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Abstract

S

The Knuth-Bendix completion procedure for rewrite rule sys igga4s @‘
in symbolic and algebraic computation. Attempts to reduce the coln f%xltf

algorithm are reported in the literature. Already in their seminal 1 papets B 1th
P.B. Bendix have suggested to keep all the rules interreduced during execution of the‘algo-
rithm. G. Huet has presented a version of the completion algorithm t_which every rewrite
rule is kept in reduced form with respect to all the other rules in the sysfem; rrowing an
idea of Buchberger's for the completion of bases of polynomial ideals the author has proposed
in 1983 a eriterion for detecting "unnecessary® critical pairs. If a critical pair is recognized as
unnecessary then one need not apply the costly process of computing normal forms to it. It
has been unclear whether these approaches can be combined. We demonstrate that it is posai-
ble to keep all the rewrite rules interreduced and still use a criterion for eliminating unneces-
sary critical pairs.

1. Introduction

We assume familiarity with the basic notions of the theory of term rewriting systems and
in particular with the Knuth-Bendix completion algorithm (see, for instance, [KB67], [Hu80]).
The Knuth-Bendix completion algorithm (if it terminates successfully) solves the following
problem:

given: a (finite) set of equations E over some term algebra T
find: = set of rewrite rules {directed equations) R over T such that
(©) ,
=E — +—"‘-‘+R '
~—g is noetherian, and
~p has the Church-Rosser property,
==p is the equational congruence over T generated by the equations in E. —y denotes the redu-
cibility in one step with respect to the rewrite rule system R | ie. s ~+p t iff there is a rule

u-+u’ in R, such that for some oceurrence P in s and for some substitution ¢ we have
s/p = 0'(\1), tzs[p;za(u ')} We write R ""I-{r “~+Rs * =R, *——R for the inverse relation, the

"The suthor is currently on lsave from Johannas Kepler University in Lint, Austria.
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transitive closure, the transitive-reflexive closure, the symmetric closure, and the symmetric-
transitive-reflexive closure of —+p, respectively. By & we denote the subsumption preorder (see

[Hus0j). o

~+x_has the Church-Rosser property ifl for all terms s and &: if & <-—-4§ t then there is a
term u such that s "“F‘l u 4-;‘ t. The Church-Rosser property is equivalent to confluence and if
—+p is noetherian then confluence is equivalent to local confluence. If —¢ has the Church-
Rosser property then we also say that R is a complete rewrite rule system.

Once we have a complete noetherian rewrite rule system R that solves the problem (C) for
the given system of equations E, then we can decide ==y : s==¢ t if and only if s and t have the
same pormal form with respect to —g. 8 is a normal form of s with respect to —sp iff
8 —g 8° and 8 is irreducible with respeet to —g.

The Knuth-Bendix algorithm proceeds by computing critical pairs of rewrite rules, redue-
ing them to normal forms and checking these normal forms for syntactical equality. If the
reduction results of a critical pair turn out to be different then they are combined to form a
new rule, which is added ta the rewrite system. This process might fail if the addition of such
a newly derived rule destroys the noetherianity of the rewrite rule system.

Atternpts to reduce the complexity of the Knuth-Bendix completion algorithm are
reported in the literature. Already in their seminal paper [KB67] D.E. Knuth and P.B. Bendix
have suggested to keep all the rules interreduced during the execution of the algorithm. G.
Huet has presented a version of the algorithm in which every rewrite rule is kept in reduced
form with respect to all the other rules in the system. A detailed correctness proof of this vari-
ant of the algorithm is given in [Hu81]. Borrowing an idea of Buchberger’s {Bu79] for the com-
pletion of bases of polynomial ideals (Grobner bases algorithm) the author has proposed in
[WBB3] a criterion for detecting "unnecessary" critical pairs. If a critical pair is recognized as
unnecessary then we need not apply the costly process of computing normal forms to it. It has
been unclear whether these approaches can be combined. In the subsequent chapters we show
that this is possible.

For the completion algorithm in the case of polynomial ideals (Grobner bases algorithm)
the combination of mutual reduction and criteria for eliminating unnecessary critical pairs has
been proposed by B. Buchberger in [Bué5], [Bu70}, and [Bu85).

Besides being of importance in deciding equational theories, the Knuth-Bendix algorithm

has also been proposed as a substitute for inductive proofs in the initial model of an equational
theory by D.R. Musser [Mu80] and G. Huet and J.M. Hullot [HH80]. Hsiang {Hs82] uses the
completion algorithm for refutation theorem proving. For further applications we refer to
[De83].

