algorithm for finding an element x in an
array a of integer numbers that is sorted in ascending order; the program sets a
result value r to an index at which x occurs in a, respectively to −1, if x does not
occur in a. The verification task is described by the following Hoare triple:

{olda = a∧oldx = x∧(∀ j : 0≤ j < length(a)−1⇒ a[ j]≤ a[ j+1])∧
r =−1∧ low = 0∧high = length(a)−1}

while r =−1∧ low≤ high do
mid := b(low+high)/2c
if a[mid] = x then

r := mid
else if a[mid] < x then

low := mid +1
else

high := mid−1
{a = olda∧ x = oldx∧

((r =−1∧ (∀i : 0≤ j < length(a)⇒ a[ j] 6= x))∨
(0≤ r < length(a)∧a[r] = x))}

The main difference of to the verification presented in the previous example is the
requirement of the array to be sorted and the computation of the index mid to be
investigated next: this computation makes use of the division operator / (whose
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result need not be an integer) and of the “floor” operator b.c which maps a real
number x to the largest integer number less than or equal x.

By the rules of the Hoare calculus, we derive the following five verification con-
ditions A, B1, B2, B3, and C where B1, B2, and B3 describe the fact that the loop
invariant is maintained by each of the three paths that may be taken through the
body of the loop:

Input :⇔
olda = a∧oldx = x∧(∀ j : 0≤ j < length(a)−1⇒ a[ j]≤ a[ j+1])∧
r =−1∧ low = 0∧high = length(a)−1

Output :⇔
a = olda∧ x = oldx∧

((r =−1∧ (∀ j : 0≤ j < length(a)⇒ a[ j] 6= x))∨
(0≤ r < length(a)∧a[r] = x))

Invariant :⇔
olda = a∧oldx = x∧(∀ j : 0≤ j < length(a)−1⇒ a[ j]≤ a[ j+1])∧
−1≤ r < length(a)∧ (r 6=−1⇒ a[r] = x)∧
0≤ low≤ length(a)∧−1≤ high < length(a)∧ low≤ high+1∧
(∀ j : 0≤ j < length(a)∧ j < low⇒ a[ j] < x)∧
(∀ j : 0≤ j < length(a)∧high < j ⇒ x < a[ j])

A :⇔ Input ⇒ Invariant
B1 :⇔ Invariant∧ r =−1∧ low≤ high∧a[b low+high

2 c] = x⇒
Invariant[b low+high

2 c/r]
B2 :⇔ Invariant∧ r =−1∧ low≤ high∧a[b low+high

2 c] 6= x∧
a[b low+high

2 c] < x⇒ Invariant[(b low+high
2 c+1)/low]

B3 :⇔ Invariant∧ r =−1∧ low <= high∧a[b low+high
2 c] 6= x∧

a[b low+high
2 c] 6< x⇒ Invariant[(b low+high

2 c−1)/high]
C :⇔ Invariant∧¬(r =−1∧ low≤ high)⇒ Output

A crucial part of the invariant says that “array a is sorted” by the formula ∀ j : 0≤
j < length(a)−1⇒ a[ j]≤ a[ j +1]), a property that will become essential in the
subsequent proof.

The software distribution contains in directory examples the text file binary-
search.pn with the corresponding declarations in the specification language of
our system and a subdirectory binarysearch with the corresponding proof. In
the following, we will focus on verification condition B3 whose proof is the most
demanding one.
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Since the specification language does not have a builtin “floor” function, we intro-
duce a constant floor by the following declaration which is accompanied by the
declaration of an axiom that characterizes this constant:

floor: REAL->INT;
floorAxiom: AXIOM
FORALL(x:REAL): floor(x) <= x AND
NOT(EXISTS(y:INT): y <= x AND floor(x) < y);

Based on the already previously described definition of datatype “array”, (which
we specialize in this verification to “array of integers”), we introduce constants for
the program variables and mathematical constants occurring in the Hoare triple:

a: ARR; olda: ARR; x: INT; oldx: INT;
low: INT; high: INT; mid: INT; r: INT;

The verification conditions use various versions of the predicate Invariant which
is therefore correspondingly parameterized:

Invariant: (ARR, INT, INT, INT, INT) -> BOOLEAN =
LAMBDA(a: ARR, x: INT, low: INT, high: INT, r: INT):
a = olda AND x = oldx AND
(FORALL (j:NAT): j < length(a)-1 =>

get(a, j) <= get(a, j+1)) AND
-1 <= r AND r < length(a) AND
(r /= -1 => get(a, r) = x) AND
0 <= low AND low <= length(a) AND
-1 <= high AND high < length(a) AND
low <= high+1 AND
(FORALL (j:NAT): j < low AND j < length(a) =>
get(a,j) < x) AND

(FORALL (j:NAT): high < j AND j < length(a) =>
get(a,j) > x);

The pretty printed form of this invariant is shown below:
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Proving a Lemma As we will see below, the proof of B3 (and likewise the
proof of B2) requires additional knowledge about sorted arrays. In particular,
we need to infer that the fact that every pair of neighbor elements preserves the
right order (the definition of “sorted”) implies the fact that also every pair of non-
neighbor elements preserves the order. We express this knowledge in the form of
a declaration of a formula (lemma) L:

L: FORMULA
(FORALL (j:NAT): j < length(a)-1 =>
get(a, j) <= get(a, j+1)) =>

(FORALL (j, k:NAT): j < length(a) AND
k < length(a) AND k <= j =>

get(a, k) <= get(a, j));

The pretty printed form of this lemma is shown below:

The overall structure of the proof of this lemma is as follows:
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The root state [mca] of this proof is depicted below:

The goal [odj] is an implication of two universally quantified formulas. We may
thus be attempted to perform a predicate logic proof by pressing the “Scatter”
button , but the resulting proof state is a dead end, as is also the result of the
more conservative ‘Decompose” button . A closer investigation of state [mca]
gives us the key idea to perform an induction proof on the conclusion of the goal,
but for this purpose we first need to break up the implication. Consequently, we
invoke the command flatten described on page 107 which leads to the state
[c3f] whose goal [z42] is a universally quantified formula with natural number
variables j and k:
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We decide to perform the induction on the first variable of the goal and conse-
quently execute induction j in z42 resulting in two child states [3da] and
[4da].

The proof state [3da] represents the induction base:

Its goal [6nq] is still universally quantified; we thus apply the ‘Scatter” button
which results in a proof state that is automatically closed.

The proof state [4da] represents the induction step:

Its goal [aw4] is also still universally quantified; we thus apply the ‘Scatter” button
resulting in the following state [jdt]:
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Closing this proof state apparently depends on the proper instantiation of the uni-
versally quantified assumptions [6hu], [iuh], and [cgs]. We thus try to find a suit-
able automatic instantiation by pressing the “Auto” button ; indeed the result-
ing proof state is automatically closed by the decision procedure.

Proving the Verification Condition B3 We will now describe the proof of the
following verification condition:

B3: FORMULA
Invariant(a, x, low, high, r) AND r = -1 AND
low <= high AND get(a, floor((low+high)/2)) /= x AND
NOT get(a, floor((low+high)/2)) < x
=> Invariant(a, x, low, floor((low+high)/2)-1, r);

The pretty printed version of this condition is shown below:

The overall structure of the proof is as follows:
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The root state [r1b] of the proof consists of an assumption [6hu] representing the
axiomatization of the floor constant and the goal [yhd] representing the content of
the verification condition S3:

Apparently, floor is only applied to the argument high
2 + low

2 (three times). There-
fore we instantiate already in the very beginning of the proof the assumption which
represents the axiomatization of floor with this value by executing the command
instantiate high/2+low/2 in 6hu. This yields the proof state [zrp]:
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This state has the specialized assumption [5cu]; the general assumption [6hu]
will not play a role in the remainder of the proof any more. Now we execute
expand Invariant to expose the goal formula. The resulting proof state [rui]
(not depicted) looks quite daunting such that we immediately press the “Scatter”
button which results in six child states of which three are automatically closed.

The first of the remaining three open proof states is labelled [zhg]:
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We guess that this proof state can be closed by a clever instantiation of the univer-
sally quantified assumptions. Perhaps this is even the case for the two open sibling
states, thus we press the button which indeed closes this state and another one
by automatic instantiation. The only remaining state is the one with label [2hg]:
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Apparently this state requires deeper investigation. Its goal [zki] is to prove x <
a[ j0] for some index j0. So what do we know about x and j0? From assumption

[noj], we know b low+high
2 c ≤ j0; since a is sorted in ascending order, thus also

a[b low+high
2 c]≤ a[ j0] should hold (*). Furthermore, from assumptions [3kp] and

[6he] we know x < a[b low+high
2 c]; thus by transitivity of≤, the goal should hold.

But do we really know the formula marked (*) above? What we actually know is
the property [iuh] which says that a[ j]≤ a[ j+1] for arbitrary pairs of neighbor in-

dices j, j+1, while (*) talks about non-neighbor indices b low+high
2 c and j0. This

is the place where we need the knowledge that preserving the order for neighbor
indices also implies preserving the order for non-neighboring indices, i.e. we need
the formula L that was previously proved. We thus execute the command lemma
L described on page 106 that imports this formula as an assumption and yields the
proof state [63o]:
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This state contains an additional assumption [z42] which is the conclusion of the
implication contained in lemma L; its hypothesis is identical to assumption [iuh]
and is therefore automatically discharged by the system. Pressing the “Auto”
button does not close the state thus we execute the command instantiate
j 0, floor(low/2+high/2) in z42 in order to explicitly instantiate the
variables j and k in the new assumption by j0 and b low+high

2 c, respectively. This
leads to the following state [35c]:
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We again press which generates a child state [g6q] which is automatically
closed; this completes the proof.

Summary Above proofs demonstrate two things: most notably, they show that
even for rather simple verifications “critical” proof states arise that require deeper
analysis and perhaps the use of additional knowledge that has to be “imported”
into the proof. Either this knowledge is already available in the form of previously
declared formulas or the current proof has to be suspended to establish the knowl-
edge and then resume the proof (the command assume described on page 100
allows to introduce such knowledge and prove it within the current proof). If an
imported formula is not (yet) verified by a proof, the current proof is marked as
“relative” with respect to unverified formulas.

The success of another important feature is demonstrated by the fact that we did
not notice it. In proof state [63o] we instantiated a natural number variable j

by an integer value b low+high
2 c. This was legal because the system created an

additional proof state [25c] whose goal was to prove that this value is not negative;
the system automatically then automatically discharged this goal by applying its
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decision procedure. The theoretical basis for this is a system of subtypes (see
page 66) which treats natural numbers as a subdomain of integers and integers as
a subdomain of reals. This greatly simplifies proofs that have to deal with various
arithmetic domains compared to systems that have a less flexible type discipline.

Having studied the example specifications and proofs discussed in this and the
previous sections, the user now should have a feeling for the “flavor” of interaction
with the RISC ProofNavigator. The system is helpful in quickly decomposing a
proof into the “interesting” (i.e. difficult) proof states; it also takes from the user
the task of dealing with various kinds of low-level reasoning steps. On the other
hand, the system leaves the user with the task of finding the “crucial” steps in a
proof like finding non-trivial variable instantiations, imports of lemmas, etc. The
system is definitely and deliberately not an automatic theorem prover rather than
a proof assistant that attempts to be as helpful as possible but not clever beyond
its abilities. Chapter 4 discusses known deficiencies of the system and potential
for future improvements.
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Future Work

The RISC ProofNavigator has shown its usefulness in several small and not-so-
small system verifications (some of which are contained in the software distribu-
tion). However, there are several issues that require further work:

Decision Procedures The system is currently bound to the decision procedure
CVCL Version 2.0 and does neither work with more recent versions of
CVCL nor with other decision procedures. This is not a fundamental prob-
lem but a question of a mapping of the higher-order specification language
used by the RISC ProofNavigator to the first-order languages supported by
most provers and of corresponding software interfaces. A diploma thesis
has recently started corresponding investigations.

Specification Language The specification language of the system is very simple
and does not support various features than can be found in other languages.
For instance, it lacks the definition of recursive algebraic datatypes with
structural induction as a proof principle and also a module system analogous
to that of PVS. The introduction of corresponding features will be triggered
by the integration of the system into a larger program reasoning framework.

Rewriting Proofs The system is weak when it comes to proofs that essentially
depend on applying universally quantified equalities (or equivalences or im-
plications) as rewrite rules. For instance, the software distribution contains
an example specification arrays.pn with an axiomatic characterization
of arrays; based on this specification, the proof of the extensionality princi-
ple corresponding to the one presented in Section 3.2 becomes quite cum-
bersome. The system should be extended to allow to mark formulas of a
certain form as “rewrite rules” that are automatically applied in proof state
simplifications (such features can be e.g. found in PVS and Isabelle).
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Proof Checking The system stores the individual commands invoked in a proof
for later replay; it does not generate proof objects that describe the individ-
ual low-level reasoning steps performed by the commands and that can be
used for independent verification of a proof by an external proof checker.
Some decision procedures (e.g. CVCL) optionally generate such objects as
well as several interactive theorem provers (e.g. CoQ or Isabelle). It would
be worthwhile to investigate similar features for the RISC ProofNavigator.

