
Non–commutative Computer Algebra

for polynomial algebras:

Gröbner bases, applications and

implementation

Viktor Levandovskyy

Vom Fachbereich Mathematik

der Universität Kaiserslautern

zur Verleihung des akademischen Grades

Doktor der Naturwissenschaften

(Doctor rerum naturalium, Dr. rer. nat)

genehmigte Dissertation

1. Gutachter: Prof. Dr. G.-M. Greuel

2. Gutachter: Prof. Dr. Yu. Drozd

Vollzug der Promotion: 08.06.2005

D 386

iii

Viktor Levandovskyy . ”Non-commutative Computer Algebra for

polynomial algebras: Gröbner bases, applications and implementation”.

Abstract. Non-commutative polynomial algebras appear in a wide

range of applications, from quantum groups and theoretical physics to linear

differential and difference equations.

In the thesis, we have developed a framework, unifying many impor-

tant algebras in the classes of G– and GR–algebras and studied their ring–

theoretic properties. Let A be a G–algebra in n variables. We establish

necessary and sufficient conditions for A to have a Poincaré–Birkhoff–Witt

(PBW) basis. Further on, we show that besides the existence of a PBW ba-

sis, A shares some other properties with the commutative polynomial ring

K[x1, . . . , xn]. In particular, A is a Noetherian integral domain of Gel’fand–

Kirillov dimension n. Both Krull and global homological dimension of A are

bounded by n; we provide examples of G–algebras where these inequalities

are strict. Finally, we prove that A is Auslander–regular and a Cohen–

Macaulay algebra.

In order to perform symbolic computations with modules over GR–

algebras, we generalize Gröbner bases theory, develop and respectively en-

hance new and existing algorithms. We unite the most fundamental algo-

rithms in a suite of applications, called ”Gröbner basics” in the literature.

Furthermore, we discuss algorithms appearing in the non-commutative case

only, among others two–sided Gröbner bases for bimodules, annihilators of

left modules and operations with opposite algebras.

An important role in Representation Theory is played by various sub-

algebras, like the center and the Gel’fand–Zetlin subalgebra. We discuss

their properties and their relations to Gröbner bases, and briefly comment

some aspects of their computation. We proceed with these subalgebras in

the chapter devoted to the algorithmic study of morphisms between GR–

algebras. We provide new results and algorithms for computing the preim-

age of a left ideal under a morphism of GR–algebras and show both merits

and limitations of several methods that we propose. We use this technique

for the computation of the kernel of a morphism, decomposition of a mod-

ule into central characters and algebraic dependence of pairwise commuting

elements. We give an algorithm for computing the set of one–dimensional

representations of a G–algebra A, and prove, moreover, that if the set of

finite dimensional representations of A over a ground field K is not empty,

then the homological dimension of A equals n.

iv

All the algorithms are implemented in a kernel extension Plural of

the computer algebra system Singular. We discuss the efficiency of com-

putations and provide a comparison with other computer algebra systems.

We propose a collection of benchmarks for testing the performance of al-

gorithms; the comparison of timings shows that our implementation out-

performs all of the modern systems with the combination of both broad

functionality and fast implementation.

In the thesis, there are many new non-trivial examples, and also the

solutions to various problems, arising in different fields of mathematics. All

of them were obtained with the developed theory and the implementation

in Plural, most of them are treated computationally in this thesis for the

first time.

Viktor Levandovskyy . ”Nichtkommutative Computeralgebra für

Polynomalgebren: Gröbnerbasen, Anwendungen und Implementierung”.

Zusammenfassung. Nichtkommutative Polynomalgebren entstehen in

vielen verschiedenen Anwendungen, von Quantengruppen und Theoretis-

cher Physik bis zu linearen Differentiellen und Differenzengleichungen.

In der Arbeit wurde ein Rahmen entwickelt, in dem viele wichtige Alge-

bren der Klassen G– und GR–Algebren zusammengeführt und ihre ringth-

eoretischen Eigenschaften untersucht wurden. Sei A eine G–Algebra mit

n Variablen. Es werden notwendige und hinreichende Bedingungen dafür

angegeben, daß A eine Poincaré–Birkhoff–Witt (PBW) Basis besitzt. Es

wird gezeigt, dass A neben der Existenz einer PBW Basis, weitere Eigen-

schaften mit dem kommutativen Polynomring K[x1, . . . , xn] gemeinsam hat.

A ist ein Noetherscher Integritätsbereich der Gel’fand–Kirillov–Dimension

n. Die Krull– und die globale homologische Dimension von A sind durch

n beschränkt ; es werden Beispiele von G–Algebren gegeben, bei denen

diese Ungleichheiten strikt sind. Schließlich wurde bewiesen, dass A eine

Auslander–reguläre und eine Cohen–Macaulay Algebra ist.

Für symbolische Berechnungen mit Moduln über GR–Algebren, wurde

die Gröbnerbasentheorie verallgemeinert, neue und bestehende Algorith-

men werden entwickelt und verbessert. Wir verbinden die grundlegendsten

Algorithmen mit einer Reihe von Anwendungen, welche man in der Lit-

eratur als ”Gröbner basics” bezeichnet. Weiterhin wurden Algorithmen

v

diskutiert, die nur im nichtkommutativen Fall existieren, darunter zwei-

seitige Gröbnerbasen für Bimoduln, Annihilatoren von Linksmoduln und

Operationen mit entgegengesetzten Algebren. Eine wichtige Rolle in der

Darstellungstheorie spielen die verschiedenen Unteralgebren, wie z.B. das

Zentrum und die Gel’fand–Zetlin Unteralgebra. Die Eigenschaften und

ihre Beziehungen zu Gröbnerbasen wurden untersucht und einige Aspekte

ihrer Berechnung diskutiert. Im Kapitel über algorithmische Studien von

Morphismen zwischen GR–Algebren wurde die Untersuchung zu diesen Un-

teralgebren fortgesetzt. Es wurden neue Ergebnisse and Algorithmen zur

Berechnung des Urbilds eines Linksideals unter einem Morphismus von GR–

Algebren erzielt. Die Ergebnisse und Begrenzungen verschiedener Meth-

oden, die vorgeschlagen wurden, wurden gezeigt. Diese Technik wurde

auch für die Berechnung des Kerns eines Morphismus, die Zerlegung eines

Moduls in zentrale Charaktere und die algebraische Abhängigkeit von paar-

weise kommutierenden Elementen verwendet. Es wurde ein Algorithmus

für die Berechnung von eindimensionalen Darstellungen einer G–Algebra

A erstellt. Es wurde bewiesen, dass die homologische Dimension von A

über einem Körper K gleich der Anzahl der Variablen von A ist, falls es

endlich–dimensionale Darstellungen von A existieren.

Alle Algorithmen wurden in eine Kern-Erweiterung Plural des Com-

puteralgebrasystem Singular implementiert. Die Effizienz der Berechnun-

gen wurde diskutiert und ein Vergleich mit anderen Computeralgebrasys-

temen erstellt. Es wurde eine Reihe von Benchmarks zum Test der Leis-

tung von Algorithmen vorgeschlagen. Der Zeitvergleich zeigt, dass unsere

Implementierung alle modernen Systeme hinsichtlich der Kombination von

Funktionalität und Geschwindigkeit übertrifft.

In der Arbeit gibt es eine Vielzahl von nichttrivialen Beispielen und

Lösungen zu verschiedenen Problemen aus verschiedensten Bereichen der

Mathematik. All wurden mit Hilfe der entwickelten Theorie und der Im-

plementation in Plural erzielt, die meisten von ihnen wurden in dieser

Arbeit zum ersten Mal berechnet.

Contents

Introduction ix

Chapter 1. From NDC Towards G–algebras 1

1. Gröbner Bases on Free Associative Algebras 2

2. Non–degeneracy Conditions and PBW Theorem 6

3. Introduction to G–algebras 11

4. Filtrations and Properties of G–algebras. 18

5. Opposite algebras 24

6. The Ubiquity of GR–algebras 27

7. Applications of Non–degeneracy Conditions 28

8. Conclusion and Future Work 43

Chapter 2. Gröbner bases in G–algebras 45

1. Left Gröbner Bases 45

2. Gröbner basics I 54

3. Two–sided Gröbner Bases and GR–algebras 61

4. Syzygies and Free Resolutions 67

5. Gröbner basics II 78

6. Conclusion and Future Work 92

Chapter 3. Morphisms of GR–algebras 95

1. Subalgebras and Morphisms 95

2. Morphisms from Commutative Algebras to GR–algebras 102

3. Central Character Decomposition of the Module 111

4. Morphisms between GR–algebras 116

5. Conclusion and Future Work 129

Chapter 4. Implementation in the system Singular:Plural 131

1. Singular and Plural: history and development 131

2. Aspects of Implementation 137

3. Timings, Performance and Experience 141

4. Download ans Support 144

5. Conclusion and Future Work 145

Chapter 5. Small Atlas of Important Algebras 147

1. Universal Enveloping Algebras of Lie Algebras 147

vii

viii CONTENTS

2. Quantum Algebras 149

Chapter 6. Singular:Plural User Manual 151

1. Getting Started with Plural 151

2. Data Types (plural) 152

3. Functions (plural) 170

4. Mathematical Background (plural) 195

5. Plural Libraries 201

Appendix A. Noncommutative Algebra: Examples 240

A.1. Left and two-sided Groebner bases 240

A.2. Right Groebner bases and syzygies 242

Conclusion and Future Work 245

Bibliography 247

Introduction

This thesis is devoted to symbolic computations in non–commutative

algebras with PBW bases (G–algebras). These algebras already have their

own history as well as symbolic methods, algorithms and implementations.

Yet it is still a long way towards the acceptance and wide usage of these

methods by the community of scientists, comparable to the years which were

gone before the Buchberger’s algorithm for computing a Gröbner basis of

an ideal in a commutative ring become accepted by everybody. G–algebras

appear in many fields of science, from Non–commutative Algebra, Ring

Theory and Representation Theory of Algebras (being of a more theoreti-

cal nature) to the concrete applications to manipulating systems of linear

operator (differential, shift, difference etc) equations, System and Control

Theory et cetera. These algebras arise in Algebraic Geometry, Mathemat-

ical and Theoretical Physics, Statistics and many other fields of natural

sciences. They appear in different contexts and everywhere some different

computations are needed.

We revise G–algebras and enlist a list of their properties in Chapter 1;

a short overview of Gröbner bases in free algebras helps us to formulate the

exact conditions and, on the other hand, to see similarities and differences

between different setups. We point out the role of monomial orderings and

show their impact on filtrations, coming to simplified and/or generalized

proofs of many known results.