2. The concept of connectedness and a generalized Newman lemma

In this section we describe the concept of connectedness (introduced in [WB83], see also
[Wig4]) which leads to a generalized version of Newman's lemma [Ne42].

Def. 2.1: Let M be a set, > a partial ordering on M, — a binary relation on M. Then for
every x,y, and z in M we define: x «~—" (<2) y iff there is a fnite sequence uy,...,u, in M such
that x=u; «—— 1y +-— ** +—— W=y and y < 2 for all 1<i<n. (Read: x and y are con-
nected below 2z with respect to > and —.)

Lemma 2.1 (generalized Newman Lemma, [WB83]): Let > be a noetherian partial ordering
on the set M and — a binary relation on M such that — is coptained in >. Then — is
confluent if and only if for all x,y,2 in M: if X «~ 2 — y then x «——' (<2} y.
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The Newman Lemma reduces the question of confluence to the question of local
confluence for noetherian reduction relations {see, for instance, the chapter on algebraic
simplification in [BC83]). In the case of a reduction relation which is generated by a system of
rewrite rules this means that one has to search for common successors for all the critical pairs.
Quite frequently it is known from computations in previous steps of the completion algorithm
that the two sides of a critical pair are connected below the term from which they are derived.
In such situations the generalized Newman Lemma allows to omit the search for a common
successor for this critical pair. Algorithms which are based on the generalized rather than on
the conventional Newman Lemma have to use mechanisms for detecting that the two sides of a
critical pair are connected. The subalgorithm NCP in Section 3 serves this purpose in our ver-
sion of the completion algorithm.

3. The completion algorithm

Problem:
given: E, a finite set of equations (over some term algebra T)
> , a reduction ordering (in the sense of {Wig4j, Def. 3.19)

find: R, a (finite) set of rewrite rules such that
=g IS te-p,

(C" ~+g is contained in >, and
~+z has the Church-Rosser property.

We will consider a refined version of Huet’s [Hu81] algorithm for completing a given sys-
tem of rewrite rules. Instead of considering all critical pairs arising from a rule in an intermedi-
ate version R; of the rewrite rule system, we add only *necessary” critical pairs to the set of
equations Ey. The test, whether a critical pair is necessary or not, is incorporated in the subal-
gorithm NCP. The stated completion algorithm, contrary to the one in [Hu81], does not abort
immediately if an equation s=t is encountered in E; such that the normal forms of s and t
w.r.t Ry are incomparable. We still have the option of choosing an other equation in E;. Only
when all the equations in E; are reduced w.r.t. R; and their left hand sides and right hand sides
are incomparable the algorithm has to stop with failure. '

COMPL (E, >)
[Completion algorithm. If the algorithm stops successfully, then its output is a rewrite rule
system R which solves (C*).]

E,:=E; Ry:={}; i1=0; p:=20;
LOOP
WHILE E; 3£ {} DO
IF all equations in E; are marked THEN FAILURE
ELSE s==t :== an unmarked equation in F; ;
s’ t== a normal form of s w.r.t. —p;
t” := a normal form of t w.r.t. —g;
IF 8'=t’
THEN Eyyy o= By — {s=t};
Ry4y 3= Ry
the equations in F;,; and the rules in Ry,
sre marked as they are in E;, R;;
ji=i+l;
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ELSE IF s’ >tlort'>s’
THEN u :== max.(s",t");
v = min(3",t"); _‘
K := set of labels k of rules in R; whose left ]
hand side s, is reducible by u—v, say to &.";
Bigp = By~ {s=t} U {8 =t | kiyp—ty in Ry, kin K}; 3
all the equations in E;; are unmarked;
p == p+1;
Rysp == {jig—t;" | Jisj—tyin Ry, jnotin K,
t;” is a normal form of ¢ w.r.t Ry U {u—v}}
U {pmu—v};
the rules coming from R; are marked or unmarked
as they were in R;, the new rule p:u—+v is unmarked;
io=e 141
ELSE By, = E; - {s=t} U {s'=t'};
the equation s'=t" is marked;
Ry =Ry
the rules in Ry, are marked or unmarked as they were in Ry;
== i~1; '
ENDWHILE;
IF all rules in Ry are marked THEN RETURN R;
ELSE k:s;—ty := an unmarked rule in Ry;
By, = NCP (R;k), i.e., the set of necessary critical pairs computed between rule k
and any rule of R; of label not greater than k;
all equations in E;,, are unmarked;
Ryp =Ry;
the rules in R;,; are marked or unmarked as they were in R,
except that rule k is marked in Ry;y;
im== i+l
ENDLOOF [