While some of above issues will be most probably tackled in the future, we will
mainly concentrate on the development of an program exploration environment
that integrates the RISC ProofNavigator as a reasoning component. The demands
of this environment will drive the further elaboration of the software.
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Appendix A

Specification Language

In this appendix, we describe the language for constructing specifications. The
main syntactic elements of specifications are type expressions, value expressions,
and declaration expressions denoting at the semantic level types, values, and dec-
larations. We will frequently not distinguish between expressions and their deno-
tations, and call both “types”, “values”, and “declarations”, respectively.

In the following, the variables T, T1, T2, . . . , Tn denote types, the variables E, E1,
E2, . . . , En denote values, the variables D, D1, D2, . . . , Dn denote declarations,
and the variables I, I1, I2, . . . , In denote identifiers.

As for the lexical grammar (the rules for forming words) of the language, a speci-
fication consists of a sequence of tokens separated by white-space (which includes
indentations and line breaks that have thus no significance). If a line contains the
comment token %, the rest of the line (including the token) is ignored.

As for the syntactical grammar (the rules for forming sentences) of the language,
a specification consists of a sequence of declarations each of which is terminated
by a semicolon:

D1;
D2;
. . .
Dn;

The lexical grammar and the syntactical grammar of the language are defined in
Appendix F.

As for the semantics of a specification, the following sections describe the lan-
guage’s types, values, and declarations in an informal style. The primary purpose
of these descriptions is easy readability, not ultimate preciseness; a formal defini-
tion of the language semantics remains subject of another paper.
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A.1 Types

In this section, we describe the language’s type expressions denoting types i.e.
domains of values. The type system is higher-order i.e. it includes functions and
does not make a fundamental difference between functions and predicates (which
are just functions whose result is a truth value). Types are partially ordered by a
subtype relationship such that if T1 is a subtype of T2, any value of type T1 may
occur where a value of type T2 is expected. The specification language is strongly
typed; the system ensures type discipline for every declaration by a combination
of static checking and dynamic proving (see Section A.3).

A.1.1 Atomic Types

Synopsis

BOOLEAN
NAT
INT
REAL

Description Apart from atomic types introduced by the user via type declara-
tions (see page 77), there are the following builtin atomic types:

BOOLEAN This type denotes the domain of truth values with literal constants
TRUE and FALSE.

NAT This type denotes the domain of natural numbers with literal constants 0,
1, 2, . . . and the addition function + and the multiplication function * on
natural numbers (see page 70).

INT This type denotes the domain of integer numbers whose values can be con-
structed from NAT values by application of the negation function - (see
page 70).

REAL This type denotes the domain of real numbers of which some values can
be constructed from INT values by application of the division function /
(see page 70).

NAT is a subtype of INT which is in turn a subtype of REAL. Formulas are con-
structed from values of type BOOLEAN (see page 78).
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Pragmatics The type NAT is essentially equivalent to the subtype (see page 67)

SUBTYPE(LAMBDA(x:INT): x >= 0)

A.1.2 Range Types

Synopsis

[E1..E2]

Description This type takes two expressions E1 and E2 denoting integer values
such that the value of E1 is less than or equal the value of E2; the type denotes
the domain of all integers greater than or equal E1 and less than or equal E2.

The type gives rise to a type checking condition E1 ≤ E2.

Pragmatics This type is essentially equivalent to the subtype (see page 67)

SUBTYPE(LAMBDA(x:INT): E1 <= x AND x <= E2)

A.1.3 Subtypes

Synopsis

SUBTYPE(E)

Description This type takes a value E of type T→ BOOLEAN for some type T ,
i.e. a unary predicate on T . The type denotes the domain of all values of T that
satisfy this predicate.

The denoted predicate must not be false for all values of T ; thus the type gives
rise to a type checking condition ∃x ∈ T : Ex.

Pragmatics The value E is typically denoted by a function expression as de-
scribed on page 73.
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A.1.4 Function Types

Synopsis

TA -> TR
(T1, T2, ..., Tn) -> TR

Description The type TA -> TR denotes the domain of unary functions with
argument type TA and result type TR; every such function f takes an argument a
from TA and returns a result f (a) from TR.

The type (T1, T2, ..., Tn) -> TR denotes the domain of n-ary func-
tions with argument types T1, T2, . . . , Tn and result type TR; every such func-
tion f takes n arguments a1 from T1, a2 from T2, . . . , an from Tn and returns a
result f (a1,a2, . . . ,an) from TR.

Pragmatics Because of a deficiency of the underlying decision procedure, the
system does currently not understand that, if two functions are equal, also their
function values are equal, i.e. it does not implement the following derivation rule:

[E] T1 : type
[E] T2 : type
[E] ` I1 : T1 → T2
[E] ` I2 : T1 → T2
[E] ` V : T1
[E] . . . ` I1 = I2
[E] . . . ` I1(V ) = I2(V )

To overcome this problem, one may instead use an array type (which implements
the corresponding rule for array access, see page 69) or explicitly introduce cor-
responding axioms (see page 78) on demand.

The type (T1, T2, ..., Tn) -> TR is different from the type [T1, T2,
..., Tn] -> TR. While the former denotes a domain of n-ary functions, the
later denotes a domain of unary functions whose argument type is a tuple type
(see page 69); each such a function f takes an n-ary tuple t = (a1,a2, . . . ,an) and
returns a result f (t) = f ((a1,a2, . . . ,an)).

Function values can be constructed as described on page 73.
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A.1.5 Array Types

Synopsis

ARRAY T1 OF T2

Description This type denotes the domain of arrays with indices of type T1 and
values of type T2 (see page 74 for the operations supported on arrays).

Pragmatics From the semantic point of view, this type is essentially equivalent
to a unary function type (see page 68). The major difference is that the system
understands that, if two arrays are equal, access to these arrays at equal indices
yields equal results (the system does not understand the corresponding rule for
function applications).

A.1.6 Tuple Types

Synopsis

[T1, T2, ..., Tn]

Description This type denotes the domain of n-ary tuples (a1,a2, . . . ,an) with
n values a1 from T1, a2 from T2, . . . , an from Tn (see page 75 for the operations
supported on tuples).

The tuple type [T] is identified with T.

A.1.7 Record Types

Synopsis

[# I1:T1, I2:T2, ..., In:Tn #]

Description This type denotes the domain of n-ary records (# I1 := a1, I2 :=
a2, . . . , In := an #) with n values a1 from T1, a2 from T2, . . . , an from Tn assigned
to record field identifiers I1, I2, . . . , In (see page 75 for the operations supported
on records).
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A.2 Values

In this section, we describe the language’s value expressions denoting values, i.e.,
our objects of discourse. Each value expression has a specific type such that any
value it may denote must be an element of the domain denoted by the type. Value
expressions of type BOOLEAN are sometimes called formulas; all other value
expressions are also called terms. However, since the specification language is
higher-order, there is no fundamental difference between formulas and terms.

A.2.1 Arithmetic Terms

Synopsis

Digits
E1+E2
E1-E2
-E1
E1*E2
E1/E2
E1ˆE2

Descriptions These expressions represent number literals (composed of the dec-
imal digits 0 . . .9) and the arithmetic operations addition, subtraction, negation,
division, and exponentiation. Apart from exponentiation, the types of the values
E1 and E2 may be arbitrary (potentially different) arithmetic types (NAT, INT,
REAL, range types, and subtypes of arithmetic types). In the case of exponentia-
tion, the type of E1 may be an arbitrary arithmetic type but the type of E2 must
be an integral type (NAT, INT, a range type, or a subtype of an integral type).

For determining the result type of each operation, the usual subtype ordering is
considered, i.e., NAT and range types are subtypes of INT, and INT is a subtype
of REAL. The result type of each function is then the smallest result type that
can be deduced from the argument types and the the operation without actually
considering the argument values, e.g. adding two NAT values yields a NAT value
but adding a NAT value and an INT value yields an INT value. Dividing two
values always yields a REAL value. Exponentiation with an exponent E2 of (a
subtype of) type NAT yields a result with the type of the base value E1; otherwise
the type of the result is REAL.

Pragmatics For convenience, also the term +E is accepted as a synonym of E.
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A.2.2 Atomic Formulas

Synopsis

E1 = E2
E1 /= E2
E1 < E2
E1 <= E2
E1 > E2
E1 >= E2

Description These expressions represent the comparison operations equality,
inequality, less-than, less-than-or-equal, greater-than, and greater-than-or-equal.
The expressions are composed from two values E1 and E2. In the case of equality
and inequality, the types of both values may be arbitrary but must be equal. In the
case of the other operations, the types of the values may be (potentially different)
numeric types (NAT, INT, REAL, a range type, or a subtype of a numeric type).
The result type of the expression is BOOLEAN.

A.2.3 Propositional Formulas

Synopsis

TRUE
FALSE
NOT E
E1 AND E2
E1 OR E2
E1 => E2
E1 <=> E2
E1 XOR E2

Description These expression represent the logical constants “true” and “false”
and the logical operations negation, conjunction, disjunction, implication, equiv-
alence, and non-equivalence. They are composed from values E, E1, and E2 of
type BOOLEAN and yield a value of type BOOLEAN.
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A.2.4 Quantified Formulas

Synopsis

FORALL(I1:T1, I2:T2, ..., In:Tn): E
EXISTS(I1:T1, I2:T2, ..., In:Tn): E

Description These expressions represent universal and existential quantifica-
tion, respectively. They are composed of identifiers I1 of type T1, I2 of type
T2, . . . , In of type Tn and a value E of type BOOLEAN (in which I1, I2, . . . , In
may freely occur) and have themselves type BOOLEAN.

Pragmatics If quantified expressions occur in the context of another expression,
they must be put into parentheses, as e.g. the EXISTS formula in

FORALL(x:NAT): x > 0 => (EXISTS(y:NAT): y+1=x)

For multiple parameters with the same type, the parameter type needs to be de-
clared only once, thus it is for example legal to write

FORALL(x,y:NAT, z:INT): x+y >= 0*z

A.2.5 Conditional Expressions

Synopsis

IF E THEN E1 ELSE E2 ENDIF
IF E THEN E1

ELSIF E’ THEN E1’ ... ELSE E2 ENDIF

Description The expression IF E THEN E1 ELSE E2 ENDIF consists of
a value E of type BOOLEAN and of two values E1 and E2 of same type which is
also the type of the conditional expression. The value of the expression is E1, if E
is TRUE, and E2, otherwise.

The more general form
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IF E THEN E1
ELSIF E’ THEN E1’
ELSIF E’’ THEN E1’’
. . .
ELSE E2
ENDIF

is a syntactic short cut for

IF E THEN E1
ElSE IF E’ THEN E1’
ELSE IF E’’ THEN E1’’
. . .
ELSE E2
ENDIF ... ENDIF ENDIF

A.2.6 Let Expressions

Synopsis

LET I1:T1 = E1,... IN E
LET I1 = E1,... IN E

Description This expression consists of a sequence of value definitions which
set up an environment in which an expression E is evaluated. The type and the
value of the let expression is that of E.

Each definition consists of an identifier Ii which is bound to the value of an expres-
sion Ei of type Ti (the type is optional in the definition); the identifier Ii is visible
in the expressions Ei+1,Ei+2, . . . used in the subsequent definitions (but not in the
expression Ei defining Ii itself).

Matching the types of E1 to T1, . . . may give rise to a type checking condition.

A.2.7 Function Values and Applications

Synopsis

LAMBDA(I1:T1, I2:T2, ..., In:Tn): E
E(E1, ..., En)
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Description The function value expression

LAMBDA(I1:T1, I2:T2, ..., In:Tn): E

denotes the function that, given arguments I1 of type T1, I2 of type T2, . . . , In
of type Tn, returns the value of expression E (in which I1, I2, . . . , In may freely
occur). Correspondingly the type of the expression is the function type (T1,
T2, ..., Tn) -> T where T is the type of E (see page 68).

The function application expression E(E1, ..., En) consists of an expres-
sion E denoting a value of type (T1, T2, ..., Tn) -> T for some types
T1, T2, . . . , Tn, T and of expressions E1 of type T1, E2 of type T2, . . . , En of
type Tn. The value of the application is the result of E when applied to the values
of E1, E2, . . . , En; the type of the application is T.