In Chapter 2, we adopt the notion of Gröbner basis to G–algebras and

note similarities and differences with the commutative case. Further on, we

concentrate on developing the fundament for applications, based on Gröbner

bases; continuing a tradition, we call the set of most ubiquitous applications

Gröbner basics. We provide both theoretical background and efficiency 1

issues together with the implementation. A rich collection of examples,

mostly originated from concrete research problems, is a key point of this

thesis, since previous publications and even books were rather ascetic with

respect to examples.

1All Gröbner basis computations are not efficient as the complexity is exponential or
even double exponential in the number of variables. When we talk about efficiency, we
mean ”practical efficiency”, that is, implementations which allow to compute interesting
and complicated examples in a reasonable time.

ix

x INTRODUCTION

The morphisms between GR–algebras (the Chapter 3), appearing as of-

ten as such morphisms do in the commutative algebra, deserved however

less attention from other authors. We proceed with the partially commu-

tative and purely non–commutative situations separately, describing very

interesting applications in much details. A study of subalgebras such as

centers and various centralizers is naturally arising in this Chapter.

The implementation of all the algorithms, elaborated in previous sec-

tions, in a computer algebra subsystem Singular:Plural comprises the

material of the Chapter 4. We provide timings, create and evaluate bench-

marks and discuss aspects of efficiency and software engineering applied to

computer algebra. All the examples, provided with this thesis, are computed

with Plural. It is freely distributed as an integral part of Singular,

starting from the version 3-0-0. One can download binaries of Singular

for various platforms, the documentation in several formats and supplemen-

tary files from the http://www.singular.uni-kl.de (note, that the source

code is available on request).

The atlas of important algebras, put in Chapter 5, contains both the

explicit presentation of algebras we use in examples and applications, and

structural properties like centers of every algebra. Everything in the atlas

has been computed with the help of Plural.

Every Chapter starts with an explanation on its organization, so we omit

such descriptions here.

In the Appendix we put the part of the Singular manual, organized

as Chapter 6 and devoted to Plural with the detailed description of its

data types, functionalities and libraries.

Acknowledgments

I am deeply grateful to my advisors Prof. Dr. Yu. Drozd and Prof. Dr. G.-

M. Greuel for supporting me continuously with advises, remarks and sug-

gestions through the whole working period on this thesis. Many interesting

topics of the thesis would not have evolved without the influence, bride scope

of interests and critics of my advisors. I owe very much to the careful read-

ing of this manuscript by Gert–Martin Greuel and the valuable corrections

he made.

Dr. H. Schönemann deserves a very special cordial thanks. Together

with him we have created a computer algebra subsystem Plural; we have

developed it from the very experimental beginning to the integral part of

the Singular kernel. On the way I have learned, what does ”effective

computation” really mean in practice.

INTRODUCTION xi

I want to thank Dr. O. Khomenko (Freiburg) for fruitful discussions

through the years concerning different topics of computational aspects of the

representation theory and non–commutative algebra, for hints and critics

that contributed greatly to this work.

Moreover, I am especially grateful to Prof. Dr. E. Green (Virginia,

USA), Prof. Dr. G. Pfister (Kaiserslautern), Prof. Dr. V. Gerdt (Dubna,

Russia) and Dr. S. Ovsienko (Kyiv, Ukraine) for waking the interest on

various sections of algebra and inspirations by techniques and examples.

The new shores of applications became visible in discussions with Werner

Seiler, Eva Zerz, Jose–Maria Ucha and Javier Lobillo; the demand for Non–

commutative Computer Algebra in Algebraic Geometry was a dominant

topic in communications with Wolfram Decker, Frank–Olaf Schreyer and

Christoph Lossen.

I wish to express my appreciation to my wife Tetyana and families of our

parents for their love, help and patience. It is hard to imagine how could

this work be finished without them.

I would like to thank DFG (Deutsche Forschungsgemeinschaft), Schw-

erpunkt ”Mathematik und Praxis” of the University of Kaiserslautern and

CRDF (U.S. Civilian Research and Development Foundation) for providing

the partial financial support for my research.

xii INTRODUCTION

Basic Notations

K, F, Fp, Q, R, C fields

K∗ the multiplicative group of units of a field K
x̄ = (x1, . . . , xn) n–tuple or a vector

K[S], K[x1, . . . , xn] a commutative polynomial ring,

generated by a finite set S or by {x1, . . . , xn}
K〈S〉, K〈x1, . . . , xn〉 a free associative K–algebra,

generated by a finite set S or by {x1, . . . , xn}
A〈S〉 a left A–module, generated by S

A〈S〉B a (A,B)–bimodule, generated by S

A〈S〉A, 〈S〉 a two–sided ideal or (A,A)–bimodule,

generated by S

K〈S | R〉 = K〈S〉/〈R〉 presentation of a K–algebra via S, a set of

generators and R ⊂ K〈S〉, a set of ”relations”

CHAPTER 1

From NDC Towards G–algebras

In his right hand there still had been

his broad, strange sword, so unusual for

the eyes of western warriors . . .

”You’ve got an interesting sword

there”, – she said slowly, – ”What are

these rings at the blade for?”

”It’s so funny when they’re ringing”, –

answered the warrior.

Nik Perumov, Henna’s Adamant

The famous Poincaré–Birkhoff–Witt (or, shortly, PBW) theorem, which

appeared at first for universal enveloping algebras of finite dimensional Lie

algebras ([23]), plays an important role in the representation theory as well

as in the theory of rings and algebras. Analogous theorem for quantum

groups was proved by G. Lusztig and constructively by C. M. Ringel ([67]).

Many authors have proved the PBW theorem for special classes of non–

commutative algebras they are dealing with ([40], [38]). Usually one uses

Bergman’s Diamond Lemma 1.9 (see also [11]), although it needs some

preparations to be done before applying it. We have defined a class of

algebras where the question ”Does this algebra have a PBW basis?” reduces

to a direct computation involving only basic polynomial arithmetic.

This chapter is organized as follows.

Our approach is constructive and consists of three tasks. Firstly, we want

to find the necessary and sufficient conditions for a wide class of algebras

to have a PBW basis, secondly, we are going to investigate this class for

ring–theoretical and other properties and thirdly, we will apply the results

to the study of certain special types of algebras.

The first part resulted in the non–degeneracy conditions (Theorem 2.3),

the second one led us to the G– and GR–algebras (3.2, 3.7) and their proper-

ties (Theorem 4.7, 4.14), and the third one — to the technique of computing

G–quantizations (7.1) and to the structural studying of algebras (7.1, 7.3)

together with the description and classification of G–algebras among the

quadratic (7.2), diffusion algebras (7.4) and some more advanced applica-

tions (7.5).

1

2 1. FROM NDC TOWARDS G–ALGEBRAS

We have simplified many proofs of known results and unified differ-

ent notations. We are additionally motivated by the fact, that up to our

knowledge, no source before featured a complete treatment of the problems,

arising in connection with PBW bases.

1. Gröbner Bases on Free Associative Algebras

Let K be a field and T = Tn = K〈x1, . . . , xn〉 be a free associative K–

algebra, generated by {x1, . . . , xn} over K, also called a tensor algebra

T (V) of the vector space V = K ⊕Kx1 ⊕ · · · ⊕ xn. We will omit the tensor

product sign while writing multiplication and we will mean by an ideal a

two–sided ideal, whenever no confusion is possible.

We say that the monomials in T are the elements from the set of all

words in {x1, . . . , xn},

Mon(T) = {xα1
i1

xα2
i2

. . . xαm

im
| 1 ≤ i1, i2, . . . , im ≤ n, αk ≥ 0}.

Note, that Mon(T) is a K–basis of T . Moreover, Mon(T) is a free monoid

with the neutral element 1.

The set of standard monomials which we will need later is defined as

MonS(T) = {xα1
i1

xα2
i2

. . . xαm

im
| 1 ≤ i1 < i2 < . . . < im ≤ n, αk ≥ 0} ⊂ Mon(T).

In what follows, we always assume every associative algebra A to be

finitely generated and unital with K ⊂ A. Moreover, we assume that K
always belongs to the center of A (that is, ∀k ∈ K, a ∈ A we have ka = ak)

and that any morphism of K–algebras is the identity on K.

Any associative K–algebra is isomorphic to Tn/I for some n and some

two–sided ideal I ⊂ Tn. Since Tn is not Noetherian, I need not be finitely

generated, but we are interested only in ideals, which are finitely generated.

If a fixed isomorphism A ∼= Tn/I is given, we say that A is finitely presented

by Tn and write A = Tn/I or just A = T/I.

If the set of standard monomials is a K–basis of an algebra A = T/I,

we say that A has a PBW basis (in the variables x1, . . . , xn). We say that

an abstract algebra A has a PBW basis, if there exists an isomorphism

A ∼= T/I, such that T/I has a PBW basis. Of course, any commutative

polynomial ring K[x1, . . . , xn] has a PBW basis. Therefore, algebras which

are Noetherian domains with PBW basis are in this sense ”close to commu-

tative”.

Now we will present the short account of the Gröbner bases theory on

tensor algebras. It was first Teo Mora, who considered a unified Gröbner

bases framework for commutative and non–commutative algebras ([61]),

1. GRÖBNER BASES ON FREE ASSOCIATIVE ALGEBRAS 3

which has been recently exploited by Li in his book [56]. We follow this

approach partially and write in the spirit of the book [35].

Definition 1.1. Let Γ be a finitely generated monoid.

A total ordering ≺ on Γ is called a well–ordering, if every non–empty

subset of Γ has a least element with respect to ≺.

A well–ordering ≺ on Γ is called finitely supported, if

∀a ∈ Γ there exist finitely many b ∈ Γ such that b ≺ a.

Definition 1.2. We call a total ordering < on Mon(T) a

monomial ordering if the following conditions hold:

(1) < is a well–ordering on Mon(T),

(2) ∀p, q, s, t ∈ Mon(T), if s < t, then p · s · q < p · t · q,
(3) ∀p, q, s, t ∈ Mon(T), if s = p · t · q and s 6= t, then t < s.