For computing the necessary critical pairs we use the following algorithm:

CP « NCP{R;k)
[compute set of necessary critical pairs in R; between rule k and any
rule of label not greater than k]

CP:={}
S :== set of rules in Ry with label not greater than k;
§:=§;
ji=10;
WHILE §° # {} DO

j o= j+L

select limy—+4 in 87
FOR p an occurrence in 8y, §/p not a variable, s/p and s unifiable DO
o :== most general unifier of s, /p and s
IF there are no misy—+ty in S—8°, ¢ prefix of p, such that
8% o {5)/q and
{{m is marked and m>1} or (I is marked and 12> m)}
THEN CP := CP U {o{b)=o(s[p=t])};
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FOR p an occurrence in s;, s/p not a variable, s;/p and s, unifiable DO
:== most general unifier of 8;/p and sy;
IF there are no misy~ty, in 5—8°, q prefix of p, such that
Sm* ¢ {31)/q and
({m is marked and m>1) or (I is marked and 1>m))
THEN CP :== CP U {o{t}) = e(s[p:=tl)};
8 1= 8§ ~ {kgy—t}
ENDWHILE;
RETURN CP [J

As in {Hu81) we adopt the fairness of selection hypothesis:

for every rule label k there is an iteration i such that either the rule of label k is
deleted from R; (i.e. k in K at iteration i), or the rule of label k is selected at "com-
pute necessary critical pairs" (i.e. as argument for NCP).

As Huet points out, this hypothesis will usually be met in practice. Essentially it requires
that the selection process takes into account the "age” of the rules.

Before we can go on and prove the correctness of this version of the cormpletion alogrithm
we have to introduce some notation (suggested in [Hu81}).
R = URy Ry = {kis—t|J1¥j>iks—tin Ry}

i>0
R, is called the limit rewriting system.
Ro, may be infinite. R, C R. If the completion algorithm stops with success at iteration i,
then R, = R;.

4. Correctness of the completion algorithm

If we suppose that the completion algorithm does not stop with failure, then we can show
as in [Hu8l] {corollary to Lemma 1, Lemma 3, corollary to Lemma 3, corollary to Lemma 4):

Lemma 4.1:
{a) Every term s which is reducible by R, is also reducible by every Ry, with j2>1.
(b) Viz0¥s=tinBJu (s uand togu)
() =i = =5
(d) Ry, is in reduced form, i.e. no rule s—t in Ry, is reducible by the other rules in Ry
Lemma 4.2: For all critical pairs o{ty), o(si[p:==t,]) derived from rules in R we have
olty) ~—r (<o) olslpi=t]}.
\

Proof:
We prove the lemma by noetherian induction on the ordering >52 of the set of all pairs of
terms.

(s) >>2 (s7,t’) iff s >> 5" and (t>> t or t = t')
or
(s>>s"ors=s"}andt >> t".

>> is the containment ordering defined in [Hu81): s >> t iff s contains t (i.e. some subterm of
g is a substitution instance of t} and t does not contain s.
>> is a well-founded ordering, and so is >>2.
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Induction hypothesis 1:
for all s—+t, s'—t” in R such that (§87) >>7 (s,8"):
if oft), ofs{p:==t]) is a critical pair derived from unifying s/p and s” by the most gen-
eral unifier ¢ then ‘
o(t) g (<0fs)) ofsip:=t"]).

For every pair of rewrite rules kisp—ty L=ty in R {w.l.o.g. k1) there exists, because of the
fairness of selection hypothesis, an iteration i in the completion algorithm such that either

(a) the rule k is selected for computing critical pairs and s, and g§ have not been reduced in
previous iterations

or
{b) the left hand side of one of the rules k,1 is reduced.
Denote this iteration i by it(sx—ty, si—4)- We induct on i.
Induction hypothesis 2:
for all s—t,s°—t’ in R such that {ss7) == (§§") and it(s—t, "=t )<
if o(t), ofs[p:==t"]) is a critical pair derived from unifying s/p and s” by the most
general u?iﬁer ¢ then
o(t) g (<0ls)) ols[pi=t}).