Pragmatics In a function value expression, for multiple parameters with the
same type, the parameter type needs to be declared only once, thus it is for exam-
ple legal to write

LAMBDA(x,y:NAT, z:REAL): x*y+z

A.2.8 Array Values, Updates, and Selections

Synopsis

ARRAY(I:T): E
E WITH [E1]:=E2
E[E1]

Description The array value expression ARRAY(I:T): E denotes the array
where every index I of type T is mapped to the element denoted by the expression
E (in which I may freely occur). Correspondingly the type of the expression is
the array type ARRAY T OF TE where TE is the type of E (see page 69).

The array update expression E WITH [E1]:=E2 is composed of a value E of
type ARRAY T1 OF T2 for some types T1 and T2, a value E1 of type T1 and
a value E2 of type T2. It denotes the array that is identical to E except that index
E1 is mapped to element E2. Correspondingly the type of the expression is also
ARRAY T1 OF T2.

The array selection expression E[E1] is composed of a value E of type ARRAY
T1 OF T2, for some types T1 and T2, and a value E1 of type T1. It denotes the
element of E at index E1; correspondingly its type is T2.
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A.2.9 Tuple Values, Updates, and Selections

Synopsis

(E1, E2, ..., En)
E WITH [0]:=E1
E WITH [1]:=E2
. . .
E WITH [n-1]:=En
E.0
E.1
. . .
E.n-1

Description The tuple value expression (E1, E2, ..., En) denotes the
n-ary tuple composed of the values E1, E2, . . . , En. Correspondingly the type of
the expression is the tuple type (T1, T2, ..., Tn) where T1 is the type of
E1, T2 is the type of E2, . . . , Tn is the type of En (see page 69). The tuple (E)
is identified with E.

The n tuple update expressions E WITH [0]:=E1, E WITH [1]:=E2, . . . ,
E WITH [n-1]:=En each take a value E of tuple type (T1,T2,...,Tn)
for some types T1, T2, . . . , Tn and one of the values E1 of type T1, E2 of type
T2, . . . , En of type Tn. They denote the tuple that is identical to E except that
component 0, 1, . . . , n−1 is updated by value E1, E2, . . . , En. Correspondingly
the type of each expression is also (T1,T2,...,Tn).

The n tuple selection expressions E.0, E.1, . . . , E.n-1 each take a value E of
tuple type (T1,T2,...,Tn) for some types T1, T2, . . . , Tn. The expressions
denote the first, second, . . . , n-th component of this tuple; their types are T1, T2,
. . . , Tn, correspondingly.

A.2.10 Record Values, Updates, and Selections

Synopsis

(# I1:=E1, I2:=E2, ..., In:=En #)
E WITH [I1]:=E1
E WITH [I2]:=E2
. . .
E WITH [In]:=En
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E.I1
E.I2
. . .
E.In

Description The record value expression

(# I1:=E1, I2:=E2, ..., In:=En #)

denotes the n-ary record composed of the values of E1, E2, . . . , En by assigning
these values to the record field identifiers I1, I2, . . . , In. Correspondingly the type
of the expression is the record type (# I1:T1, I2:T2, ..., In:Tn #)
where T1 is the type of E1, T2 is the type of E2, . . . , Tn is the type of En (see
page 69).

The n record update expressions E WITH [I1]:=E1, E WITH [I2]:=E2,
. . . , E WITH [In]:=En each take a value expression E of record type (#
I1:T1, I2:T2, ..., In:Tn #) for some identifiers I1, I2, . . . , In and
types T1, T2, . . . , Tn and one of the values E1 of type T1, E2 of type T2, . . . , En
of type Tn. They denote the record that is identical to E except that record field
I1, I2, . . . , In is updated by value E1, E2, . . . , En. Correspondingly the type of
each expression is also (# I1:T1, I2:T2, ..., In:Tn #).

The n record selection expressions E.I1, E.I2, . . . , E.In take a value E of
record type (# I1:T1, I2:T2, ..., In:Tn #) for some identifiers I1,
I2, . . . , In and types T1, T2, . . . , Tn. The expressions denote the first, second, . . . ,
n-th component of this record; their types are T1, T2, . . . , Tn, correspondingly.

A.3 Declarations

In this section, we describe the language’s declaration expressions denoting dec-
larations each of which extends the environment by a mapping of an identifier
to a type, value, or formula. When type checking a declaration, a type checking
condition may be generated which is forwarded to a decision procedure for auto-
matic proving. If the condition cannot be proved, a warning is issued, but the type
checking condition is nevertheless assumed true. Thus the user must establish by
a separate proof that the type checking condition is valid (any further proof might
be unsound, otherwise).
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A.3.1 Type Declarations

Synopsis

I: TYPE
I: TYPE = T

Description This declaration introduces a type constant I. The declaration form
I: TYPE associates to I a non-empty atomic type which is different from any
other atomic type declared so far. The declaration form I: TYPE = T equates I
with T.

If the type expression T contains a range type (see page 67) or subtype (see
page 67), the type declaration gives rise to a type checking condition which states
that the declared type is not empty.

A.3.2 Value Declarations

Synopsis

I: T
I: T = E

Description This declaration introduces a value constant denoted by the identi-
fier I ; the type of the constant is T. The command form I: T does not define the
value of I. The command form I: T = E defines the value of I by the value E
whose type must match T.

As well determining the type of E as matching the type of E to T may give rise
to a type checking condition.

A value declaration may also appear in proving mode (see page 100).

Pragmatics The declaration may also introduce function or predicate constants
which are just value constants with function type (see page 68). Matching the
value type U1 -> U2 to the declaration type T1 -> T2 only succeeds if both
T1 equals U1 and T2 equals U2. This is stricter than theoretically necessary (it
would suffice to check that T1 is a subtype of U1 and U2 is a subtype of T2)
because the decision procedure applied by the system may not accept a looser
type discipline.
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A.3.3 Formula Declarations

Synopsis

I: FORMULA E
I: AXIOM E

Description This declaration introduces a formula constant I with value E of
type BOOLEAN; the formula denoted by I is consequently assumed to be true.

If the declaration is tagged with the keyword FORMULA, the formula needs proof;
it can be also used as an additional assumption in the proof of another formula by
use of the lemma command described on page 106.

If the declaration is tagged with the keyword AXIOM, the formula does not need
proof; it is automatically imported as an additional assumption into the proof of
every subsequent formula.

Type checking E may give rise to a type checking condition.



Appendix B

System Commands

In this appendix, we describe all commands that the user can apply to control
the system. Some commands are only applicable in declaration mode (when the
system is processing declarations as described in Appendix A), others are only ap-
plicable in proving mode (when the system is constructing the proof of a formula
under the guidance of the user); some commands are applicable in both modes.

Every command has a textual representation that can be typed in on the command
line1. If the system is executed with its GUI and is running in proving mode, all
applicable commands can be also selected from a menu that pops up when press-
ing the button . Additionally various commands can be applied by pressing a
button in the prover’s GUI or by selecting an item in the menu associated to every
formula in a proof state (which specializes the command for the application to this
formula). A few commands can be selected from the GUI’s window menu “File”.

Derivation Rules and Sequents The effect of some commands of the proof
states is explained by derivation rules that sketch the logical foundation of these
commands. For a command that generates from the current state with label [S]
various child states [S1], [S2], . . . which is displayed in the proof tree as

[S] c
[S1]
[S2]
...

1The only exception is the “Abort” button described on page 91 whose effect cannot be
achieved by any textual command.
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the corresponding rule has the form

[E] A1, . . . ` B1, . . .
[E] A2, . . . ` B2, . . .
. . .
[E] A, . . . ` B, . . .

where a sequent [E] A, . . . ` B, . . . represents a proof state with declaration envi-
ronment E, assumptions A, . . . and goals B, . . .. The sequent below the line repre-
sents the proof state labeled [S], the sequents above the line represent the child
states [S1], [S2], . . . generated by the application of the command. Conse-
quently, the rule can be read “from bottom to top” as

In order to prove [E] A, . . . ` B, . . ., we have to prove [E] A1, . . . `
B1, . . ., and [E] A2, . . . ` B2, . . ., and . . . .

Furthermore, a sequent of the special form [E] ` e : T means “in environment
E, expression e has type T ”; a sequent [E] ` I : T = V means “in environment
E, constant I has type T and value V ” The environment [E,a : T ] is derived from
environment [E] by adding the declaration of a constant a of type T (shadowing
any previous declaration of a constant with the same name).

Type Checking Conditions If the prover command contains a value expression
(see page 70), it may give rise to a type checking condition. The prover handles
this condition by generating a child state (in addition to the child states generated
anyway by the command) with the type checking condition as a single goal (which
may be automatically discharged by a decision procedure as in declaration mode,
see page 76, or by an user-controlled proof).

Proof Status Every proof of a formula has a couple of status attributes which
are displayed in the menu of the formula. These attributes are:

Trust Status: “trusted” or “untrusted” When a proof is read from file, it is
given status “trusted”, if none of the declarations and proofs on which the
proof depends has changed since the time that the proof was generated. Re-
playing the proof thus cannot trigger an error. Otherwise the proof is given
status “untrusted”; replaying the proof may trigger errors. Replaying an
untrusted proof promotes its status to “trusted” (after having removed from
the proof those commands that yielded errors in the replay).
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Completion Status: “closed” or “open” A proof is closed, if every leaf of the
proof tree denotes a proof situation that is automatically closed by the prover
(via the application of an internal or external decision procedure). Other-
wise the proof is “open”: there are still proof states that require investigation
by the user.

Dependence Status: “absolute” or “relative” A complete proof is “absolute”,
if it does not depend on assumptions introduced by application of command
lemma (see page 106) or only on assumptions which have themselves ab-
solute proofs. Otherwise the proof is “relative”: its correctness depends on
formulas that still need proof.

Proof Replay When a previously stored proof is replayed but the formula to
be proved has changed since the generation of the proof, the proof is marked as
“untrusted” and a warning is issued that errors may occur in the replay. There are
two kinds of errors possible:

• A proof command triggers an error, i.e. the command applicable in a state
of the original proof is not applicable any more in the corresponding state
of the new proof. In this case, the system gives the user the possibility to
provide a substitution command which is executed instead of the original
command (continuing the replay of the proof subtrees on the child states).
If the user abandons the offer, the corresponding proof state remains open
(i.e. the proof subtrees corresponding to the child states are lost).

• A proof command generates in the new proof not the same number of child
states than in the original proof. In this case, the system asks the user to map
the new child states to the old child states such that the proof trees recorded
for the child states are not completely lost.

In the first kind of error, the possibility to substitute a proof command is mainly
useful if the command has failed because it refers to the label of a formula that
has changed since the proof was created. In this case, the user may investigate the
proof state, find the corresponding formula, and then execute the command again
with a reference to the new label; the remainder of the proof is thus preserved.

As an example for the second kind of error, let us assume that the command
scatter described on page 92 has in the original proof of a formula f been
applied to a goal a∧ b generating two child states, one with goal a and one with
goal b. If afterwards the declaration of f has been changed such that in the corre-
sponding state of the new proof the goal has form a∧b∧c, the proof replay gives
the following dialog:
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Formula f already has a (skeleton) proof
(proof status: untrusted)

Replay skeleton proof (y/n)? y
Warning: proof is untrusted, errors may occur.
Warning: problem in state [gda].
In the old proof, command "scatter" generated
2 states:

0: expand a
1: expand b
In the new proof, the command generates 3 states
with the following goals:

0: a
1: b
2: c
You can now map ranges [a..b] of new states to
equally sized ranges [c..] of old states.

Enter start state a (0..2, -1 to abort): 0
Enter end state b (0..1, -1 to abort): 1
Enter start state c (0..0, -1 to abort): 0
Enter start state a (0..2, -1 to abort): -1
You have constructed the following mapping:
New states [0..1] are mapped to old states [0..1].
Do you want to use this mapping (y/n)? y
Proof state [wtn] is closed by decision procedure.
Proof state [nxu] is closed by decision procedure.
Proof replay successful.

If no mapping is provided by the user (answer −1 in the dialog), the proof trees
generated for the child states in the old proof are lost.

B.1 Declaration Commands

This section lists those commands that are related to constant declarations and that
are mainly applicable in the “declaration mode” of the system.

B.1.1 read: Read Declaration File

Synopsis

read "path"
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Alternative Applications

• Window Menu “File”, Item “Read File”: read "path"

Applicable In declaration mode.

Description This commands reads the commands in the text file denoted by path
(which may be an elementary file name or a compound file path) and processes
them as if they were typed in interactively. The file may include only commands
that are legal in declaration mode and it may include another applications of read
which read other files. If by such nested applications of read an attempt is made
to recursively read a file, an error is reported.

Pragmatics A file that starts with an application of the command newcontext
described on page 83 can be used as a simple substitute for a “module” facility
(which the system lacks otherwise).

B.1.2 newcontext: Start New Declaration Context

Synopsis

newcontext
newcontext "path"

Applicable In declaration mode.