In this work we are dealing with well–orderings only. As an example

of a well–ordering, consider the lexicographical ordering on K〈x1, . . . , xn〉,
considering that the variables are ordered in a descending way, that is

xn < xn−1 < · · · < x2 < x1. The lexicographical ordering is defined as

follows: given two monomials (that is, words in finite alphabet {x1, . . . , xn})
m1,m2 from Mon(T), we find their biggest common left subword m such

that m1 = mw1,m2 = mw2 or set m = 1 if no such subword exists. Then,

m1 < m2 ⇐⇒ w1 < w2 ⇐⇒ the first symbol xi of w1 is smaller that the

first symbol xj of w2 ⇐⇒ xi < xj ⇐⇒ j < i.

Definition 1.3. Any f ∈ T r {0} can be written uniquely as

f = c·m+f ′, where c ∈ K∗ and m′ < m for any non–zero term c′ ·m′ of f ′.

We define

lm(f) = m, the leading monomial of f ,

lc(f) = c, the leading coefficient of f .

For a subset G ⊂ T , define a leading ideal of G to be the two–sided

ideal L(G) = T 〈 {lm(g) | g ∈ G \ {0}} 〉T ⊆ T.

Definition 1.4. Let < be a fixed monomial ordering on T . We say

that a subset G ⊂ I is a (two–sided) Gröbner basis for the ideal I with

respect to < if L(G) = L(I).

Although we can work formally with infinite Gröbner bases ([4]), in this

work we are interested only in finite bases.

4 1. FROM NDC TOWARDS G–ALGEBRAS

Definition 1.5. Let m, m′ ∈ Mon(T) be two monomials.

We say that m divides m′ if there exist p, q ∈ Mon(T) such that

m′ = p ·m · q. The set G ⊆ T is called minimal, if ∀g1, g2 ∈ G, lm(g1)

does not divide lm(g2) and vice versa.

Definition 1.6. Let G be the set of all finite and ordered subsets of T .

A map NF : T × G → T, (f,G) 7→ NF(f |G) is called a

(two–sided) normal form on T if

(i) NF(0 | G) = 0,

(ii) NF(f |G) 6= 0 ⇒ lm
(
NF(f |G)

)
6∈ L(G), and

(iii) f − NF(f |G) ∈ T 〈G〉T , for all f ∈ T and G ∈ G.

Here we give an algorithm for computing a normal form.

Algorithm 1.1 NF

Input : f ∈ T = K〈x1, . . . , xn〉, G ∈ G;

Output: h ∈ T , a normal form of f with respect to G.

h := f ;

while ((h 6= 0) and (Gh = {g ∈ G : lm(g) divides lm(h)} 6= ∅)) do

choose any g ∈ Gh;

compute l = l(g), r = r(g) ∈ Mon(T) such that lm(h) = l · lm(g) · r;
h := h − lc(h)

lc(g)
· l · g · r;

end while

return h;

Proof. We see that each specific choice of ”any” in the algorithm may

give us a different normal form function.

Termination:

Let h0 := f , and in the i–th step of the while loop we compute hi.

Since lm(hi) < lm(hi−1) by construction, we obtain a set {lm(hi)} of lead-

ing monomials of hi, where ∀i hi+1 has strictly smaller leading monomial

than hi. Since < is a well–ordering, this set has a minimum, hence the

algorithm terminates.

Correctness:

Suppose the minimum is reached at the step m. Let h = hm 6= 0 and

li, ri are monomials, corresponding to gi ∈ G in the algorithm. Making back

1. GRÖBNER BASES ON FREE ASSOCIATIVE ALGEBRAS 5

substitutions, we obtain the following expression

h = f −
m−1∑

i=1

ligiri,

satisfying lm(f) = lm(l1g1r1) > lm(ligiri) > lm(hm).

Moreover, by construction lm(h) 6∈ L(G). This proves correctness, in-

dependently of the specific choice of “any” in the while loop. ¤

Definition 1.7. Let f, g ∈ T . Suppose that there are

p, q ∈ Mon(T) such that

(1) lm(f)q = p lm(g),

(2) lm(f) does not divide p and lm(g) does not divide q.

Then the overlap relation of f, g by p, q is defined as

o(f, g, p, q) =
1

lc(f)
fq − 1

lc(g)
pg.

Overlaps occur if the end of lm(f) coincides with the beginning of lm(g), as

for example in f = xyx and g = yx2 (both overlapping at yx) or f = g = x2

(with the self–overlap at x). The overlap relation cancels the leading terms

of fq and pg and we see that lm(o(f, g, p, q)) < lm(f)q = p lm(g). Hence,

overlap relation is a generalization of the notion of s–polynomial from the

commutative theory (cf. [35]). See also the Remark §2, 4.13.

Now we cite slightly reformulated Termination theorem from [33].

Theorem 1.8. Let < be a well–ordering on T and G be a finite set of

polynomials from T . If for every overlap relation with g1, g2 ∈ G

NF(o(g1, g2, p, q) | G) = 0,

then G is a Gröbner basis for T 〈G〉T .

In particular this theorem ensures that for a given finite set F , we are

able to check whether F is a Gröbner basis in a finite number of steps.

However, even starting with a finite set, we can obtain, in general, an infinite

Gröbner basis for it.

The proof of the theorem is relying heavily on the use of the famous

Bergman’s Diamond Lemma ([11], 1978), which can be regarded as the

first building stone for the theory of non–commutative Gröbner bases.

Bergman’s Diamond Lemma

Following Bergman, let T = K〈x1, . . . , xn〉, X = Mon(T) and < is a

well–ordering on X. Let S = {σ = (wσ, fσ) | wσ ∈ X, fσ ∈ T, lm(fσ) <

6 1. FROM NDC TOWARDS G–ALGEBRAS

wσ}. For all σ ∈ S and x, y ∈ X let rxσy : T → T denote the K–linear map,

defined on the basis Mon(T) by sending a monomial of the form pxwσyq to

a polynomial pxfσyq for any p, q ∈ Mon(T) and fixing all other monomials,

not containing xwσy.

Let R denote the semigroup generated by the {rxσy | σ ∈ S, x, y ∈ X}.
We call x ∈ X reduced if r(x) = x for all r ∈ R. An ambiguity of S is

a 5–tuple {σ, τ ; x, y, z} ∈ S2 × X3 for which wσ = xy, wτ = yz. Such an

ambiguity is said to be resolvable if there exists r ∈ R such that r(fσz) =

r(xfτ). The following Theorem is a short version of Bergman’s Diamond

lemma.

Theorem 1.9. ([11], Theorem 1.2.) The reduced elements form a K–

basis for the quotient algebra T/ T 〈wσ − fσ | σ ∈ S〉T if and only if every

ambiguity of S is resolvable.

2. Non–degeneracy Conditions and PBW Theorem

Again, let T = K〈x1, . . . , xn〉 be a free associative algebra and < be

a fixed monomial ordering on T . For fixed n, define the set of indices

Um := {(i1, . . . , im) | 1 ≤ i1 < . . . < im ≤ n}.
Suppose there are two sets C = {cij} ⊂ K∗ and D = {dij} ⊂ T , where

(i, j) ∈ U2. We construct a set F = {fji | (i, j) ∈ U2}, where

(∗)







fji = xjxi − cij · xixj − dij,

lm(fji) = xjxi and lm(dij) < xixj.

It means that, in particular, polynomials dij can involve terms xjxi for

j > i, that is nonstandard monomials. But this situation can be always

reduced to the easier case by the following simplification procedure.

Simplification

Assume that there is a fixed well–ordering < with xn < . . . < x1, then

xn−1xn < xn−2xn < xn−2xn−1 < . . . < x1x2. Hence, dn−1,n consists of

standard monomials only. Next, dn−2,n can have only xnxn−1 in addition to

standard monomials, but we replace xnxn−1 with cn−1,nxn−1xn +dn−1,n thus

obtaining d′
n−2,n, consisting of standard monomials only. Since ∀ (i, j) ∈ U2

lm(fji) = xjxi and lm(dij) < xixj, after finitely many steps we obtain a set

F := F ′, where each of the d′
ij is given in terms of standard monomials.

That is, we can assume without loss of generality, that every dij consists of

standard monomials only.

2. NON–DEGENERACY CONDITIONS AND PBW THEOREM 7

After the simplification of the set F by means of the procedure above,

we construct the two–sided ideal I = T 〈F 〉T ⊂ T .

For (i, j, k) ∈ U3 define the non–degeneracy condition for (i, j, k)

NDCijk = cikcjk · dijxk −xkdij + cjk ·xjdik − cij · dikxj + djkxi − cijcik ·xidjk.

Lemma 2.1. F is a Gröbner basis for I with respect to < if and only if

∀ 1 ≤ i < j < k ≤ n NF(NDCijk | F) = 0.

Proof. We will compute Gröbner basis of I symbolically, but as ex-

plicitly as we can. Following the theorem 1.8, we have to consider all the

possible overlaps of elements from F . It’s straightforward, that the only

nonzero overlaps can occur for the set of pairs {(fji , fkj) | (i, j, k) ∈ U3}.
Computing the overlap relation of (fji , fkj) for fixed (i, j, k) ∈ U3, we get

o1 = xkxjxi − cijxkxixj − xkdij − xkxjxi + cjkxjxi + djkxi =

= −cijxkxixj + cjkxjxkxi − xkdij + djkxi.

The o1 can be reduced with fkj to

o2 = cjkxjxkxi − cijcikxixkxj − cijdikxj − xkdij + djkxi,

where o2 could be further reduced with fki to

o3 = cjkcikxjxixk − cijcikxixkxj − cijdikxj − xkdij + djkxi + cjkxjdik.

On its own, we reduce o3 with fji to o4 =

−cijcikxixkxj+cjkcikcijxixjxk+cjkcikdijxk−cijdikxj−xkdij+djkxi+cjkxjdik,

and, respectively, fkj finishes the reduction of o4:

o5 = cjkcikdijxk − xkdij + cjkxjdik − cijdikxj + djkxi − cijcjkxidjk.

As we see, o5 = NDCijk, and o5 cannot be further reduced with the

elements of F without the more specific information on {dij}.
If NF(NDCijk | F) 6= 0, F is not a Gröbner basis of I. Hence the claim. ¤

Lemma 2.2. Given a K–algebra A = T/I with I = T 〈F 〉T , F satisfying

(∗), as above. Then A has a PBW basis with respect to the variables of T

if and only if F is a Gröbner basis for I with respect to <.

Proof. If F is a Gröbner basis for I with respect to <, the underlying

K–vector space of A is generated by {m ∈ Mon(T) | lm(fji) does not divide

m} by the property of Gröbner bases ([34]). We see immediately that this

vector space is the set of standard monomials, since no standard monomial

is divisible by lm(fji) ∀j > i.