Now consider two rules in R
kisy—rty, lis—h
such that (sy,5)=(83") and it{s— by, s —+ty) =1

Case (a): assume k greater or equal to 1 (k less than 1 is handled analogously).

S0 at the i-th iteration the rule k is selected for computing critical pairs and sy, § have not
been reduced in previous iterations. Thus, in Ry we have rules kis—ty, isy—t ", where
tk-*;l ty ” and t,l—-»;{ 4 . The algorithm for computing necessary critical pairs is called with the
input Ry and k. During the execution of this algorithm the rule ! will be selected from §° at
some iteration j.

We induct on j.

je=1:8=8", so oty ") = ofsy[pi==4']) is added to CP and hence to Ej .
By Lemma 4.1 (b) there exists a term u such that
o(ty”) —r 2 —r glsdp=4"])
So a{ty)—R U +R o{sylp:=t}).
See Figure 1.
Induction hypothesis 3:
for all j less than j: i
if misy—ty is selected from S’ at step j* and w,u” is a critical pair between the rules
k and m derived from v, then u g (V) 0

j>1: if the considered critical pair turns out to be necessary, then we can show
olty) ——r (<olsy)) o(sy[p:==t)]) 2s in the induction basis. Otherwise there exists a
rule mis,—ty, in §—8°, and a prefix g of p {p==q.q") such that s, 4 o{sy)/q and rule m
is marked and m is greater or equal to | or rule 1 is marked and 1 is greater or equal to
m. Let ¢ be such that y(sg) == o(sy)/q. Then oty ) and ofsy)lg:=¥(ts)] are the sub-
stitution instance of a critical pair between the rules k and m (see Proposition 3.7 in
[Hu80]) and by the induction hypothesis 3 we have

olty”) —r (<0() olala=1(tn)].




Sk)
o(ty) / \ ofsy[pi=})

0'(*& ) Sk[P ""'tl g
\ /
u
Figure 1
I q° is an occurrence of syandsy/q” is not a2 variable then

w{t,) and ¥isp)lai==0o{t;")] = o{sy/q {q":==t;"]) are substitution instances of a critical
pair between the rules m and | (see Proposition 3.7 in [Hu80]) and by the induction
hypothesis 2 we have

Yltm) ——r (<o(5)/a) ofsi/a la=4]) (*)-

Otherwise, by an argument already used in [KB67], one can show that the two sides of
(*) have a common successor. So,

o(slar=1(tw)] ——r (<ols)) olselpi=t"]),

and therefore

olty) ——g (<olsy)) olse[p=tl).
See Figure 2,

ofsy) =:s8

olt”) —m (<) olsla=d(tm)] ——n (<8) olsp=t"])

Figure 2

Case {b): The left hand side of at least one of the rules k and | is reduced in the iteration i of




the completion algorithm.
So there are rules misy—ty, Dis;—ty in R such that (51551} >>? (5050)- Let (si5p) be maxi-
mal under this condition. Let s,/q = $(sp), m/a” =¢{sy). U sy==sy then g = A, ¢ == {} and
therefore trivially

oty ") =g (<o(s)) ofsela:=1(tw)])
where tk—u-rﬁ "
Otherwise syq:=1(t,)] = t;* is added to By, at the iteration i and therefore, by Lemma 4.1
(b)

olty”) ——r (<ols) olselar=v(t)])
Similarly we see that

ofsp.a’=6(ta)]) —=r (<o(s) olslpi=t"])-
Furthermore,

olsila=1(tw)]) ——r (<ols) olsdpa =9{ta)]),
since both sides result from a critical pair between rules m and n {so the induction hypothesis
1 applies) or it can be shown by an argument used in [KB67] that they have a cOmMMOn sucCes-
s07.
See Figure 3.

o(ty)

ofty”)

KR(<0(SR)) o(sla=1tw)) ——n (<ls) olslp-a”r=e(t)]) (o(2)>) .

Figure 3

[

Using Lemma 4.2 and Huet’s Lemma 3.1 [Hu80] we can show (see {Wi85])

Lemma 4.3: For all terms s,u;,uy such that u; «-g s —g U We have u; <-—>;i {<s) vg.

Now we can prove a lemma similar to Lemma 6 of [Hu81]. This Lemma provides the
basis for showing the confluence of Ry, and R.