Description The command creates a new and empty declaration environment
erasing from the system memory all previous constant declarations. The com-
mand associates this environment to a directory in the file system (creating the
directory, if it does not yet exist) for persistently storing representations of the
constants declared in the new environment and of proofs of formulas performed.
If newcommand is invoked without argument, this directory is named Proof-
Navigator and is located in the current working directory of the system (unless
the system has been started with the option --context, see Appendix D). If the
command is invoked with an argument ”path”, the directory with the name and
location denoted by path is (if necessary created and) used rather than the default
directory.
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B.1.3 tcc: Print Type Checking Condition

Synopsis

tcc

Applicable In declaration mode.

Description For type checking a constant declaration, it may be necessary to
check a condition which cannot be derived by static type checking but requires
actual proving. When in proving mode, such a type checking condition gives rise
to an additional proof state with the type checking condition as the goal. When
in declaration mode, the system attempts to resolve a type checking condition
silently by the application of an automated decision procedure; only if a condition
cannot be automatically proved (which may or may not indicate an error), it is
displayed to the user. By application of the command tcc, the last generated
type checking condition (even if successfully proved) is displayed.

Pragmatics It is questionable whether the information provided by this com-
mand is really of interest to the general user. The command was mainly intro-
duced for debugging purposes and will perhaps go away in a future version of the
system.

B.1.4 type, value, formula: Print Constant Declaration

Synopsis

type T
value V
formula F

Alternative Applications

• Menu of Type Constant T : type T

• Menu of Value Constant V : value V

• Menu of Formula Constant F : formula F
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Applicable In declaration mode and in proving mode.

Description These commands print the declaration of a type constant T , value
constant V , or formula constant F visible in the current environment.

B.1.5 environment: Print Environment

Synopsis

environment

Applicable In declaration mode and in proving mode.

Description This command prints the names and kinds of all constants (types,
values, formulas) declared in the current environment.

B.1.6 option: Set System Option

Synopsis

option I
option I = "value"

Alternative Applications

• Window Menu “Options”, Item “No Automatic Simplification”:
option autosimp="false"

• Window Menu “Options”, Item “Automatic Simplification”:
option autosimp="true"

Applicable In declaration mode and in proving mode.
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Description This command switches on the option named I respectively sets
the value of this option. Currently the following option is supported:

autosimp This option may have the value true (default) or false. Setting
the option affects the “simplification mode” of the system: If the option
is true, all formulas in all proof states are automatically simplified with
the help of an external transformation procedure. If the option is false,
no automatic simplification is applied; in this case, the user may invoke
the command simplify described on page 99 to explicitly trigger the
simplification of selected proof states or formulas.

When a new proof is started, the proof is executed in the currently active
simplification mode. This mode is recorded in the proof such that the proof
may be stored and later continued respectively replayed independently of
the simplification mode active at that time. If the command is executed
during a proof, a single child state is generated whose simplification mode
is set according to the value of the option. Thus different parts of a proof
may operate in different simplification modes.

B.2 Control Commands

The commands listed in this section do not alter the proof; they rather enable the
user to enter or leave a proof, to navigate within a proof, and to get additional
information on proof states.

B.2.1 prove: Enter Proving Mode

Synopsis

prove F

Alternative Invocations

• Menu of Formula Constant F : prove F

Applicable In declaration mode.
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Description The command takes the name F of a formula. If the formula al-
ready has an associated proof, the user is asked whether to enter this proof or to
start a new proof. The system consequently switches to proving mode setting the
current proof state to the first open state in the proof.

Pragmatics Before leaving the proving mode by the command quit described
on page 87, the user may decide whether to retain the proof originally associated
to the formula or to overwrite it with the the newly constructed proof.

B.2.2 quit: Leave Current Mode

Synopsis

quit

Alternative Invocations

• Button : quit

• Window Menu “File”, Item “Quit”: quit

• Window Button “Close”: quit

Applicable In declaration mode and in proving mode.

Description If in declaration mode, the command lets the system terminate. If
in proving mode, the command asks the user whether to retain any original proof
or to overwrite it with the newly constructed proof and then switches from proving
mode back to declaration mode.

Pragmatics A proof is only saved to file when the command quit is executed
(in proving mode).

The item “Quit” in window menu “File” and the window button “close” terminate
the system, even when in proving mode, after confirmation by the user.
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B.2.3 prev, next: Cycle Through Open Proof States

Synopsis

prev
next

Alternative Invocations

• Button : prev

• Button : next

Applicable In proving mode.

Description All open proof states are internally organized in a list in an order as
they are encountered by a depth-first left-to-right traversal of the proof tree. The
command next switches the current state to its successor in the list (to the first
state in the list, if the current state is the last one); the command prev switches
the current state to its predecessor in the list (to the last state in the list, if the
current state is the first one). Thus repeated applications of next respectively
prev cycle through all open proof states.

Pragmatics To quickly switch to an open state distant from the current one,
use the command goto described on page 89 respectively double-click on the
corresponding item in the visual representation of the proof tree.

B.2.4 undo, redo: Undo/Redo Proof Commands

Synopsis

undo
undo S
redo
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Alternative Invocations

• Button : undo

• Button : redo

Applicable In proving mode.

Description The command undo cancels the effect of the proof command that
was executed in the parent of the current state; it re-opens the parent state (dis-
carding all its child states) and makes it the new current state.

If the optional state label S is provided, it must denote some ancestor of the current
state, i.e., some state on the path from the parent of the current state to the root
of the proof tree. Then the command cancels the effects of all proof commands
along this path such that the ancestor is re-opened and becomes the new current
state. Thus the effect of this form of the command is the same as if just undo is
executed multiple times until the ancestor is reached.

If a state is re-opened by applying undo, it internally still retains its discarded
child states unless another application of a proof command generates new child
states. Until this is the case, an application of redo is able to restore the subtree
rooted in the current proof state to its shape before the application of undo that
re-opened the current state (however, the new current state after a redo need not
be the the same as the current state before the undo but may be just a sibling of
it). A repeated application of redo along a path of proof states in which undo
was applied thus restores the situation before these applications.

Pragmatics A user may want to discard an unsuccessful proof branch by mul-
tiple applications of undo but accidentally performs one undo too much, such
that the parent state of the unsuccessful branch is re-opened and also all other (po-
tentially successful) sibling branches are discarded. Then the user only needs to
apply redo once to restore the accidentally discarded branches. If the user also
wishes to re-store the unsuccessful branch, she just has to go to the root state of
that branch and continue there with the application of redo.

B.2.5 goto: Go to Another Open Proof State

Synopsis

goto S
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Alternative Invocations

• Double Click on Proof Tree Item [S]: goto S

Applicable In proving mode.

Description This command switches the current state to the open proof state
denoted by label S. If S is not the label of an open state in the current proof, the
command has no effect.

Pragmatics A single click on proof tree item S only displays the denoted proof
state but does not change the current state (see the command state on page 91).

B.2.6 counterexample: Generate Counterexample

Synopsis

counterexample

Alternative Invocations

• Button : counterexample

Applicable In proving mode.

Description A decision procedure may generate for the current proof state

[E] A1,A2, . . . ,An ` B1,B2, . . . ,Bm

a counterexample, i.e. an interpretation for the constants declared in the environ-
ment E which it believes to satisfy the formula

A1∧A2∧ . . .∧An∧¬B1∧¬B2∧ . . .∧¬Bm

The counterexample is given as a conjunction of equations c = t respectively
c(. . .) = t for non-Boolean constants/functions c and of atomic propositions p
respectively p(. . .) for Boolean constants/functions (i.e. predicates) p.
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Pragmatics The presented counterexample is often verbose and not very help-
ful. This counterexample is actually only a part of the counterexample generated
by the decision procedure where (seemingly) uninteresting conditions have been
removed. The generation of the counterexample may take some time; this process
may be interrupted by pressing the abort button .

B.2.7 Abort Prover Activity

Synopsis

• Button

Applicable In proving mode, during prover activity.

Description Pressing the abort button interrupts several (not all) prover activ-
ities, in particular the application of a decision procedure attempting to close a
state or producing a counterexample.

Pragmatics Not in all situations in which the button is enabled, pressing the
button has an effect. There is no textual command that has the same effect as the
abort button.

B.2.8 state: Display Another Proof State

Synopsis

state S

Applicable In proving mode.

Alternative Invocations

• Single Click on Proof Tree Item [S]: state S

Description This command displays the proof state denoted by label S. If S is
not the label of a state in the current proof, the command has no effect.
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Pragmatics A double click on proof tree item S also switches the current state
to the denoted state (see the command goto on page 89).

B.2.9 open: List Open Proof States

Synopsis

open

Applicable In proving mode.

Description This command prints the list of open proof states in the order as
they are encountered in a depth-first left-to-right search of the proof tree.

B.3 Primary Commands

This section lists the commands typically applied in the initial phase of decompos-
ing a proof into simple proof states (scatter, decompose, split, possibly
induction) and in the final phases of closing proof states (autostar, auto).
In the middle proof phases, typically the commands in the next section are applied.

B.3.1 scatter: Scatter Proof State

Synopsis

scatter

Alternative Invocations

• Button : scatter

Applicable In proving mode.
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Description This command generates one or more child states by applying the
commands decompose described on page 93 and split described on page 94.
The application of scatter is recursively repeated for each child state until no
more state is generated. If the initial applications of decompose and split do
not generate new states, then scatter does not generate a child state.

Pragmatics For the recursive application of split being effective, scatter
should be applied to a state with a single goal. The command then replaces the
current state by a (potentially large) number of child states each of which has a
number of (hopefully simple) assumptions and a single (hopefully simple) goal.
Some of these states may have been already closed by a decision procedure; some
others may be subsequently closed by the application of the autostar command
described on page 97.

It is advisable to apply decompose manually before scatter in order to get
insight into the current proof state before attempting to scatter it.

The effect of this command may be simulated by repeated applications of the
commands decompose described on page 93 and split described on page 94.

B.3.2 decompose: Decompose Formulas

Synopsis

decompose

Applicable In proving mode.

Alternative Invocations

• Button : decompose

Description The command generates a single child state by repeatedly applying
the command flatten described on page 107, the command skolemize de-
scribed on page 93, and a simplification procedure, until the resulting proof state
does not change any more. If the resulting state equals the current state, no child
state is generated.
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Pragmatics The command generates at most one child state. This state can be
considered as a simplified version of the current state and thus may be inspected to
get further insight, e.g. to determine why a proof does not work or to find another
proving strategy. An application of the command can be considered as safe in the
sense that it does (should?) never complicate the proof.

This command is used by the command scatter described on page 92 (which
may generate multiple child states).

The effect of this command may be simulated by repeated applications of the com-
mands flatten described on page 107 and skolemize described on page 109.

B.3.3 split: Split Proof State

Synopsis

split
split F

Alternative Invocations

• Button : split

• Formula Menu [F]: split F

Applicable In proving mode.

Description This command generates two or more child states by splitting some
selected formula according to some of the rules listed below (there is at most one
rule applicable). The form split may only applied in a proof state with a single
goal which is thus implicitly selected for splitting. The form split F explicitly
selects the formula (assumption or goal) with label S for splitting. The rules are
applied recursively to the generated child states by splitting the formulas resulting
from the previous split until no more splitting is possible. If no rule is applicable
for splitting the selected formula, no child state is generated.

The applied rules are:

[E] . . . ,A1, . . . ` . . .
[E] . . . ,A2, . . . ` . . .
. . .
[E] . . . ,An, . . . ` . . .
[E] . . . ,A1∨A2∨ . . .∨An, . . . ` . . .
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[E] . . . ` . . . ,A1, . . .
[E] . . . ` . . . ,A2, . . .
. . .
[E] . . . ` . . . ,An, . . .
[E] . . . ` . . . ,A1∧A2∧ . . .∧An, . . .

[E] . . . ,¬A1, . . . ` . . .
[E] . . . ,A2, . . . ` . . .
[E] . . . ,A1 ⇒ A2, . . . ` . . .

[E] . . . ` . . . ,A1 ⇒ A2, . . .
[E] . . . ` . . . ,A2 ⇒ A1, . . .
[E] . . . ` . . . ,A1 ⇔ A2, . . .

[E] . . . ` . . . ,A1 ⇒¬A2, . . .
[E] . . . ` . . . ,A2 ⇒¬A1, . . .
[E] . . . ` . . . ,A1 xor A2, . . .

Pragmatics By the recursive application of the rules, e.g. a single application
of split to the assumption of the proof state

[E] A∨ (B⇒C∨D) ` . . .

generates four child states:
[E] A ` . . .
[E] ¬B ` . . .
[E] C ` . . .
[E] D ` . . .

The command is used by the command scatter described on page 92.

B.3.4 induction: Perform Mathematical Induction

Synopsis

induction
induction I
induction I in F

Alternative Invocations

• Formula Menu [F]: induction ... in F
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Applicable In proving mode.