Conversely, assume A = T/I has a PBW basis. Then we can interpret

it as a K–algebra, generated by x1, . . . , xn with the multiplication

8 1. FROM NDC TOWARDS G–ALGEBRAS

(⋆) ∀1 ≤ i, j ≤ n xj ⋆ xi =







xjxi, if i ≥ j,

cij · xixj + dij(x), if i < j.

Since A is an associative algebra, we expect that the multiplication ⋆

is well–defined, in particular, (xk ⋆ xj) ⋆ xi − xk ⋆ (xj ⋆ xi) = 0 ∀(i, j, k).

It is easy to see that this holds trivially for all the cases except that when

(i, j, k) ∈ U3, which we analyze. A bit lengthy technical computation similar

to the one of Lemma 2.1 in this case delivers

(xk ⋆ xj) ⋆ xi − xk ⋆ (xj ⋆ xi) =

= cikcjk · dijxk − xkdij + cjk · xjdik − cij · dikxj + djkxi − cijcik · xidjk =

= NDCijk.

So, NDCijk are identically zero in A. Hence NF (NDCijk|I) = 0 in T

and, by the Lemma 2.1, F is a Gröbner basis of I. ¤

We formalize the lemmata in the following:

Theorem 2.3. Suppose there is a set

F = {fji | 1 ≤ i < j ≤ n} ⊂ T = K〈x1, . . . , xn〉, where

∀j > i fji = xjxi − cij · xixj − dij, cij ∈ K∗, dij ∈ T.

Define the ideal I = T 〈F 〉T ⊂ T . Assume that there exists a well–ordering

< on T , such that lm(fji) = xjxi and lm(dij) < xixj, then the following

conditions are equivalent:

1) F is a Gröbner basis for I with respect to <,

2) ∀ 1 ≤ i < j < k ≤ n NF(NDCijk | F) = 0,

3) The K–algebra A = T/I has a Poincaré–Birkhoff–Witt basis w.r.t.

x1, . . . , xn.

Remark 2.4. Some historical remarks can be found under Remark 3.8.

(1) If we assume that ∀ i < j cij = 1 and dij are linear polynomi-

als, NDCijk becomes a famous Jacobi identity, written in the uni-

versal enveloping algebra of a finite dimensional Lie algebra. So,

non–degeneracy conditions are generalized Jacobi identities and the

Theorem above is clearly a generalization of the PBW Theorem

([23]).

(2) At first, the non–degeneracy conditions were written explicitly by

Teo Mora ([60]) but weren’t investigated further there and re-

mained unnoticed by the community for a long time (e.g. R. Berger

did not cite Mora’s work in his articles [9], [10]). We reported on

2. NON–DEGENERACY CONDITIONS AND PBW THEOREM 9

non–degeneracy conditions already in ([48]), having found them

independently and used them for structural analysis of algebras.

(3) As for recent textbooks, Li ([56]) followed both Mora and Berger.

Bueso et al. in [14] wrote a whole chapter, where they applied Di-

amond Lemma directly to relations like in the set F above, which

resulted in the equivalence of the condition xk(xjxi) = (xkxj)xi

with the PBW property of an algebra. These conditions were not

developed further and were not commented. The relation of Di-

amond Lemma to the non–commutative Gröbner bases was not

mentioned.

(4) The equivalence 1) ⇔ 3) with several restrictions appeared already

in [41], [61]. E. Green in [33] (Th. 2.14) has proved it under an

assumption that dij are homogeneous quadratic polynomials.

(5) From the proof of the Lemma 2.2 we extract another characteri-

zation of PBW property, particularly simple and especially useful

for computer algebra systems. Assume that the multiplication ⋆

(from the Lemma) is implemented on A = T/I and lm(dij) < xixj.

Then we can say whether A has a PBW basis w.r.t. x1, . . . , xn by

directly checking, that

∀ 1 ≤ i < j < k ≤ n (xk ⋆ xj) ⋆ xi − xk ⋆ (xj ⋆ xi) = 0.

Some people before used this ”formal associativity” for extract-

ing a kind of non–degeneracy conditions for special algebras (among

others, [40]).

2.1. Types of Degeneracy. What happens if we are dealing with an

algebra, where non–degeneracy conditions do not vanish?

Consider an algebra A, resembling the universal enveloping algebra of

a finite dimensional Lie algebra — that is, for all i < j cij = 1 and dij

are linear in generators xk. Suppose that non–degeneracy conditions do not

vanish. Then, there is no Lie algebra g, such that A = U(g), since otherwise

the Jacobi identity would not hold in g.

Let I ⊂ T and A = T/I be as in Theorem 2.3. In general, if the non–

degeneracy conditions in the algebra A do not vanish, then I is given not

in its Gröbner basis in T . Speaking in the language of generators and rela-

tions, we observe the following phenomenon — there are more relations than

only those of the type (⋆), and these hidden relations consist of standard

monomials (which total degree do not exceed 3 if < is a degree ordering

and deg(xi) = 1). In some cases it is possible to remove degeneracy, thus

passing to an isomorphic algebra with less variables.

10 1. FROM NDC TOWARDS G–ALGEBRAS

Definition 2.5. We say that a degenerate algebra A = Tn/I in n

generators has removable degeneracy if it is isomorphic to another algebra

B = Tk/J , which is generated by k < n variables {x1, . . . , xk} and has

PBW basis in these variables (we can also say we are dealing with surplus

variables or even with overdeterminacy).

We say, that A degenerates to B in this case.

Algebras of the type A = T/I with I as in Theorem 2.3, arise from

various constructions in mathematics and physics.

Example 2.6. Consider the algebra K(q1, q2)〈x, y, z〉 with the relations

yx = q2xy + x, zx = q1xz + z, zy = yz.

Here we see that there is non–degeneracy condition, which translates to

((q2 − 1)y + 1)z = 0. So, we have found the hidden defining relation in the

algebra, since the Gröbner basis of the ideal 〈yx−q2xy−x, zx−q1xz−z, zy−
yz〉 ⊂ K(q1, q2)〈x, y, z〉 with respect to, say, degree reverse lexicographical

ordering, is

G = {yx − q2xy − x, zx − q1xz − z, (q2 − 1)zy − z, (q2 − 1)yz − z}.

As we see, K(q1, q2)〈x, y, z〉/〈G〉 has a canonical subalgebra, isomorphic to

K[a, b]/〈ab〉, hence it has non–removable degeneracy. In particular, it has

no PBW basis and there are zero divisors.

If we specialize q2 at 1, we obtain G′ = {yx − xy − x, z}. Hence,

the algebra K(q1)〈x, y, z〉/〈G′〉 degenerates to the algebra K〈x, y〉/〈yx −
xy − x〉, which is integral and has a basis {xayb}, though a PBW basis for

K〈x, y〉/〈yx − xy − x〉 itself, but only a subset of the PBW basis {xaybzc}
for the algebra we were starting with, which is expected from the defin-

ing relations. The latter shows us a typical example of the algebra which

degeneracy is removable.

The first known example of an algebra with relations as before but with-

out PBW basis was given already in [41] (Example 1.8). In the paper it is

written as B = K〈x, y, z | yx = xy+x, zx = xz, zy = yz+z〉. However, B

has a PBW basis, we can check that the non–degeneracy conditions indeed

vanish. We believe that there should have been a printing error in the origi-

nal paper: the algebra K〈x, y, z | yx = xy+x, zx = xz+z, zy = yz〉 from

the previous example looks pretty similar to B and it has removable degen-

eracy equal to z. Hence, it degenerates to the algebra K〈x, y | yx = xy+x〉.

3. INTRODUCTION TO G–ALGEBRAS 11

3. Introduction to G–algebras

Now we concentrate on studying the properties of algebras, satisfying

the conditions of the Theorem 2.3.

Take an algebra A = T/I as in Theorem 2.3. Since it has a PBW basis,

we call the elements of this basis monomials of A, which is, in fact, the

set of standard monomials of T . This abuse of notation should not create

any confusion but is very convenient.

The set of monomials of A is denoted by Mon(A) and, due to the exis-

tence of PBW basis can be identified with the Nn by

xα = xα1
1 xα2

2 . . . xαn

n 7→ (α1, α2, . . . , αn) = α.

3.1. Monomial Orderings.

Let us recall orderings on Nn.

Perhaps the most known ordering is the lexicographical ordering,

which we denote by lp: for any α, β ∈ Nn,

β <lp α
def⇐⇒ the first non–zero entry of α − β is positive.

By the theorem of Robbiano ([35]), for any monomial (cf. Def. 3.1)

ordering < there exists a (non–unique) matrix A ∈ GL(n, R) such that

β < α if and only if A · β <lp A · α.

In the sequel, we will give matrices for all ordering we mention.

lp ∼









1 0 . . . 0

0 1 . . . 0
...

...
. . .

...

0 0 . . . 1









, Dp ∼









1 . . . 1 1

1 . . . 0 0
...

. . .
...

...

0 . . . 1 0









, dp ∼









1 1 . . 1

0 0 . . −1
...

... . .
. ...

0 −1 . . 0









Here, dp denotes a degree reverse lexicographical ordering, which

can also be defined as

β <dp α
def⇐⇒ ∑

βi <
∑

αi or
∑

βi =
∑

αi and the last non–zero

entry of α − β is negative.

Definition 3.1. Let < be a total well–ordering on Nn and A be an

integral K–algebra with a PBW basis.

(1) An ordering <=<A is called a monomial ordering on A if the

following conditions hold:

• ∀α, β ∈ Nn α < β ⇒ xα <A xβ

• ∀α, β, γ ∈ Nn such that xα <A xβ we have xα+γ <A xβ+γ.

(2) Any f ∈ A \ {0} can be written uniquely as f = cxα + f ′, with

c ∈ K∗ and xα′

<A xα for any non–zero term c′xα′

of f ′. We define

12 1. FROM NDC TOWARDS G–ALGEBRAS

lm(f) = xα, the leading monomial of f ,

lc(f) = c, the leading coefficient of f ,

le(f) = α, the leading exponent of f .

3.2. Definition and Examples of G–algebras.

Definition 3.2. Let K be a field, T = K〈x1, . . . , xn〉 and I be a two–

sided ideal of T , generated by elements

xjxi − cij · xixj − dij, 1 ≤ i < j ≤ n,

where cij ∈ K∗ and every dij ∈ T is a polynomial, involving only standard

monomials of T .

A K–algebra A = T/I is called a G–algebra, if the following

two conditions hold.