Lemma 4.4: For every term s:

a) for all t such that s—g t there exists a term u such that s—sd 1 t=r (<)t
(b) forall t;,ty such that t; «g  s=g_ ty: t; ——p_(<s)t,

(¢} for all t),t; such that t; «g s—g ty: ¢, ‘“““‘*1;.» (<s) ty.

Proof:
We show simultaneously (a), (b), and (¢) by noetherian induction on the reduction ordering >.

Induction hypothesis:
for all terms s” such that s>s” {a),{b), and (c) hold.

ad (a): Let 5; be such that s—p s; —p t, with kiry 1, the rule of R used to reduce s to s;. We
use induction on r;, w.r.t. the well-founded order >>. There are two cases.

Case 1: There exists a rule with label k in Reo, say kiry—r,’, with rz-—q; P
This implies that for some u we have s—g, t and s;—p u. By induction hypothesis {c)
applied to s, we get u«-———q;m (£ ;) t, and therefore u 4——»5.{” {<s) t. (Here <" denotes the

partial order s<t iff s<t or s=t.}
See Figure 4.

5

R

5

Re
*
R , *R
U g—® (<5 t
Re

Figure 4

Case 2: The rule with label k gets reduced on its left hand side at some iteration i.

That is, there is in R; some kirj—r,’, with ry—p 5, , such that 1, is reducible, say to 1,", by
the newly introduced rule r;”" ~ 1,”". By the compatibility z}nd stability of the reduction, s
is reducible by r;"* — r,"” to say 5, ", and the reduction ry —g Ty’ corresponds t‘,o a recjiuction
8y --»ﬁ s;. Now we have )" =r,” in Ey,,, and by Lemma 4.1 (b) we get s, ’ “*R 53 “R 5 for
some s;. Using the induction hypothesis (c) at s, we get 83 =—+p, (<8) L, s0
83 +——+};u (<s) t. Since r; >> 1"’ we may apply the induction hypothesis (a) to the redue-
tion s~+p §;° —+g 3, which gives us a term u such that s—R, U """1;;\0 {<s) 83, and therefore
8=y, uh—rﬁw (<s) t. See Figure 5.

ad (b): Let sy, and s, be such that

L} *
b =R, 81 <R, 8 —r,, S2~p_ ta.

e A e e

P
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. \ /R .
(<9}

u <—--———-—4R 54 <—-———+R {(‘:s) 1

Figure 5

By Lemma 4.3 we have s; «——p (<s)s
Le. there are uy, ... ,u, such that

8] == Up +g Up — g .. =g 4y =5 and y<sfor 1 < i < n.
We show (*) y, +—-—+§m {<s) u, by induction on n.
n==1: clear.

Induction hypothesis 2: (*} holds for fi.
Now let uje—p gemwsp - -+ g ug emwsp u_ 543 and w<s for 1<i<fA+1. By induction
hypothesis 2 we have u1+——+ﬁ (<s) ug. If Ug™R Ugy then by induction hypothesis (a) there

F+17R Uz then by induction

hypothesis (a) there exists a ierm u such that Vs, 1R u<—~—+R (<s) u; In either case we
have u14--~+R (<s) ug, ;.

exists a termm u such that u_-+R u*’""*R (<s) UD_H H oug

So, 5, 4——~+§w (<) sy, and therefore t14——+};‘w (<s) ty. See Figure 6.

Reo . Ree
8 w———» (<s) Sy
Re
ty 123

Figure 6
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ad (¢): Straightforward application of (a) and {b). See Figure 7.

(a)
+\ R +\R
by ———pee (<5) uy ““‘“'"‘*1;“, (<3) uy ““‘“"’"‘1‘%,, (<s)

Figure 7

1

The generalized Newman Lemma (Lemma 2.1) together with Lemma 4.1 and Lemma 4.4
yvield the desired result (see [Wi85}).

Theorem 4.5: .
Both —p and —g  have the Church-Rosser property and «-—sp_ == =g.

Conclusion

As we have pointed out in the introduction, it is possible to keep the system of rewrite
rules interreduced during the execution of the Knuth-Bendix completion algorithm and simul-
taneously apply a criterion for eliminating unnecessary critical pairs. Such a version of the
completion algorithm is given in Section 3. The criterion is incorporated in the subalgorithm
for computing necessary critical pairs. Theorem 4.5 and 4.6 show the correctness of this ver-
sion of the completion algorithm.
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