Description The command applies the principle of mathematical induction to
a universally quantified goal with a natural number variable, i.e., a variable with
type NAT (but see below for the potential application of the command to an integer
variable). If the proof state has a single goal with a single universally quantified
natural number variable, the command form induction selects this goal and
its variable for performing the induction. If the proof state has a single goal with
multiple universally quantified variables, the command form induction I se-
lects the variable with name I. If the proof state has multiple goals, the command
form induction I in F selects the goal with label F and the variable I in
this goal. If I does not denote a natural number variable or F does not denote a
universally quantified goal with such a variable, the command has no effect.

Otherwise, the command creates two child states which are identical to the current
state with the following exceptions:

1. The first child state (the induction base) instantiates the variable in the goal
by the number 0.

2. The second child state (the induction step) has as an additional assumption
the original goal with the variable instantiated by a constant a not occurring
in the environment of the current proof state and instantiates the variable in
the goal by the term a+1.

If the quantified goal only has a single variable, the quantifier is dropped from the
instantiated versions. The command thus implements the following rule:

[E] . . . ` . . . ,∀ . . . : G[0/x], . . .
[E,a : N] . . . ,∀ . . . : G[a/x] ` . . . ,∀ . . . : G[a+1/x], . . .
¬∃T : [E] ` a : T
[E] . . . ` . . . ,∀x ∈ N, . . . : G, . . .

The command may also be applied to an integer variable, i.e., a variable with
type INT. In this case, a third goal is created which ensures the validity of the
application of the induction principle by proving that the original goal can be
proved by only considering non-negative integer values for the variable according
to the following rule:

[E] . . . ` . . . ,∀ . . . : G[0/x], . . .
[E,a : N] . . . ,∀ . . . : G[a/x] ` . . . ,∀ . . . : G[a+1/x], . . .
[E] . . . ,∀x ∈ Z, . . . : x≥ 0⇒ G ` ∀x ∈ Z, . . . : G
¬∃T : [E] ` a : T
[E] . . . ` . . . ,∀x ∈ Z, . . . : G, . . .
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Pragmatics For better readability, the name of the induction constant a is de-
rived from the name of the bound variable x by appending some natural number
subscript (x0,x1, . . .) respectively by replacing an already existing subscript.

B.3.5 autostar: Apply auto also to Sibling States

Synopsis

autostar

Alternative Invocations

• Button : autostar

Applicable In proving mode.

Description This command applies the command auto described on page 98
to the current state and to all of its (not yet closed) subsequent siblings, i.e., to all
(not yet closed) states that have the same parent as the current state and appear in
the sequence of the parent’s children after the current state. Some of these states
may be closed; all others remain unchanged.

The proof does not record the application of autostar but the successful appli-
cations of auto; when the proof is replayed, only these applications are replayed.

Pragmatics This command is especially useful after an application of the com-
mand scatter described on page 92 which potentially generates a large number
of child states with simple goals.

During the execution of autostar, the proof states already processed by auto
are displayed and those that are successfully closed are recorded. If during the ex-
ecution of autostar the abort button is pressed, only the current invocation
of auto is aborted while the execution of autostar itself continues with the
next state in sequence. Thus autostar can be used to interactively probe for
states that can be closed by auto without fear to get stuck in some long-running
invocation or to lose successful invocations by aborting.
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B.3.6 auto: Close State by Automatic Formula Instantiation

Synopsis

auto
auto F1, F2, ...

Alternative Invocations

• Button : auto

• Formula Menu [F]: auto F

Applicable In proving mode.

Description This command generates a single child state by automatically in-
stantiating selected quantified formulas by suitable instantiation terms according
to the rules listed below. The instantiations terms are taken from those ground
terms (terms without free variables) that appear in some formula (goal or assump-
tion) of the state and whose type matches the type of the bound variable to be
instantiated. The type of the instantiation expression e needs not equal the type of
the bound variable; if necessary, a side condition p(e) is added to the instantiated
formula to make the instantiation legal.

If the command is applied as auto, all formulas (assumptions and goals) may be
instantiated; if the application is auto F1, F2, ..., only the formulas with
labels F1,F2, . . . may be instantiated.

The generated child state is only added to the current state, if it can be immediately
closed by a decision procedure; otherwise it is discarded and the current state
remains without child.

The applied rules are:

[E] . . . ,∀x ∈ T : A, . . . , p(e)⇒ A[e/x] ` . . .
[E, p(e) ` e : T
[E] . . . ,∀x ∈ T : A, . . . ` . . .

[E] . . . ` . . . ,∃x ∈ T : A, . . . , p(e)∧A[e/x]
[E, p(e)] ` e : T
[E] . . . ` . . . ,∃x ∈ T : A, . . .
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Pragmatics For performance reasons, only a limited number of instantiations is
performed; thus automay miss instantiation terms that are able to close the state,
even if they appear in the proof state. In this case, one may try to use the form
auto F1, F2, ... to limit the instantiations to the “interesting” quantified
formulas of the current state.

Since no proof search is implemented, the automatic instantiation of formulas is
only useful if it allows a decision procedure to close the state; therefore the com-
mand discards the generated state, if it cannot be immediately closed. Use the
command instantiate described on page 104 to manually generate instantia-
tions for further use in child states.

B.3.7 simplify: Simplify Formulas

Synopsis

simplify
simplify F

Alternative Invocations

• Button : simplify

• Formula Menu [F]: simplify F

Applicable In proving mode with automatic simplification switched off.

Description If automatic simplification has been switched off (by use of the
command option autosimp="false" described on page 85), this com-
mand may be used to trigger simplification explicitly: simplify simplifies all
formulas in the current proof state; simplify F simplifies the formula denoted
by label F.

Pragmatics The command applies an external transformation procedure: the
resulting formula is logically equivalent to the input formula but not necessarily
in a form that the user may consider “simpler”.
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B.4 Secondary Commands

This section lists those commands that are typically applied in the middle phase
of constructing a proof; they require creativity from the user to determine the right
proof strategy and to guide the system towards a successful proof completion.

B.4.1 I:T=E: Declare Value

Synopsis

I:T
I:T=E

Description A value declaration may not only be issued in declaration mode
but also in proving mode. It extends the current proof state by a single child state
whose environment contains the declaration implementing the rule

[E, I : T = E] A, . . . ` B, . . .
[E] A, . . . ` B, . . .

An additional proof state may be generated for a type checking condition corre-
sponding to the value A and the matching of its type to T.

B.4.2 assume: Use and Prove Assumption

Synopsis

assume A

Applicable In proving mode.

Description This command takes a formula A and extends the current proof
states by two child states. Both states are duplicates of the current state except
that in the first state A is added as an assumption while in the second state A
becomes the only goal and the negation(s) of the original goal(s) are added as
assumptions. In other words, the command implements the rule
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[E] . . .1 ,A ` . . .2
[E] . . .1 ,¬ . . .2 ` A
[E] . . .1 ` . . .2

An additional proof state may be generated for a type checking condition corre-
sponding to the value A.

Pragmatics The two new proof states are logically equivalent to the proof states
resulting from the corresponding application of the command case described on
page 101. However, the application of assume puts in the second state A into the
goal position rather rather than the original goal(s).

B.4.3 case: Perform Case Distinction

Synopsis

case A
case A1, A2, ..., An

Applicable In proving mode.

Description The command case A takes a formula A and extends the current
proof states by two child states. Both states are duplicates of the current state
except that in the first state A is added as an assumption while in the second state
¬A is added as an assumption. In other words, the command implements the rule

[E] . . . ,A ` . . .
[E] . . . ,¬A ` . . .
[E] . . . ` . . .

An additional proof state may be generated for a type checking condition corre-
sponding to the value A.

The more general form case A1, A2, ..., An implements the rule
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[E] . . . ,A1 ` . . .
[E] . . . ,¬A1,A2 ` . . .
. . .
[E] . . . ,¬A1,¬A2, . . . ,¬An ` . . .
[E] . . . ` . . .

Additional proof states may be generated for the type checking conditions corre-
sponding to the values A1, A2, . . . .

Pragmatics The two proof states resulting from the application of case A are
logically equivalent to the proof states resulting from the corresponding applica-
tion of the command assume described on page 100. However, the application
of case leaves in the second state the goal unchanged.

The net effect of the execution of case A1, A2, ... is the same as that of
a sequence of commands case A1, case A2, . . . , executed (each command,
apart from the first one, executed in the second state resulting from the application
of the previous command).

B.4.4 expand: Expand Definitions

Synopsis

expand I1, I2, ...
expand I1, I2, ... in F1, F2, ...

Alternative Invocations

• Formula Menu [F]: expand ... in F

Applicable In proving mode.

Description The command takes a list of identifiers I1, I2, . . . denoting names
of constants (functions, predicates) whose values have been explicitly defined in
their declarations. It generates a single child state by expanding all occurrences
of these constants in the current proof state to their values. If the expansion yields
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new occurrences of value constants whose names occur among these identifiers,
these occurrences are also expanded, such that the resulting state is free of value
constants with these names. The command may be also provided with a list of
labels F1,F2, . . . of formulas of the current proof state; in this case, only the oc-
currences of the constants in these formulas are expanded. If some identifier does
not denote the name of a value constant with an explicit definition or some label
does not denote a formula in the current state, no child state is generated.

B.4.5 flip: Flip Formula

Synopsis

flip F

Alternative Invocations

• Formula Menu [F]: flip F

Applicable In proving mode.

Description The command takes the label F of a formula (assumption or goal)
in the current proof state. It generates a single child state where the formula has
been removed and the negated version of the formula, if an assumption, is added
as a goal respectively, if a goal, is added as an assumption. The command thus
implements the rules

[E] . . . , . . . ` . . . ,¬A
[E] . . . ,A, . . . ` . . .

[E] . . . ,¬A, ` . . . , . . .
[E] . . . ` . . . ,A, . . .

If F is not the label of a formula in the current state, no child state is generated.

Pragmatics By application of this command, one may generate a proof state
without assumption (corresponding to a single assumption true) or a proof state
without goal (corresponding to a single goal false); the later case corresponds
to the proving technique “proof by contradiction”.
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B.4.6 goal: Make Formula Goal

Synopsis

goal F

Alternative Invocations

• Assumption Menu [F]: goal F

Applicable In proving mode.

Description The command takes the label F of an assumption in the current
proof state. It generates a single child state where the formula has been removed
from the assumptions and the negated version of the formula becomes the single
goal; the negated versions of the original goals become additional assumptions.
The command thus implements the rule

[E] . . .1 , . . .2 ,¬ . . .3 ` ¬A
[E] . . .1 ,A, . . .2 ` . . .3

Pragmatics Some commands, especially the commands scatter described
on page 92 and split described on page 94, treat the goal of a proof states
specially in that they attempt to split goal formulas (but not assumptions). By
application of the command goal, one may make the right formula the target of
splitting in a subsequent application of scatter or split.

B.4.7 instantiate: Instantiate Variables in Formula

Synopsis

instantiate V1, V2, ... in F

Alternative Invocations

• Formula Menu [F]: instantiate ... in F
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Applicable In proving mode.

Description This command takes the label F of a formula of the current state
such that this formula is either a universally quantified assumption or an existen-
tially quantified goal with n bound variables. It also takes n instantiation values
V1,V2, . . . ,Vn such that each Vi is either the reserved identifier ’_’ or a term with
a type that matches the type Ti of the corresponding variable. The command then
creates a child state that is identical to the current state except that an instantiated
version of the universal assumption is added as an additional assumption respec-
tively an instantiated version of the existential goal is added as an additional goal
(see the rules depicted below). In the instantiated version of the formula, for every
term Vi different from ’_’, every free occurrence of the corresponding variable in
the body of the quantified formula is replaced by Vi (potentially renaming some
variables bound within the body) and the variable is removed from the list of
bound variables. If no value Vi is ’_’, all variables are replaced and the quantifier
is dropped from the instantiation result. The type of term Vi needs not equal Ti;
if necessary, a side condition p(Vi) is generated and an additional proof state with
goal p(Vi) is created.

If F does not denote a universal assumption or existential goal of the current
proof state, if the number of instantiation values V1,V2, . . . ,Vn does not equal the
number of bound variables of the formula, if some Ti cannot be type-checked or
has a type that does not match the type of the corresponding variable, or if all
instantiation terms are ’_’, no child state is generated.

The following rules describe the case of the instantiation of a quantified formula
with two variables whose first is instantiated (corresponding to an application of
the command instantiate V1, _ in ...):

[E] . . . ,∀x1 ∈ T1,x2 ∈ T2 : G, . . . ,∀x2 ∈ T2 : G[V1/x1] ` . . .
[E] . . . ,∀x1 ∈ T1,x2 ∈ T2 : G, . . . ` p(V1)
[E, p(V1)] ` V1 : T1
[E] . . . ,∀x1 ∈ T1,x2 ∈ T2 : G, . . . ` . . .