• Ordering condition:

there exists a monomial well–ordering <A on Nn such that

∀i < j lm(dij) <A xixj.

• Non–degeneracy condition:

the sets C = {cij} and D = {dij} satisfy the following identities in A:

NDCijk = 0 ∀ 1 ≤ i < j < k ≤ n .

If A is a G–algebra we usually consider a fixed ordering <A satisfying

the above conditions as part of the data of A.

By Theorem 2.2 and the construction, a G–algebra in variables x1, . . . , xn

has a canonical PBW basis {xα1
1 xα2

2 . . . xαn
n | αk ≥ 0}. Hence we regard a

G–algebra (in n variables) as a generalization of a commutative polynomial

ring in n variables.

If all dij = 0, we call an algebra quasi–commutative.

If all cij = 1, we are dealing with an algebra of Lie type.

If all cij = 1 and dij = 0, an algebra is commutative.

Computational Remark 3.3. In Singular:Plural, a G–algebra

can be defined by the following data:

1) a commutative ring (R,<), where R = K[x1, . . . , xn] and < is a well–

ordering on R,

2) a matrix C ∈ Matn×n(K) with entries C[i, j] = cij 6= 0,

3) a matrix D ∈ Matn×n(R) with entries D[i, j] = dij such that ∀i < j

lm(dij) < xixj.

3. INTRODUCTION TO G–ALGEBRAS 13

As soon as one has declared an ordered ring (R, <) with the help of

the Singular built–in type ring (it is explained in the Singular Man-

ual), one defines C and D of the type matrix in R. Finally, one calls

ncalgebra(C,D). The function ncalgebra checks whether the ordering con-

dition is satisfied and if it is so, turns a ring (R, <) into a non–commutative

G–algebra with the relations like in the definition above. Note, that the

non–degeneracy condition may be checked with the procedure ndcond()

from the nctools.lib.

Let us illustrate setting the G–algebra and checking the non–degeneracy

condition on the Example 2.6.

Example 3.4. We consider the algebra

A = K(q1, q2)〈x, y, z | yx = q2xy + x, zx = q1xz + z, zy = yz〉.
Let us write matrices C and D explicitly:

C =






0 q2 q1

0 0 1

0 0 0




 , D =






0 x z

0 0 0

0 0 0




 .

Then, the Singular:Plural code looks as follows:

ring A = (0,q1,q2),(x,y,z),dp;

Here, we consider a ground field to be the transcendental extension of

Q by q1, q2. We choose the degrevlex dp as the ordering on the variables

{x, y, z}.
matrix C[3][3];

C[1,2] = q2; C[1,3] = q1; C[2,3] = 1;

matrix D[3][3];

D[1,2] = x; D[1,3] = z;

ncalgebra(C,D); // the non--commutative initialization

Since no error message appeared, the given ordering is admissible. We

can print the properties of this algebra.

A;

==>

// characteristic : 0

// 2 parameter : q1 q2

// minpoly : 0

// number of vars : 3

// block 1 : ordering dp

// : names x y z

// block 2 : ordering C

14 1. FROM NDC TOWARDS G–ALGEBRAS

// noncommutative relations:

// yx=(q2)*x*y+x

// zx=(q1)*x*z+z

If two variables commute, their commutative relation is, of course, not

printed among ”noncommutative relations” above.

Now, let us compute the non–degeneracy conditions.

LIB "nctools.lib"; // load the library "nctools.lib"

ideal N = ndcond(); // put the result of ndcond into ideal N

N;

==>

N[1]=(-q2+1)*y*z-z

So, the algebra A violates non–degeneracy condition from the Definition

3.2 and hence is not a G–algebra, cf. Example 2.6. Although it is possible

to define an algebra, which do not satisfy the non–degeneracy condition,

we do not recommend to perform any computations in such algebra (see

the interpretation of non–degeneracy in terms of the multiplication ⋆ in the

proof of Lemma 2.2).

Example 3.5. Consider the algebra B = K〈x, y, z | yx = xy + x,

zx = xz, zy = yz + z〉 from the last part of Example 2.6. As wee see, in

this case the matrices look as follows:

C =






0 1 1

0 0 1

0 0 0




 , D =






0 x 0

0 0 z

0 0 0




 .

Since all the entries of C are equal, we can pass just the corresponding

value (that is, 1) as an argument (instead of the matrix) to the function

ncalgebra. Hence, the code for setting B is the following:

ring B = 0,(x,y,z),dp;

matrix D[3][3];

D[1,2] = x; D[2,3] = z;

ncalgebra(1,D); // the non--commutative initialization

B;

==>

// characteristic : 0

// number of vars : 3

// block 1 : ordering dp

// : names x y z

// block 2 : ordering C

// noncommutative relations:

3. INTRODUCTION TO G–ALGEBRAS 15

// yx=xy+x

// zy=yz+z

LIB "nctools.lib";

ideal N = ndcond();

N;

==>

N[1]=0

Remark 3.6. (1) Properties of lm:

In a commutative polynomial algebra A, lm enjoys the following

property: ∀ f, g ∈ A lm(f · g) = lm(f) · lm(g).

In a G–algebra A, a product of two monomials is, in general, a

polynomial. But nevertheless, since ∀ α, β ∈ Nn the leading term

of xαxβ is c(α, β)xα+β with c(α, β) ∈ K∗, the following weaker

property holds:

∀ f, g ∈ A lm(f · g) = lm(lm(f) · lm(g)) = lm(g · f).

Equivalently, in terms of exponents both properties mean

∀ f, g ∈ A le(f · g) = le(f) + le(g).

In order to unify both commutative and non–commutative G–

algebras, we are going to work rather with exponents than with

monomials.

(2) Consider now a K–algebra B, built on the vector space {xα1
1 · · · xαn

n |
αi ≥ 0} with a multiplication (·) and a function le : B r{0} → Nn.

If ∀ f, g ∈ B le satisfies le(f ·g) = le(f)+ le(g) and le(f +g) =

max<(le(f), le(g)) (unless le(f) = le(g) and lc(f) + lc(g) = 0) and,

in addition, the non–degeneracy conditions vanish, then B is a G–

algebra.

(3) Non–additivity of lm:

If lc(g) lm(g) = − lc(f) lm(f) then

lm(f + g) < max<(lm(f), lm(g)). For all other f, g ∈ A,

lm(f + g) = max
<

(lm(f), lm(g)).

(4) Properties of lc:

For all f, g ∈ A lc(f · g) = lc
(
lm(f) · lm(g)

)
· lc(f) · lc(g).

However, in algebras of Lie type (cij = 1,∀j > i), we have

lc(f · g) = lc(f) · lc(g).

16 1. FROM NDC TOWARDS G–ALGEBRAS

Definition 3.7. An algebra A is called a Gröbner–ready, or simply

a GR–algebra, if there exist an automorphism φ : A → A and a well–

ordering <A, such that φ(A) is either a G–algebra or there exist a G–algebra

B and a proper nonzero two–sided ideal I ⊂ B such that φ(A) ∼= B/I.

In order to treat factor-algebras constructively, we need, in particular,

two–sided Gröbner bases. Therefore we treat GR–algebras in detail in Sec-

tion §2, 3.2.

Remark 3.8. G–algebras were first introduced by J. Apel ([3]), how-

ever, without requiring the vanishing of the non–degeneracy conditions;

they were omitted also in the work on PBW algebras ([30]) and in the book

on solvable algebras ([56]), which are indeed G–algebras since the presence

of PBW basis is required in the definition. In the classical work [41] on

algebras of solvable type and in the recent book [14] the authors obtained a

criterion for non–degeneracy but did not mention the polynomial conditions

NDCijk explicitly. In [9] and [10] R. Berger introduced q–algebras (in our

notation, these are the G–algebras with the restriction that the polynomials

dij are quadratic), and imposed the vanishing conditions for what he calls

”q–Jacobi sums” (which coincide with the non–degeneracy conditions). He

treated these conditions as quantized Jacobi identities. We have obtained

the non–degeneracy conditions independently ([49]) and, moreover, we have

shown that the restriction to quadratic polynomials is not really essential.

Li in his recent book [56] did not overcome the restrictions of Berger.

It is very natural to study G–algebras and their factor–algebras within

the same framework. We avoid the name PBW–algebras ([14]) because,

strictly speaking, a factor–algebra of an algebra with a PBW basis does not

have a PBW basis itself. Moreover, consider a free algebra T = K〈x, y〉 and

a two–sided ideal I ⊂ T , generated by yx. Then, indeed, the algebra T/I

has the K–basis {xiyj} (like a PBW basis of any G–algebra in {x, y}). But

T/I has zero divisors and is quite far from the context of G–algebras.

Example 3.9 (Examples of G–algebras). Quasi–commutative polyno-

mial rings (for example, the quantum plane yx = q·xy), universal enveloping

algebras of finite dimensional Lie algebras (see some of them explicitly in

§5, 1), some iterated Ore extensions (see Def. 3.12 below), many quan-

tum groups ([14]), some nonstandard quantum deformations ([36], [38]),

Weyl algebras and most of various flavors of quantizations of Weyl algebras

(like additive and multiplicative analogues of Weyl algebras, non–localized

Hayashi algebras [56] etc), many important operator algebras (Section 6

and [18], [56]), Witten’s deformation of U(sl2), Smith algebras, conformal

sl2–algebras ([8]), some of diffusion algebras ([40]) and many more.

3. INTRODUCTION TO G–ALGEBRAS 17

Remark 3.10. Consider the Sklyanin algebra ([73])

Skl3(a, b, c) = K〈x0, x1, x2〉/〈{axixi+1+bxi+1xi+cx2
i+2 | i = 1, 2, 3 mod 3}〉,

where (a, b, c) ∈ P2 \F , for a known finite set F . Suppose that a 6= 0, b 6= 0.

Then we can rewrite the relations in the following way:

x1x0 = −a

b
x0x1 −

c

b
x2

2, x2x1 = −a

b
x1x2 −

c

b
x2

0, x2x0 = − b

a
x0x2 −

c

a
x2

1.

Suppose there is a well–ordering < with x2 < x1 < x0, satisfying the in-

equalities x2
2 < x0x1, x2

0 < x1x2, x2
1 < x0x2. But since x0x

2
2 < x2

0x1 < x2
1x2,

it follows that x0x2 < x2
1, a contradiction to the assumption on < to be

a monomial ordering. Hence, unless c = 0, there is no monomial well–

ordering, such that this algebra is a G–algebra (If c = 0, Skl3(a, b, 0) is

a quasi–commutative algebra). Note, that the non–degeneracy conditions

formally vanish on this non–G–algebra, hence the ordering condition in the

definition 3.2 is essential.

Example 3.11 (Examples of GR–algebras). Exterior algebras, Clifford

algebras, finite dimensional associative algebras ([24]), primitive quotients

of universal enveloping algebras, some quantum groups and so on.

3.3. Ore Extensions versus G–algebras.

Definition 3.12 ([59]). Let R be an associative ring with 1, σ be a

ring endomorphism of R and δ be a σ–derivation, that is an additive map

δ : R → R such that ∀ a, b ∈ R, δ(ab) = δ(a)σ(b) + aδ(b). In particular,

σ(1) = 1 and δ(1) = 0.

Let x be a new indeterminate, satisfying the relation x·r = σ(r)·x+δ(r)

for all r ∈ R. Then, we denote the obtained ring by R[x; σ, δ] and call it

an Ore extension. Applying similar operation with further variables, we

obtain an (iterated) Ore extension R[x1; σ1, δ1][x2; σ2, δ2] . . . [xn; σn, δn].

Let R be a field (K or K(t1, . . . , ts)). Then, an iterated Ore extension

R[x1; σ1, δ1][x2; σ2, δ2] . . . [xn; σn, δn] is called an Ore algebra, if for 1 ≤
i, j ≤ n, σiδj = δjσi and moreover, for i < j, σi(xj) = xj and δi(xj) = 0.

The framework of Ore algebras is used in applications ([19], [18]) and

can be distinguished for the two following situations: purely polynomial Ore

algebras (R = K) and rational Ore algebras (R = K(t1, . . . , ts)). In both

cases it can happen that {xi} do not commute with {tj}: as an example we

present the rational Weyl algebra K(x)〈∂ | ∂x = x∂ + 1〉.
In this work we are not going to consider the case of rational non–

commutativity (like rational Ore algebras), although it is very interesting

and deserves special attention due to several important applications.

18 1. FROM NDC TOWARDS G–ALGEBRAS

For polynomial iterated Ore extensions over a field, there is the following

proposition, appearing in [41] and, in generalized form, in [14]. It estab-

lishes a criterion when a G–algebra can be realized as a polynomial iterated

Ore extension.

Proposition 3.13. Let A be a G–algebra

A = K〈x1, . . . , xn | xjxi = cijxixj + dij, 1 ≤ i < j ≤ n〉.
If every dij depends only on variables x1, . . . , xi−1, then lp is an admis-

sible ordering on A. Moreover, (A,lp) can be realized as iterated Ore exten-

sion A = K[x1][x2; σ2, δ2] . . . [xn; σn, δn] with σj(xi) = cijxi and δj(xi) = dij,

1 ≤ i < j ≤ n.

Remark 3.14. Handling non–commutative polynomial algebras con-

structively as iterated Ore extensions makes some sense, but brings also

some negative effects. Indeed, we cannot restrict ourself to polynomial Ore

extensions only: an important algebra U(so3) (which is a G–algebra, see §5,

1.2 for the definition) does not satisfy the conditions of the above proposi-

tion.

Meanwhile we know that over C, UC(so3) ∼= UC(sl2) (note, that this

is not true over Q) and the latter algebra (see §5, 1.1) can be realized as

the following Ore extension: K[h][e; Id, δe][f ; Id, δf] with δe(h) = −2e and

δf (h) = 2f, δf (e) = −h over a field K.

Hence, once we are over C and have the explicit isomorphism as above,

we can present UC(so3) as an Ore extension. It is, however, not clear whether

we can do this when K = Q.

Another voice ”contra” says that Ore extensions seem not to be good

objects for unifying algebras and factor-algebras under one roof like we do

for GR–algebras.

In what follows, we will use Ore extensions only in an auxiliary role,

thus concentrating ourselves on GR–algebras.

4. Filtrations and Properties of G–algebras.

4.1. Preliminaries.

Definition 4.1. We recall some definitions explicitly:

(1) An algebra A is called filtered, if for every non–negative integer i

there is a subspace Ai such that

1) Ai ⊆ Aj if i ≤ j, 2) Ai · Aj ⊆ Ai+j and 3) A =
∞⋃

i=0

Ai.

The set {Ai | i ∈ N} is called a filtration of A.

4. FILTRATIONS AND PROPERTIES OF G–ALGEBRAS. 19

(2) An associated graded algebra Gr(A) of a filtered algebra A is

defined to be

Gr(A) =
∞⊕

i=1

Gi where Gi = Ai/Ai−1 and A−1 = 0,

with the induced multiplication (ai + Ai−1)(aj + Aj−1) = aiaj +

Ai+j−1.

Theorem 4.2 (Jacobson, [59]). Let A be a filtered algebra and G =

Gr(A) be its associated graded algebra . Then

• If Gr(A) is left (right) Noetherian, then A is left (right) Noetherian,

• if Gr(A) has no zero divisors, then A has no zero divisors, too.

Theorem 4.3 (Goldie-Ore, [59]). Let R be an integral associative unital

ring. If it is left (resp. right) Noetherian, then it has a left (resp. right)

quotient ring.

Lemma 4.4. Let Q = {qij | 1 ≤ i < j ≤ n}. Consider the transcendental

extension K(Q) of K. A quasi–commutative ring in n variables, associated

to the set Q is defined as follows:

KQ[x1, . . . , xn] := K(Q)〈x1, . . . , xn | ∀i < j xjxi = qijxixj〉.

Then KQ[x1, . . . , xn] is a Noetherian domain.

Proof. We can present KQ[x1, . . . , xn] as the iterated Ore extension

K[x1; σ1 = 1, 0][x2; σ2, 0] . . . [xn; σn, 0] with σj(xi) = qijxi and σj(xj) =

xj for i < j. Thus, every σj is an automorphism. By the theorem 1.2.9

from [59] and induction by n, KQ[x1, . . . , xn] is a Noetherian domain. ¤

For a G–algebra A, there are two different kinds of filtrations.

4.2. Weighted Degree Filtration.

Let <w= (<, w̄) be a weighted degree ordering on A, i.e. there is an

n-tuple of strictly positive weights w̄ = (w1, w2, . . . , wn) and some ordering

< (for example, a (reverse) lexicographical ordering) on A such that

α <w β ⇔
n∑

i=1

wiai <

n∑

i=1

wibi or, if
n∑

i=1

wiai =
n∑

i=1

wibi, then α < β.

Assume that w1 ≥ . . . ≥ wn and all the weights are positive integers.

20 1. FROM NDC TOWARDS G–ALGEBRAS

The corresponding matrices for such orderings as weighted deglex Wp

and weighted degrevlex wp look like follows:

Wp ∼









ω1 . . . ωn−1 ωn

1 . . . 0 0
...

. . .
...

...

0 . . . 1 0









, wp ∼









ω1 ω2 . . ωn

0 0 . . −1
...

... . .
. ...

0 −1 . . 0









.

Let us define degω(xα) := w1α1 + · · · + wnαn and call it a weighted

degree function on A. For any polynomial f ∈ A, we define degω(f) :=

degω(lm(f)), and we note that degω(xα) = 0 ⇔ α = 0̄.

Lemma 4.5. degω(fg) = degω(f) + degω(g).

Proof. Since on monomials we have

degω(xαxβ) = degω(xα+β) =
n∑

i=1

wi(αi + βi) = degω(xα) + degω(xβ),

hence, using Remark 3.6,

degω(fg) = degω(lm(lm(f) lm(g))) = degω(lm(f) lm(g)) = degω(f)+degω(g).

In particular, degω(f · g) = degω(g · f). ¤

Let An be the K–vector space generated by {m ∈ Mon(A) | degω(m) ≤
n}. So, we see that A0 = K, Awn

= K ⊕ Kxn if wn−1 > wn, or Awn
=

K ⊕ ⊕n
m=1 Kxm if w1 = . . . = wn, hence

∀ 0 ≤ i < j Ai ⊆ Aj ⊆ A and A =
∞⋃

i=1

Ai.

From the Lemma 4.5 it follows that ∀ 0 ≤ i < j Ai · Aj ⊆ Ai+j. In this

case, Gi = Ai/Ai−1 is the set of weighted homogeneous elements of weighted

degree i in A with G0 = A0 = K. We have the following:

Lemma 4.6. Suppose we have an algebra A, where ∀ i < j degω(dij) <

degω(xixj) = wi + wj. Denote xi = xi + Ai−1. Then

Grdegω
(A) =

∞⊕

i=1

Gi = K〈x1, . . . , xn | xjxi = cijxixj ∀ j > i〉.

We see that in this case Grdegω
(A) is isomorphic to the quasi–commutative

ring in n variables. Hence, by the Jacobson’s Theorem (4.2) A is a Noe-

therian domain.

This Lemma guarantees Noetherian and integral properties for Weyl

algebras, universal enveloping algebras and some other algebras. Unfortu-

nately, many important algebras (like positively graded quasi–homogeneous

4. FILTRATIONS AND PROPERTIES OF G–ALGEBRAS. 21

algebras) do not satisfy the conditions of the Lemma directly. But there is

another filtration that behaves better in more general situation.

4.3. Filtration by a Monomial Ordering.

A weighted degree filtration is well–known and used in every source on

(non–commutative) computer algebra. However, there is another filtration

which mainly remained unnoticed in spite of its natural appearance. Al-

though we should note that the filtration by ordering has nothing to do with

the homogeneity in the classical sense, since a homogeneous part of every

polynomial with respect to the filtration by ordering is always a monomial.

Let < be any monomial well–ordering on A. For α ∈ Nn, let Aα be the

K–vector space, spanned by the set x<α ∪ {xα}, where x<α := {xβ ∈ A |
xβ < xα}. Note, that each Aα is finite dimensional only if < is a finitely

supported well–ordering (cf. Def. 1.1). We see immediately that A0̄ = K
and

∀ β < α Aβ ⊂ Aα ⊂ A and A =
⋃

α∈Nn

Aα.

The property Aα · Aβ ⊆ Aα+β holds because lm(xαxβ) = xα+β (cf. 3.6).

Since the filtration is indexed not by N as in the classical definition 4.1,

but by Nn, we call it a multi–filtration, according to [31]. So, A is a

multi–filtered algebra. Further on, let σ(α) := max<{γ | γ < α}, σ(0̄) = ∅.
Then ∀ α ∈ Nn, Gα = Aα/Aσ(α) = {xα}. It follows that

Gr<(A) =
⊕

α∈Nn

Gα
∼= K〈x1, . . . , xn | xjxi = cijxixj ∀ j > i〉,

where xi = xi + Aσ(ei), ei = (0, . . . , 1
i
, . . . , 0). So, Gr<(A) is isomorphic to

the quasi–commutative ring in n variables.