[E] . . . ` . . . ,∃x1 ∈ T1,x2 ∈ T2 : G, . . . ,∃x2 ∈ T2 : G[V1/x1]
[E] . . . ` p(V1)
[E, p(V1)] ` V1 : T1
[E] . . . ` . . . ,∃x1 ∈ T1,x2 ∈ T2 : G, . . .

An additional proof state may be generated for a type checking condition corre-
sponding to the values V1, V2, . . . .
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B.4.8 lemma: Import Lemmas

Synopsis

lemma L1, L2, ...

Applicable In proving mode.

Description This command adds the formulas with labels L1, L2, ... as
assumptions to the current proof state. These formulas must be defined in dec-
laration mode before the formula that is currently proved. This implements the
following rule:

[E] ` L1 : formula = F1
[E] ` L2 : formula = F2
. . .
[E] . . . ,F1,F2|− . . .
[E] . . . ` . . .

By the application of this command, the status of the current proof also depends
on the proof status of these formulas; in particular, the current proof is only con-
sidered complete, if also these formulas have complete proofs.

B.4.9 typeaxiom: Instantiate Type Axiom

Synopsis

typeaxiom V1, V2, ... in V

Applicable In proving mode.

Description For every constant declaration c : T in the environment of the cur-
rent proof state, the system implicitly adds an invisible “type axiom” pT (c) to
the state which may be used as additional knowledge by a decision procedure un-
aware about the properties of type T (e.g., an assumption x ≥ 0 for a constant
x : N). This may not be sufficient in case of a function f : S → T where for some
application f (a) a type axiom pT ( f (a)) should be added to the prove state (e.g.,
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an assumption f (a) ≥ 0 for a function f : S → N and constant a : S). Likewise,
this may not be sufficient for an array a : ARRAY S OF T where for some array
access a[i] a type axiom pT (a[i]) should be added.

The command typeaxiom takes a value V which denotes a function with n
parameters (respectively an array); it also takes n argument terms V1,V2, . . . ,Vn
whose types match the parameter types (respectively one argument term V1 whose
type matches the index type of the array). The command generates a child state
which is identical to the current state but has the “type axiom” for the application
of the function to the terms added as an explicit assumption. The types of the
argument terms need not equal the types of the parameter terms; if necessary, a
second child state with a side condition p(V1,V2, . . . ,Vn) as a goal is generated. If
no type axiom can be derived from the function/array or the types of the argument
terms do not match the types of the parameters, no child state is generated.

An additional proof state may be generated for a type checking condition corre-
sponding to the values V1, V2, . . . , and the matching of their types to the types of
the instantiation parameters.

Pragmatics The command makes knowledge implicit in the domains of func-
tion types explicit as assumptions in those (rather rare) cases where a proof state
can be only closed by a decision procedure with the help of this knowledge. It is
useful for functions whose domain involves subtypes of some base type, e.g. for
functions whose domains involve the domain of natural numbers N or involve a
type generated by the constructor SUBTYPE.

B.5 Basic Commands

This section lists those commands that are rarely applied directly by the user; their
main purpose is to serve as “building blocks” for more powerful prover commands
(in particular the commands scatter described on page 92 and decompose
described on page 93).

B.5.1 flatten: Flatten Propositional Formulas

Synopsis

flatten
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Applicable In proving mode.

Description The command generates a single child state by flattening every
suitable propositional formula (assumption or goal) of the current proof state ac-
cording to the rules listed below. For every formula of the current state, the com-
mand looks for an applicable rule (there can be at most one) and, if such a rule
exists, applies it to the state; i.e. a rule is applied at most once for every for-
mula (for a repeated application of the rules, see the command decompose on
page 93). If no rule is applicable at all, no child state is generated.

The applied rules are:

[E] . . . ,neg(A), . . . ` . . .
[E] . . . ,¬A, . . . ` . . .

[E] . . . ` . . . ,neg(A), . . .
[E] . . . ` . . . ,¬A, . . .

[E] . . . ,A,B, . . . ` . . .
[E] . . . ,A∧B, . . . ` . . .

[E] . . . ` . . . ,A,B, . . .
[E] . . . ` . . . ,A∨B, . . .

[E] . . . ,A ` . . . ,B, . . .
[E] . . . ` . . . ,A⇒ B, . . .

[E] . . . ` . . . ,(A⇒ B)∧ (B⇒ A), . . .
[E] . . . ` . . . ,A⇔ B, . . .

[E] . . . ,(A⇒ B)∧ (B⇒ A), . . . ` . . .
[E] . . . ,A⇔ B, . . . ` . . .

[E] . . . ` . . . ,(A⇒¬B)∧ (B⇒¬A), . . .
[E] . . . ` . . . ,A xor B, . . .

[E] . . . ,(A⇒¬B)∧ (B⇒¬A), . . . ` . . .
[E] . . . ,A xor B, . . . ` . . .

An application neg(A) yields a formula which is logically equivalent to A but
where negation only occurs at the level of atomic formulas. The operator neg is
recursively defined on the syntactic structure of its argument as follows:
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neg(¬A) := A
neg(A∧B) := neg(A)∨neg(B)
neg(A∨B) := neg(A)∧neg(B)
neg(A⇒ B) := A∧neg(B)
neg(A⇔ B) := A xor B
neg(A xor B) := A⇔ B
neg(let . . . in A) := let . . . in neg(A)
neg(∀x ∈ T : A) := ∃x ∈ T : neg(A)
neg(∃x ∈ T : A) := ∀x ∈ T : neg(A)
neg(a = b) := a 6= b
neg(a 6= b) := a = b
neg(A) := ¬A, for every other A

Pragmatics The effect of this command is subsumed by the effect of the com-
mand decompose described on page 93. The only reason to apply flatten
directly is to observe step-by-step how decompose produces its result.

B.5.2 skolemize: Skolemize Quantified Formulas

Synopsis

skolemize

Applicable In proving mode.

Description The command generates a single child state by skolemizing every
suitable quantified formula (assumption or goal) of the current proof state accord-
ing to the rules listed below. For every formula of the current state, the command
looks for an applicable rule (there can be at most one) and, if such a rule exists,
applies it to the state; i.e. a rule is applied at most once for every formula (for a
repeated application of the rules, see the command decompose on page 93). If
no rule is applicable at all, no child state is generated.

The applied rules are:

[E,a : T ] . . . ` . . . ,A[a/x], . . .
¬∃T : [E] ` a : T
[E] . . . ` . . . ,∀x ∈ T : A, . . .
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[E,a : T ] . . . ,A[a/x], . . . ` . . .
¬∃T : [E] ` a : T
[E] . . . ,∃x ∈ T : A, . . . ` . . .

In both rules, a new skolem constant a is generated that does not occur in the
current proof state and which in the child state replaces the variable x bound by
the quantifier in the current state.

Pragmatics For better readability, the name of the skolem constant a is derived
from the name of the bound variable x by appending some natural number sub-
script (x0,x1, . . .) respectively by replacing an already existing subscript.

The effect of this command is actually subsumed by the effect of the command
decompose described on page 93. The only reason to apply flatten directly
is to observe step-by-step how decompose produces its result.
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System Installation

The installation of the system is thoroughly described in the files README and
INSTALL of the distribution; we include these files verbatim below.

C.1 README

------------------------------------------------------------------------------
README
Information on the RISC ProofNavigator.

Author: Wolfgang Schreiner <Wolfgang.Schreiner@risc.uni-linz.ac.at>
Copyright (C) 2005-, Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria, http://www.risc.uni-linz.ac.at

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
------------------------------------------------------------------------------

RISC ProofNavigator
-------------------
http://www.risc.uni-linz.ac.at/research/formal/software/ProofNavigator

This is the RISC ProofNavigator, an interactive proof assistant for supporting
formal reasoning about computer programs and computing systems. This software
is freely available under the terms of the GNU General Public License, see
file COPYING.



112 Chapter C. System Installation

The RISC ProofNavigator runs on computers with x86-compatible processors
running under the GNU/Linux operating system. For installation instructions,
see file INSTALL. For learning how to use the software, see the file
"main.pdf" in directory "manual"; several proof examples can be found in
directory "examples".

Please send bug reports to the author of this software:

Wolfgang Schreiner <Wolfgang.Schreiner@risc.uni-linz.ac.at>
http://www.risc.uni-linz.ac.at/people/schreine
Research Institute for Symbolic Computation (RISC)
Johannes Kepler University
A-4040 Linz, Austria

Third Party Software
--------------------
The ProofNavigator uses the following open source programs and libraries. Most
of this is already included in the ProofNavigator distribution, but if you
want or need, you can download the source code from the denoted locations
(local copies are available on the ProofNavigator web site) and compile it on
your own. Many thanks to the respective developers for making this great
software freely available!

CVC Lite 2.0
http://www.cs.nyu.edu/acsys/cvcl
-------------------------------
This is a C++ library/program for validity checking in various theories.

The ProofNavigator currently only works with CVCL 2.0, not any of the later
CVCL versions available from the CVCL web site. To download the CVCL 2.0
source, go to the RISC ProofNavigator web site (URL see above), Section "Third
Party Software", and click on the link "CVCL 2.0 local copy".

RIACA OpenMath Library 2.0
http://www.riaca.win.tue.nl/products/openmath/lib
-------------------------------------------------
This is a library for converting mathematical objects to/from
the OpenMath representation.

Go to the link "OMLib 2.0" and then "Downloads".
Download one of the "om-lib-src-2.0-rc2.*" files.

General Purpose Hash Function Algorithms Library
http://www.partow.net/programming/hashfunctions
-----------------------------------------------
A library of hash functions implemented in various languages.

Go to the link "General Hash Function Source Code (Java)" to download
the corresponding zip file.

ANTLR 2.7.6b2
http://www.antlr.org
--------------------
This is a framework for constructing parsers and lexical analyzers.

On a Debian 3.1 GNU/Linux distribution, just install the package "antlr"
by executing (as superuser) the command

apt-get install antlr

The Eclipse Standard Widget Toolkit 3.3
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http://www.eclipse.org/swt
---------------------------------------
This is a widget set for developing GUIs in Java.

Go to section "Stable" and download the version "Linux (x86/GTK2)" (if you use
a 32bit x86 processor) or "Linux (x86_64/GTK 2)" (if you use a 64bit x86
processor).

Mozilla Firefox 2.0.X or SeaMonkey 1.1.X (or higher)
http://www.mozilla.org
-----------------------------------------------------
See the question "What do I need to run the SWT browser in a standalone
application on Linux GTK or Linux Motif?" in the FAQ at
http://www.eclipse.org/swt/faq.php.

Chances are that the SWT browser will work with the Firefox included in your
Linux distribution (but it will *not* work with the Firefox downloaded from
the Mozilla site). For instance, on a Debian 4.0 GNU/Linux distribution, just
install Firefox by executing (as superuser) the command

apt-get install iceweasel

If the SWT browser does not work with the Firefox included in your GNU/Linux
distribution, go to the page http://www.mozilla.org/projects/seamonkey to
download and install the SeaMonkey 1.1.4 browser instead. You might have to
set the environment variable MOZILLA_FIVE_HOME in the "ProofNavigator" script
to "/usr/lib/mozilla".

The GIMP Toolkit GTK+ 2.X (or higher)
http://www.gtk.org
-------------------------------------
This library is required by "Eclipse Linux (x86/GTK2)" and by
"Mozilla 1.7.8 GTK2".

On a Debian 3.1 GNU/Linux distribution, the package is automatically
installed, if you install the "mozilla-browser" package (see above).

On another GNU/Linux distribution, go to the GTK web package, section
"Download", to download GTK+.

Java Development Kit 5.0 (or higher)
http://java.sun.com/j2se/1.5.0
------------------------------------
Go to the "Downloads" section to download the Sun JDK 5.0. The ProofNavigator
does currently not use any of the Java 5 language features and can therefore
be also compiled with JDK 1.4.2 (but this may change in the future).

Tango Icon Library 0.6.1
http://tango-project.org/
-------------------------
Go to the "Base Icon Library" section, subsection "Download", to download
the icons used in the ProofNavigator.

------------------------------------------------------------------------------
End of README.
------------------------------------------------------------------------------
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C.2 INSTALL

------------------------------------------------------------------------------
INSTALL
Installation notes for the RISC ProofNavigator.

Author: Wolfgang Schreiner <Wolfgang.Schreiner@risc.uni-linz.ac.at>
Copyright (C) 2005-, Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria, http://www.risc.uni-linz.ac.at

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
------------------------------------------------------------------------------

Installation
------------
The RISC ProofNavigator is available for computers with x86-compatible
processors (32 bit as well as 64 bit) running under the GNU/Linux operating
system. The core of the RISC ProofNavigator is written in Java but it depends
on various third-party open source libraries and programs that are
acknowledged in the README file.