Applying the generalizations of the Theorem of Jacobson to the case of

multi–filtered algebras ([31]) we get a more general statement than using

just the weighted–degree filtration.

Theorem 4.7. Let A be a G–algebra. Then

1) A is left and right Noetherian,

2) A is an integral domain,

3) A has both left and right quotient rings.

Remark 4.8. One can prove 1) also using the PBW Theorem and the

Dixon’s Lemma, like it is done in [15].

Indeed, the existence of PBW basis in a G–algebra implies 2). By 3.6,

for any two nonzero polynomials f, g in a G–algebra A, there exists a finite

22 1. FROM NDC TOWARDS G–ALGEBRAS

index set I ⊂ Nn, such that f · g =
∑

α∈I

cαxα, where cα ∈ K∗. Since A has a

PBW basis {xβ | β ∈ Nn}, we have fg = 0 ⇔ cα = 0 ∀α ∈ I, hence either

f of g is zero.

However, there are algebras (not G–algebras), which have PBW basis

but also zero–divisors: for example, the algebra K〈x, y〉/〈yx〉.

Example 4.9. Consider the example 8.3.9 from [59]: let R be an Ore

extension R = K[u, v][x; Id, δ] with δ = uv2 ∂
∂u

. That is,

R = K〈u, v, x | vu = uv, xu = ux + uv2, xv = vx〉.

According to the ordering condition, lm(ux) > lm(uv2), hence lm(x) >

lm(v2). Suppose there exists such an ordering, then non–degeneracy condi-

tion vanishes. Let us explore two possibilities for choosing the admissible

ordering:

1) If we’d like to work with the PBW basis {uavbxc}, we have to in-

troduce weights. If we choose the ordering <w to be, say, weighted de-

grevlex wp(wu, wv, wx), then it suffices to take <w= wp(1, w, 2w + w0) for

any w ∈ Z≥1, w0 ∈ Z≥0. The minimal weight vector is then (1, 1, 2); for any

w ∈ Z≥1 the vector (1, w, 2w) is turning R into the algebra with weighted

homogeneous relations. By definition, R is a G–algebra with respect to <w,

hence it is Noetherian. In [59] it has been shown, that Gr(R), computed

with respect to the classical filtration (that is, with weights (1, 1, 1)) is not

Noetherian. It is not surprising, since any degree–ordering with weights

(1, 1, 1) violates the ordering condition from the definition of G–algebra.

2) There exists an ordering, where we do not need weights at all. Let

R′ = K〈x, v, u | vx = xv, ux = xu − uv2, uv = vu〉,

and let the ordering < be just the lexicographical ordering lp with x > v >

u. Then, uv2 < xu and R′ is a G–algebra with respect to <. Note, that in

this situation R′ can be realized as Ore extension K[x, v][u; Id,−uv ∂
∂x

].

4.4. Filtration on Modules and Gel’fand–Kirillov dimension.

Let R be an associative K–algebra with generators x1, . . . , xm. Assuming

that each xi has degree 1, we define an increasing degree filtration on R as

above in 4.2. Then we have F0 = K, F1 = K ⊕ ⊕m
i=1 Kxi and so on. Here

x1, . . . , xm form a so-called generating subspace for R.

For any finitely generated left R–module M , there exists a finite dimen-

sional subspace M0 ⊂ M (called a generating subspace for M), such that

RM0 = M . An ascending filtration {Fn, n ≥ 0} on R induces an ascending

filtration on M , defined by {Hn := FnM0, n ≥ 0} .

4. FILTRATIONS AND PROPERTIES OF G–ALGEBRAS. 23

Definition 4.10. Let {Fn, n ≥ 0} and {Hn, n ≥ 0} be filtrations on R

and M as before. The Gel’fand–Kirillov dimension of M is defined to

be

GKdim(M) = lim
n→∞

sup logn(dim Hn)

in particular,

GKdim(R) = GKdim(RR) = lim
n→∞

sup logn(dim Fn).

Indeed, GKdim(R) and GKdim(M) are independent of the choice of

generating subspaces. For a commutative algebra C = K[x1, . . . , xn],

GKdim(C) equals the Krull dimension Kr.dim(C) = n.

Proposition 4.11. ([59]). Let A be a G–algebra in n variables. Then,

for any finitely generated A–module M ,

GKdim(M) = GKdim(Gr(M)), hence GKdim(A) = GKdim(Gr(A)) = n.

In both books by Li ([56]) and Bueso et al. ([14]) there are algorithms

for computing the GKdim(M), so we are not going to discuss this here (but

note, that due to the previous proposition, it reduces to the computation of

dimension of Gr(M) over Gr(A), what is a (quasi–)commutative algebra).

The latter algorithm together with accompanying tools has been already

implemented in Singular:Plural by J. Lobillo and C. Rabelo ([57]).

Let us recall several further definitions.

Definition 4.12. ([59], 8.5.8) Let M be a module over an algebra A.

M is called holonomic, if GKdim(A/ AnnA M) = 2 · GKdim(M).

Definition 4.13. Let A be an associative K–algebra

and M be a left A–module.

1) The grade of M is defined to be

j(M) = min{i | Exti
A(M,A) 6= 0},

or j(M) = ∞, if no such i exists. By convention j({0}) = ∞.

2) It is said, that an algebra A satisfies the Auslander condition, if for

every finitely generated A–module M , for all i ≥ 0 and for all submodules

N ⊆ Exti
A(M, A) the inequality j(N) ≥ i holds.

3) A is called an Auslander regular algebra, if it is Noetherian with

gl. dim(A) < ∞ and the Auslander condition holds.

4) An algebra A is called a Cohen–Macaulay algebra, if

j(M) + GKdim(M) = GKdim(A) < ∞ for every finitely generated

nonzero A–module M .

24 1. FROM NDC TOWARDS G–ALGEBRAS

Using the structural results from [59] on quasi–commutative rings, which

appear as graded rings of G–algebras, we have the following.

Proposition 4.14. Let A be a G–algebra in n variables. Then

1) the global homological dimension gl. dim(A) ≤ n,

2) the Krull dimension Kr.dim(A) ≤ n,

3) A is Auslander–regular and a Cohen–Macaulay algebra.

Remark 4.15. 1) and 2) were proved in [30] with the multifiltering

technique, which was also applied for the proof of 3) in [31]. We will give a

constructive proof of 1) in Theorem §2, 4.16, which was obtained indepen-

dently using Gröbner bases and our generalization of Schreyer’s theorem on

syzygies.

Note, that both 1) and 2) may be strict inequalities. It is known, that for

a n–th Weyl algebra Wn in 2n variables over a field of char 0, gl. dim Wn = n.

We will discuss the conditions on the equality further in the Proposition §3,

4.17.

Concerning the Krull dimension, T. Levasseur showed in [55], that for a

complex semisimple Lie algebra g of dimension d, the Krull (more precisely,

Krull–Gabriel–Rentschler) dimension of U(g) is equal to the dimension of a

Borel subalgebra of g and hence, is strictly smaller than d.

3) was first proved in [31], using the multifiltering technique.

5. Opposite algebras

Let A be an associative algebra over K. Then the opposite algebra Aopp is

defined by taking the same vector-space A and introducing a new ”opposite”

multiplication on it, that is f ∗ g := g · f . Like A, it is an associative

K–algebra. Of course, (Aopp)opp = A.

Let A be a G–algebra in n variables. What is the opposed algebra of it?

In the two subsections which follow, we present two natural construc-

tions for Aopp and for both of them we conclude, that Aopp is a G–algebra.

Let M be a left A–module. Then, ∀ a ∈ A, m ∈ M , am ∈ M . In the

opposite algebra, (am)opp = mopp∗aopp. Hence, setting Mopp to be the same

vector space as M , it naturally becomes a right Aopp–module. Similarly, for

any right A–module N , Nopp is naturally a left Aopp–module.

Hence, we can perform right–sided computations like Gröbner basis,

syzygy modules et cetera, having implemented only left–sided functionality

and procedures for an effective treatment of opposite algebras and transfer

of objects from an algebra into its opposite.

5. OPPOSITE ALGEBRAS 25

Let B = A/I be a GR–algebra. Then Bopp = Aopp/Iopp is a GR–

algebra, since Aopp is a G–algebra, as we will see below, and Iopp is a proper

two–sided ideal in Aopp.

For p ∈ A, we denote the opposed polynomial either by p∗ or by P .

Note, that using the characterization of non–degeneracy 2.4, ∀ 1 ≤ i <

j < k ≤ n, 0 = NDCijk = (xk ·xj) ·xi−xk · (xj ·xi). In the opposite algebra

this looks like 0 = (x∗
i ∗ x∗

j) ∗ x∗
k − x∗

i ∗ (x∗
j ∗ x∗

k).

5.1. Opposite Algebra with Reversed PBW Basis. The form of

non–degeneracy conditions motivates the following choice PBW basis of

Aopp.

Since there is a bijection between vector-spaces of A and Aopp, we can

find a particular one, which induces a bijection on monomials. Choose a

bijection, sending xi to Xn+1−i := x∗
i . Denote the induced monoid auto-

morphism by σ : Nn → Nn, σ(ᾱ) = σ((α1, . . . , αn)) := (αn, . . . , α1).

Since a K–basis of A is the PBW basis Mon(A) = {xα | α ∈ Nn}, where

xα = xα1
1 · . . . · xαn

n , it is quite natural to define a monomial on Aopp to be

(xα)∗ := Xσ(ᾱ) = Xαn
n ∗ . . . ∗Xα1

1 . Hence, with this choice of monomial, the

non–degeneracy conditions are vanishing.

Then, on Aopp with PBW basis {Xβ | β ∈ Nn} there are relations,

opposed to A, namely ∀ 1 ≤ i < j ≤ n, XiXj = CjiXjXi + Dji. Define

Cji := cn+1−i,n+1−j and Dji := d∗
n+1−i,n+1−j, then the pair (Xi, Xj) together

with the relation is opposed to the pair (xn+1−i, xn+1−j).