To use the RISC ProofNavigator, you have three options:

A) You can just use the distribution, or
B) you can compile the source code contained in the distribution, or
C) you can download the source from a Subversion repository and compile it.

The procedures for the three options are described below.

A Note for Microsoft Windows Users
----------------------------------
The RISC ProofNavigator does currently not run natively under MS Windows.

However, you can find on the RISC ProofNavigator web page a link to a virtual
machine with a Debian 4.0 GNU/Linux distribution that includes an installation
of the RISC ProofNavigator. The virtual machine is in the format of the free
virtualization environment VirtualBox (http://www.virtualbox.org). Install on
your MS Windows PC the VirtualBox software and the virtual machine (see the
web page for further instructions) and you can enjoy the RISC ProofNavigator
also under MS Windows.

A) Using the Distribution
-------------------------
We provide a distribution for computers with ix86-compatible processors
running under the GNU/Linux operating system (the software has been developed
on the Debian 3.1 "sarge" distribution, but any other distribution will work
as well). If you have such a computer, you need to make sure that you also
have
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1) A Java 5 or higher runtime environment.

You can download the Sun JRE 5.0 from
http://java.sun.com/j2se/1.5.0/download.jsp

2) The Mozilla Firefox or SeaMonkey browser.

On a Debian 4.0 GNU/Linux system, just install the package
"iceweasel" by executing (as superuser) the command

apt-get install iceweasel

On other Linux distributions, first look up the FAQ on

http://www.eclipse.org/swt/faq.php

for the question "What do I need to run the SWT browser in a standalone
application on Linux GTK or Linux Motif?" The ProofNavigator uses the
SWT browser, thus you have to install the software described in the FAQ.

See the README file for further information.

3) The GIMP Toolkit GTK+ 2.6.X or higher.

On a Debian 3.1 GNU/Linux system, GTK+ is automatically installed,
if you install the Mozilla browser as described in the previous paragraph.

On other Linux distributions, download GTK+ from http://www.gtk.org

For installing the ProofNavigator, first create a directory INSTALLDIR (where
INSTALLDIR can by any directory path). Download from the website the file

ProofNavigator-VERSION.tgz

(where VERSION is the number of the latest version of the ProofNavigator) into
INSTALLDIR, go to INSTALLDIR and unpack by executing the following command:

tar zxf ProofNavigator-VERSION.tgz

This will create the following files

README ... the readme file
INSTALL ... the installation notes (this file)
CHANGES ... the change history
COPYING ... the GNU Public License
bin/
ProofNavigator ... the main script to start the program
cvcl ... CVC Lite, a validity checker used by the software.

doc/
index.html ... API documentation

examples/
README ... short explanation of examples

*.pn ... some example specifications and proofs
lib/

*.jar ... Java archives with the program classes
swt32/ ... SWT for GNU/Linux computers with 32 bit processors
swt.jar

*.so
swt64/ ... SWT for GNU/Linux computers with 64 bit processors
swt.jar

*.so
manual/
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main.pdf ... the PDF file for the manual
index.html ... the root of the HTML version of the manual

src/
fmrisc/ ... the root directory of the Java package "fmrisc"

ProofNavigator/
Main.java ... the main class for the ProofNavigator

Open in a text editor the script "ProofNavigator" in directory "bin" and
customize the variables defined for several locations of your environment. In
particular, the distribution is configured to run on a 32-bit processor. If
you use a 64-bit processor, uncomment the line "SWTDIR=$LIBDIR/swt64" (and
remove the line "SWTDIR=$LIBDIR/swt32").

Put the "bin" directory into your PATH

export PATH=$PATH:INSTALLDIR/bin

You should now be able to execute

ProofNavigator

If you happen to get a message that ends with

...
ERROR: You may try "ProofNavigator --nogui".

your Mozilla installation could not be detected. In this case, please set the
value of the variable MOZILLA_FIVE_HOME in the "ProofNavigator" script to the
location of the Mozilla libraries (e.g. /usr/lib/mozilla). In any case, you
should be able to start

ProofNavigator --nogui

to get a text-only interface.

B) Compiling the Source Code
----------------------------
To compile the Java source, first make sure that you have the Java 5
development environment installed. You can download the Sun JDK 5.0 from

http://java.sun.com/j2se/1.5.0/download.jsp

Furthermore, on a GNU/Linux system you need also the Mozilla browser 1.7.X
GTK2 and the GIMP toolkit GTK+ 2.X installed (see Section A).

Now download the distribution and unpack it as described in Section A above.

The ProofNavigator distribution contains an executable of the validity
checker CVC Lite for GNU/Linux computers with x86-compatible processors. To
compile the validity checker for other systems, you need to download the
CVC Lite source code (see the README file) and compile it with a C++
compiler. See the CVC Lite documentation for more details.

To compile the Java source code, go to the "src" directory and execute from
there

javac -cp ".:../lib/antlr.jar:../lib/om-lib.jar:../lib/swt.jar"
fmrisc/ProofNavigator/Main.java

(ignore the warning about "unchecked" or "unsafe" operations, this refers to
Java files generated automatically from ANTLR grammars).
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Then execute

jar cf ../lib/fmrisc.jar fmrisc/*/*.class fmrisc/*/*/*.class

Finally, you have to customize the "ProofNavigator" script in directory "bin"
as described in Section A. You should then be able to start the program by
executing the script.

C) Downloading the Source Code from the Subversion Repository
-------------------------------------------------------------
You can now download the source code of any version of the ProofNavigator
directly from the ProofNavigator Subversion repository.

To prepare the download, first create a directory SOURCEDIR (where SOURCEDIR
can be any directory path).

To download the source code, you need a Subversion client, see
http://subversion.tigris.org/project_links.html for a list of available
clients. On a computer with the Debian 3.1 distribution of GNU/Linux, it
suffices to install the "svn" package by executing (as superuser) the command

apt-get install svn

which will provide the "svn" command line client.

Every ProofNavigator distribution has a version number VERSION (e.g. "0.1"),
the corresponding Subversion URL is

svn://svn.risc.uni-linz.ac.at/schreine/FM-RISC/tags/VERSION

If you have the "svn" command-line client installed, execute the command

svn export
svn://svn.risc.uni-linz.ac.at/schreine/FM-RISC/tags/VERSION SOURCEDIR

to download the source code into SOURCEDIR. With other Subversion clients, you
have to check the corresponding documentation on how to download a directory
tree using the URL svn://... shown above.

After the download, SOURCEDIR will contain the files of the distribution as
shown in Section A; you can compile the source code as explained in Section B.

------------------------------------------------------------------------------
End of INSTALL.
------------------------------------------------------------------------------



Appendix D

System Invocation

Invoking the system by the the command ProofNavigator -h gives output
which lists the available startup options:

RISC ProofNavigator Version 1.1 (October 24, 2007)
http://www.risc.uni-linz.ac.at/research/formal/software/...
(C) 2005-, Research Institute for Symbolic Computation (RISC)
This is free software distributed under the terms of the GNU GPL.
Execute "ProofNavigator -help" to see the options available.
-----------------------------------------------------------------
Usage: ProofNavigator [OPTION]... [FILE]
FILE: name of file to be read on startup.
OPTION: one of the following options:
-n, --nogui: use command line interface
-c, --context NAME: use subdirectory NAME to store context.
--cvcl PATH: PATH refers to executable "cvcl".
-s, --silent: omit startup message.
-h, --help: print this message.

The command optionally receives the name (in general path) of a declaration file
which is read and processed as described for the command read on page 82. The
command also accepts various startup options:

-n, –nogui Start the system without graphical user interface relying on the textual
command line interface only.

Currently, this option is mainly useful in case of problems with the installa-
tion of the software, if the necessary GUI library cannot be found (see Ap-
pendix C). In the future, the option may become useful for non-interactive
applications of the system.
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-c, –context NAME When the system starts up, it creates in the current working
directory a subdirectory ProofNavigator for storing the session con-
text (see also Appendix E and the command newcontext described on
page 83. With this option, the subdirectory is given a different name and/or
different location as specified by the parameter NAME (which must denote
a directory path).

–cvcl PATH The system currently uses CVCL (CVC Lite) [2, 1] Version 2.0
as an external decision procedure and assumes that the CVCL executable
cvcl can be found in the current PATH. With the option --cvcl an al-
ternative location and/or name of the executable can be specified by the
parameter PATH (which must denote a file path).

This option is only used within the ProofNavigator script for cus-
tomization of the installation (see Appendix C); passing it to the script has
no effect.

-s, –silent With this option, the startup message is suppressed.

-h, –help With this option, the description shown above is printed and the system
is terminated.
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Context Directory

The system generates the following files in the context directory:

cvcl.log A log file describing the interaction between the system and the
CVCL instance used for automatically verifying the type checking condi-
tions generated in declaration mode. This file can be erased after a session
without consequence.

cvcl0.log A log file describing the interaction between the system and the
CVCL instances used to simplify formulas in a proof state respectively close
a proof state. This file can be erased after a session without consequence
(and perhaps should be erased, since it can become very large).

*.xhtml A collection of files presenting the declarations and proof states in
XHTML+MathML format. The files use the following DOCTYPE declara-
tion specified by W3C (see Section “A.2.3 MathML as a DTD Module” of
[6]):

<!DOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.1 plus MathML 2.0//EN"
"http://www.w3.org/TR/MathML2/dtd/xhtml-math11-f.dtd">

The files are primarily intended for internal use by the graphical user in-
terface of the system. However, after a session they can be also copied to
another location for the persistent presentation of declarations and proofs.
The files can be viewed by any Web browser that understands above docu-
ment type, e.g. the browsers of the Mozilla suite (as well the former Mozilla
browser as the current Firefox and SeaMonkey browsers). Most notably,
the MicroSoft Internet Explorer Version 6 does not understand these decla-
rations and thus cannot be used for viewing the files.

The entry files to the presentations are:
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decl-list.xhtml The list of declarations issued in declaration mode.

F.xhtml The proof of formula F.

kind name *.* For every declaration of a constant name of a particular kind
(type, value, formula), four files are generated that are mainly used to main-
tain declaration and proof dependencies across different sessions of the sys-
tem and thus allow to assess the status of a proof generated in a previous
session with respect to the declarations of the current session.

kind name decl.xgz This is an XML file compressed with the com-
pression tool gzip; its plain XML content can be printed with the tool
zcat.
The file contains an OMDoc [10] representation of the declaration with
mathematical objects represented according to the OpenMath (OM)
standard [5] using as far as possible symbols from standard OM con-
tent dictionaries; if for some concept of the specification language no
appropriate standard symbol exists, an ad-hoc symbol with the content
dictionary prefix fmrisc is used instead.
These files are actually not (yet) used by the system; in a future version
they may provide a bridge to third-party tools understanding OMDoc.

kind name hash.txt This is a text file that contains a single decimal
number representing a hash code for the declaration. If the hash code
of the declaration in the current session coincides with the value stored
in this file in a previous session, it is assumed that this declaration has
not changed since then.

kind name time.txt This is a text file that contains a single decimal
number representing the time stamp when the corresponding constant
declaration has been generated respectively the definition of the con-
stant has most recently changed.

kind name refs.xml This is an XML file that lists all entities refer-
enced by the corresponding constant together with the values of their
time stamps. If the definition of a referenced entity changes in a sub-
sequent session, the value in its time stamp file is updated and does
not coincide any more with the value listed in this file. This discrep-
ancy is consequently detected and reflected in the status of a proof (see
page 80) depending on this constant.

proof name *.* For every proof of formula name, two files are generated that
allow to assess the status of a proof in a later session (with respect to the
declarations of that session) and to replay the proof.



122 Chapter E. Context Directory

proof name decl.xgz This is an XML file compressed with the com-
pressed with the compression tool gzip; its plain XML content can
be printed with the tool zcat.
The file describes the tree structure of the proof including the proof
commands issued at every node of the tree in an ad-hoc XML format.
Specification language entities used in these commands are described
according to to the OpenMath (OM) standard [5] using as far as possi-
ble symbols from standard OM content dictionaries; if for some con-
cept of the specification language no appropriate standard symbol ex-
ists, an ad-hoc symbol with the content dictionary prefix fmrisc is
used instead.

proof name refs.xgz This is an XML file that lists all entities refer-
enced by the proof together with the values of their time stamps (as
already discussed above).

For illustration of the content of the * decl.xgz files, let us consider the exam-
ple of Section 3.1 with declarations

sum: NAT->NAT;
S1: AXIOM sum(0)=0;
S2: AXIOM FORALL(n:NAT): n>0 => sum(n)=n+sum(n-1);
S: FORMULA FORALL(n:NAT): sum(n) = (n+1)*n/2;

and proof

[tca]: induction n byu
[dbj]: proved (CVCL)
[ebj]: auto
[k5f]: proved (CVCL)

The contents of the correspondingly generated declaration and proof files are (af-
ter uncompression) as follows:

value sum decl.xgz

<?xml version="1.0" encoding="UTF-8"?>
<omdoc:omgroup
xmlns:omdoc="http://www.mathweb.org/omdoc"
xmlns:fmrisc="http://www.risc.uni-linz.ac.at/FM-RISC"
xmlns:om="http://www.openmath.org/OpenMath">
<omdoc:symbol kind="object" name="sum">
<omdoc:type system="simply_typed" xml:id="sum_type">
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<om:OMA>
<om:OMS cd="sts" name="mapsto"/>
<om:OMA>

<om:OMS cd="set1" name="cartesian_product"/>
<om:OMS cd="setname1" name="N"/>

</om:OMA>
<om:OMS cd="setname1" name="N"/>

</om:OMA>
</omdoc:type>

</omdoc:symbol>
</omdoc:omgroup>

formula S1 decl.xgz

<?xml version="1.0" encoding="UTF-8"?>
<omdoc:omgroup
xmlns:omdoc="http://www.mathweb.org/omdoc"
xmlns:fmrisc="http://www.risc.uni-linz.ac.at/FM-RISC"
xmlns:om="http://www.openmath.org/OpenMath">
<omdoc:assertion type="axiom" xml:id="S1">
<om:FMP>
<om:OMA>
<om:OMS cd="relation1" name="eq"/>
<om:OMA>

<om:OMV name="sum"/>
<om:OMI>0</om:OMI>

</om:OMA>
<om:OMI>0</om:OMI>

</om:OMA>
</om:FMP>

</omdoc:assertion>
</omdoc:omgroup>

formula S2 decl.xgz

<?xml version="1.0" encoding="UTF-8"?>
<omdoc:omgroup
xmlns:omdoc="http://www.mathweb.org/omdoc"
xmlns:fmrisc="http://www.risc.uni-linz.ac.at/FM-RISC"
xmlns:om="http://www.openmath.org/OpenMath">
<omdoc:assertion type="axiom" xml:id="S2">
<om:FMP>
<om:OMBIND>
<om:OMS cd="quant1" name="forall"/>
<om:OMBVAR>

<om:OMATTR>
<om:OMATP>
<om:OMS cd="sts" name="type"/>



124 Chapter E. Context Directory

<om:OMS cd="setname1" name="N"/>
</om:OMATP>
<om:OMV name="n"/>

</om:OMATTR>
</om:OMBVAR>
<om:OMA>
<om:OMS cd="logic1" name="implies"/>
<om:OMA>
<om:OMS cd="relation1" name="gt"/>
<om:OMV name="n"/>
<om:OMI>0</om:OMI>

</om:OMA>
<om:OMA>
<om:OMS cd="relation1" name="eq"/>
<om:OMA>
<om:OMV name="sum"/>
<om:OMV name="n"/>

</om:OMA>
<om:OMA>
<om:OMS cd="arith1" name="plus"/>
<om:OMV name="n"/>
<om:OMA>
<om:OMV name="sum"/>
<om:OMA>
<om:OMS cd="arith1" name="minus"/>
<om:OMV name="n"/>
<om:OMI>1</om:OMI>

</om:OMA>
</om:OMA>

</om:OMA>
</om:OMA>

</om:OMA>
</om:OMBIND>

</om:FMP>
</omdoc:assertion>

</omdoc:omgroup>

formula S decl.xgz

<?xml version="1.0" encoding="UTF-8"?>
<omdoc:omgroup
xmlns:omdoc="http://www.mathweb.org/omdoc"
xmlns:fmrisc="http://www.risc.uni-linz.ac.at/FM-RISC"
xmlns:om="http://www.openmath.org/OpenMath">
<omdoc:assertion type="formula" xml:id="S">
<om:FMP>
<om:OMBIND>

<om:OMS cd="quant1" name="forall"/>
<om:OMBVAR>
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<om:OMATTR>
<om:OMATP>
<om:OMS cd="sts" name="type"/>
<om:OMS cd="setname1" name="N"/>

</om:OMATP>
<om:OMV name="n"/>

</om:OMATTR>
</om:OMBVAR>
<om:OMA>

<om:OMS cd="relation1" name="eq"/>
<om:OMA>
<om:OMV name="sum"/>
<om:OMV name="n"/>

</om:OMA>
<om:OMA>
<om:OMS cd="arith1" name="divide"/>
<om:OMA>
<om:OMS cd="arith2" name="times"/>
<om:OMA>
<om:OMS cd="arith1" name="plus"/>
<om:OMV name="n"/>
<om:OMI>1</om:OMI>

</om:OMA>
<om:OMV name="n"/>

</om:OMA>
<om:OMI>2</om:OMI>

</om:OMA>
</om:OMA>

</om:OMBIND>
</om:FMP>

</omdoc:assertion>
</omdoc:omgroup>

proof S decl.xgz

<?xml version="1.0" encoding="UTF-8"?>
<fmrisc:proof
xmlns:fmrisc="http://www.risc.uni-linz.ac.at/FM-RISC"
xmlns:om="http://www.openmath.org/OpenMath"
closed="true" autosimplify="true" name="S">
<fmrisc:state>
<fmrisc:command name="induction">
<om:OMV name="n"/>
<fmrisc:label>byu</fmrisc:label>

</fmrisc:command>
<fmrisc:state>
<fmrisc:command name="proved">CVCL</fmrisc:command>

</fmrisc:state>
<fmrisc:state>
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<fmrisc:command name="auto"/>
<fmrisc:state>

<fmrisc:command name="proved">CVCL</fmrisc:command>
</fmrisc:state>

</fmrisc:state>
</fmrisc:state>

</fmrisc:proof>



Appendix F

Grammar

In this appendix, we give the lexical and the syntactical grammar of the specifi-
cation language and the prover commands. The syntax is given in the notation
of the ANTLR parser generator [13] used for the implementation of the system.
Non-determinism in the syntax is resolved by extra means provided by ANTLR
(like semantic predicates) which are not shown in this presentation.

F.1 Lexical Grammar

// identifiers, labels, numbers, strings
IDENT: REALLETTER (LETTER | DIGIT)* ;
LABEL: (LETTER | DIGIT) (LETTER | DIGIT)* ;
NUMBER: DIGIT (DIGIT)* ;
REALLETTER: (’a’..’z’ | ’A’..’Z’ );
LETTER: (’a’..’z’ | ’A’..’Z’ | ’_’);
DIGIT: (’0’..’9’);
STRING : ’"’ (˜(’"’ | ’\n’ | ’\r’ | ’\f’ | ’\uffff’))*

’"’ ;
UNDERSCORE: ’_’;

// language tokens
LPAR: "(";
RPAR: ")";
LBRACK: "[";
RBRACK: "]";
LPARGRID: "(#";
RPARGRID: "#)";
LBRACKGRID: "[#";
RBRACKGRID: "#]";
PERIOD: ".";
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COLON: ":";
SEMICOLON: ";";
COMMA: ",";
ASSIGNMENT: ":=";
EQUALITY: "=";
NONEQUALITY: "/=";
LESS: "<";
LESSEQ: "<=";
GREATER: ">";
GREATEREQ: ">=";
PLUS: "+";
MINUS: "-";
TIMES: "*";
DIVIDES: "/";
POWER: "ˆ";
IMPLIES: "=>";
EQUIV: "<=>";
ARROW: "->";
DOTDOT: "..";

// whitespace (filtered by lexer)
WS: (’ ’ | ’\t’ | EOL | COMMENT)+ ;
EOL: (’\n’ | ’\r’ | ’\f’) ;
COMMENT : ’%’ (˜(’\n’ | ’\r’ | ’\f’ | ’\uffff’))*

(EOL | ’\uffff’) ;

F.2 Syntactical Grammar

// parsing of a declaration or prover command
main:
declaration SEMICOLON

| "tcc" SEMICOLON
| "prove" IDENT SEMICOLON
| "flip" LABEL SEMICOLON
| "goal" LABEL SEMICOLON
| "skolemize" SEMICOLON
| "flatten" SEMICOLON
| "split" ( LABEL )? SEMICOLON
| "decompose" SEMICOLON
| "simplify" ( LABEL )? SEMICOLON
| "scatter" SEMICOLON
| "auto" ( LABEL ( "," LABEL )* )? SEMICOLON
| "autostar" SEMICOLON
| "counterexample" SEMICOLON
| "assume" valueExp SEMICOLON
| "case" valueExp ( "," valueExp )* SEMICOLON
| "lemma" IDENT ( "," IDENT )* SEMICOLON
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| "instantiate" valueExp ( "," valueExp )*
"in" LABEL SEMICOLON

| "typeaxiom" valueExp ( "," valueExp )*
"in" IDENT SEMICOLON

| "expand" IDENT ( "," IDENT )*
( "in" LABEL ( "," LABEL )* )? SEMICOLON

| "induction" ( IDENT ( "in" LABEL )? )? SEMICOLON
| "open" SEMICOLON
| "next" SEMICOLON
| "prev" SEMICOLON
| "goto" LABEL SEMICOLON
| "undo" ( LABEL )? SEMICOLON
| "redo" ( LABEL )? SEMICOLON
| "environment" SEMICOLON
| "proof" ( IDENT )? SEMICOLON
| "state" ( LABEL ( IDENT )? )? SEMICOLON
| "type" IDENT SEMICOLON
| "value" IDENT SEMICOLON
| "formula" IDENT SEMICOLON
| "quit" SEMICOLON
| "read" STRING SEMICOLON
| "option" IDENT ( "=" STRING )? SEMICOLON
| "newcontext" ( STRING )? SEMICOLON
| SEMICOLON
| EOF
;

declaration:
IDENT ":"
( "TYPE" ( "=" typeExp )?
| typeExp ( "=" valueExp )?
| "FORMULA" valueExp
| "AXIOM" valueExp
)

;

typeExp:
typeExpBase "->" typeExp

| "(" typeExp ( "," typeExp )+ )" "->" typeExp
| "ARRAY" typeExpBase "OF" typeExp
| typeExpBase
;

typeExpBase:
IDENT

| "BOOLEAN"
| "INT"
| "NAT"
| "REAL"
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| "[" typeExp ( "," typeExp )+ "]"
| "[" typeExp "]"
| "[#" IDENT ":" typeExp ( "," IDENT ":" typeExp )* "#]"
| "SUBTYPE" "(" valueExp ")"
| "[" valueExp ".." valueExp "]"
| "(" typeExp ")"
;

valueExp:
"LAMBDA" paramList ":" valueExp

| "ARRAY" paramList ":" valueExp
| "FORALL" paramList ":" valueExp
| "EXISTS" paramList ":" valueExp
| valueExp90
;

vdeclaration:
IDENT ( ":" typeExp )? "=" valueExp

;

valueExp90:
"LET" vdeclaration ( "," vdeclaration )* "IN" valueExp90

| valueExp70
;

valueExp70:
valueExp60 "=>" valueExp70

| valueExp60 ( "<=>" valueExp70 | "XOR" valueExp70 )*
;

valueExp60:
valueExp50 ( "OR" valueExp60 )*

;

valueExp50:
valueExp45 ( "AND" valueExp50 )*

;

valueExp45:
"NOT" valueExp45

| valueExp43
;

valueExp43:
valueExp40 ( "=" valueExp43 | "/=" valueExp43 )?

;

valueExp40:
valueExp30
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( "<" valueExp40 | "<=" valueExp40 |
">" valueExp40 | ">=" valueExp40 )?

;

valueExp30:
valueExp10 ( "+" valueExp30 | "-" valueExp30 )*

;

valueExp10:
valueExp9 ( "*" valueExp9 | "/" valueExp9 )*

;

valueExp9:
valueExp8 ( "ˆ" valueExp8 )*

;

valueExp8:
"+" valueExp6

| "-" valueExp6
| valueExp6
;

valueExp6:
valueExp5
( "WITH" ( "." ( NUMBER | IDENT ) | "[" valueExp "]" )+
":=" valueExp )*

valueExp5:
valueExp3
(
"." ( NUMBER | IDENT )

| "[" valueExp "]"
)*

;

valueExp3:
valueExp0 ( "(" valueExp ( "," valueExp )* ")" )*

;

valueExp0:
IDENT

| UNDERSCORE
| NUMBER
| "TRUE"
| "FALSE"
| "(" valueExp ( "," valueExp )* ")"
| "(#" IDENT ":=" valueExp ( "," IDENT ":=" valueExp )* "#)"
| "IF" valueExp "THEN" valueExp
( "ELSIF" valueExp "THEN" valueExp )*
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"ELSE" valueExp "ENDIF"
;

paramList:
"(" param ( "," param )* ")"

;

param:
IDENT ( "," IDENT )* ":" typeExp

;