Let M ∈ GL(n, K) be the matrix, representing an admissible well–

ordering ordering <M on A. Define a matrix M∗ by reverting the order of

columns from M = (M1 | · · · | Mn) to M∗ = (Mn | · · · | M1). Note that

<M∗ is a well–ordering if and only if <M is. Moreover, for any α ∈ Nn,

Mα = M∗σ(α). Hence, we have the following:

xα <M xβ ⇔ Mα <lp Mβ ⇔ M∗σ(α) <lp M∗σ(β) ⇔ Xσ(α) <M∗ Xσ(β).

Then, from lm(dij) <M xixj follows, that lm(Dji) <M∗ XjXi and the

ordering condition is satisfied. Hence, Aopp is a G–algebra in n variables by

the Definition 3.2.

Example 5.1. In our implementation, the command opposite con-

structs an opposite algebra from a given G–algebra, using the method de-

scribed above. A command oppose computes an opposite object in Aopp

from a given object in A. We cut some lines from the output in order to

present the example in more compact form.

LIB "ncalg.lib";

def S = makeQso3();

26 1. FROM NDC TOWARDS G–ALGEBRAS

setring S; S;

==>

...

// : names x y z

// noncommutative relations:

// yx=(Q2)*xy+(-Q)*z

// zx=1/(Q2)*xz+1/(Q)*y

// zy=(Q2)*yz+(-Q)*x

poly p = (xy+z)^2; p;

==>

(Q2)*x2y2+(-Q3+2)*xyz+(Q3-1)/(Q)*x2+1/(Q)*y2+z2

def Sop = opposite(S);

setring Sop; Sop;

==>

...

// : names Z Y X

// noncommutative relations:

// YZ=(Q2)*ZY+(-Q)*X

// XZ=1/(Q2)*ZX+1/(Q)*Y

// XY=(Q2)*YX+(-Q)*Z

poly q = oppose(S,p); q;

==>

(Q2)*Y2X2+(-Q3+2)*ZYX+(Q3-1)/(Q)*X2+1/(Q)*Y2+Z2

5.2. Opposite Algebra via Opposed Relations. Indeed, there is

another canonical way of viewing Aopp as a G–algebra. We can keep the

PBW basis but change relations instead. Let Yi := x∗
i , a new multiplication

be denoted by ⋆ and the basis consists of monomials {Y α1
1 ⋆ . . . ⋆ Y αn

n }.
Opposed monomials will be again monomials, but the relations of an algebra

will become {Yj ⋆Yi = CijYiYj +Dij}, where Cij := 1
cij

and Dij := − 1
cij

d∗
ij}.

Hence, we can use the same ordering as of A on Aopp, since it respects the

ordering property from the definition of G–algebra.

In order to see that the non–degeneracy conditions vanish, consider one

of the three parts of the polynomial NDCijk:

(cikcjk · dijxk − xkdij)
∗ = cikcjk · Ykd

∗
ij − d∗

ijYk =

= −cijcikcjkYkDij + cijDijYk = 1
CijCikCjk

(CikCjkDijYk − YkDij).

6. THE UBIQUITY OF GR–ALGEBRAS 27

We see that the totally symmetric coefficient came out and the same

will happen with two other parts of NDCijk. Hence, ∀ 1 ≤ i < j < k ≤ n,

NDCAopp

ijk =
1

CijCikCjk

NDCA
ijk = 0.

6. The Ubiquity of GR–algebras

Let t be a variable and ∂ denotes the operator of a partial differentiation

with respect to t, ∂
∂t

. For any function f ∈ C∞(t), we introduce an operator

F , F (t) = f · t, that is the operator of left multiplication by f . We call f

a representative of F . In general, the operators F and ∂ do not commute,

but there is still a relation between the two actions.

Lemma 6.1. ∂ ◦ F = F ◦ ∂ + ∂(f).

Proof. ∀ h ∈ C∞(t), we have the following:

(∂ ◦ F)(h) = ∂(f · h) = f · ∂(h) + ∂(f) · h = (F ◦ ∂)(h) + ∂(f) · (h),

hence ∂ ◦ F = F ◦ ∂ + ∂(f). ¤

In the sequel, we will denote both the operator and its representative

by the same letter.

Example 6.2. Taking t and d = d
dt

as variables, we obtain the algebra

A1 = K〈t, d | dt = td + 1〉, the first Weyl algebra — a very famous

object in mathematics. Note, that the n–th Weyl algebra is defined to be

An = K〈x1, . . . , xn, ∂1, . . . , ∂n | ∂ixj = xj∂i +δij〉, where δij is the Kronecker

symbol (δjj = 1 and δij = 0, ∀ i 6= j). Here, ∂i could be viewed as the

operator of partial differentiation ∂
∂xi

.

Example 6.3. Let e denotes the operator eλt, where λ considered as a

parameter. Then there is the exponential algebra

E = K(λ)〈e, ∂ | ∂ · e = e · ∂ + λe〉.

Both examples 6.2 and 6.3 are G–algebras for any degree well–ordering.

Example 6.4. Let sin denotes the operator with the representative

sin(t), then ∂ · sin = sin · ∂ + cos and hence we need the variable cos,

corresponding to the operator with the representative cos(t). Then, ∂ ·cos =

cos · ∂ − sin and there is the algebra

T 0 = K〈sin, cos, ∂ | ∂·cos = cos·∂−sin, ∂·sin = sin·∂+cos, cos·sin = sin·cos〉.

A direct computation shows that the element c = sin2 + cos2 commutes

with ∂ (even more, we can show that c generates the center of T 0 if char K =

28 1. FROM NDC TOWARDS G–ALGEBRAS

0). Hence, we should take the factor–algebra by the the ideal, generated by

cos2 + sin2 − 1. In such a way we obtain

the trigonometric algebra T = T 0/〈cos2 + sin2 − 1〉.

This algebra is a GR–algebra for any degree well–ordering.

Example 6.5. Consider the operator ln, assigned to the natural loga-

rithm ln(t). Then, ∂ · ln = ln · ∂ + t−1. Adding s := t−1 as a variable, we

obtain the logarithmic algebra:

L = K〈s, ln, ∂ | ∂ · s = s · ∂ − s2, ∂ · ln = ln · ∂ + s, ln · s = s · ln〉.

Note, that in order to be a G–algebra, the monomial ordering < should

satisfy the property s < ∂. Then, s2 < s∂ and the ordering condition is

satisfied.

We can also consider other operations instead of differentiation.

Consider the shift operator with respect to a constant c ∈ K,

δc : f(x) 7→ f(x − c).

Then, by the analogous statement to the Lemma 6.1, there is

the shift algebra S(x, δc) = K〈x, δc | δc · x = x · δc − cδc〉.
If c < 0 (resp. c > 0), δc is called an advance operator (resp. a time–

delay operator) ([19]).

Consider the difference operator

∆ : f(x) 7→ f(x + 1) − f(x).

Again, there is an analogue to Lemma 6.1, and the difference algebra

K〈x, ∆ | ∆ · x = x · ∆ + ∆ + 1〉.

Note, that both shift and difference algebras are G–algebras.

Many important operators allow such algebraic presentations as G– and

GR–algebras. See [18] for details, implementation and applications.

7. Applications of Non–degeneracy Conditions

Definition 7.1. Let A be a GR–algebra over a field K.

We call an algebra A(q1, . . . , qm), depending on parameters (q1, . . . , qm),

a G–quantization of A, if

• A(q1, . . . , qm) is a GR–algebra over K(q1, . . . , qm),

• A(q1, . . . , qm) is a GR–algebra for any values of qk ∈ K,

• A(1, . . . , 1) = A.

7. APPLICATIONS OF NON–DEGENERACY CONDITIONS 29

Let A be a G–algebra, generated by x1, . . . , xn.

How to determine the set of all G–quantizations of A?

(1) Compute the non–degeneracy conditions and obtain a set S of poly-

nomials in x1, . . . , xn with coefficients depending on q1, . . . , qm.

(2) Form the ideal IS ∈ K[q1, . . . , qm] generated by all the coefficients

of monomials of every polynomial from S.

(3) Compute the associated primes from the primary decomposition of

the radical of IS.

(4) Throw away every component (that is, an associated prime) which

violates A(1, . . . , 1) = A.

Remark 7.2. We use the computer algebra system Singular:Plural

[53], with its commutative backbone Singular and non–commutative ex-

tension Plural. We proceed with the described procedure as follows:

We compute the non–degeneracy conditions either with the help of

Plural or manually. Then, using Singular and its library primdec

[21], we compute the Gröbner basis of I and then the associated primes

of the primary decomposition of the radical of I. An implementation of

the essential algorithms including the primary decomposition is available in

polynomial rings over various ground fields K (like char K = 0 or char K ≫ 0

as well as their transcendent and simple algebraic extensions). Here, how-

ever, we assume our coefficients q1, . . . , qm to be specialized in the field C.

Of course, one can insert further constraints in order to analyze the set

one obtains. Parametric ideals, modules and subalgebras can be studied in

a similar way to the investigation of parametric algebras that we present

here.

In what follows, we will work with semi–algebraic sets. Recall, that

for a field K, a semi–algebraic set is a subset of Kn, which is a finite

Boolean combination of sets of the form {x̄ ∈ Kn : f(x̄) > 0} and {x̄ ∈ Kn :

g(x̄) = 0} for f, g ∈ K[x1, . . . , xn]. In particular, for any h ∈ K[x̄], the set

H 6= = {x̄ ∈ Kn : h(x̄) 6= 0} is semi–algebraic.

7.1. G–quantizations of Weyl Algebras.

Let An = K〈x1, . . . , xn, y1, . . . , yn | yixi = xiyi + 1〉 be the classical

n-th Weyl algebra, where we can interpret yi as the differential operator

∂xi
:= ∂

∂xi
.

30 1. FROM NDC TOWARDS G–ALGEBRAS

From now on, we use the following compact way for encoding the G–

algebra in 4 variables (cij, dij are from the Definition 3.2):








x1 c12 c13 c14

d12 x2 c23 c24

d13 d23 x3 c34

d14 d24 d34 x4








Let’s take A2 = K〈x, ∂x, y, ∂y | ∂xx = x∂x + 1, ∂yy = y∂y + 1〉. In our

new notation it corresponds to the matrix








x 1 1 1

1 ∂x 1 1

0 0 y 1

0 0 1 ∂y








With such an ordering of variables the PBW basis is {xn1∂n2
x yn3∂n4

y }.
We specify the following constraints to be fulfilled:

- let the general G–quantization be ∆(A2) = ∆(A2, {cij}, {dij}, <) =

K〈x1, x2, x3, x4 | xjxi = cijxixj + dij, ∀j > i 〉
- ∀ i < j cij ∈ K∗, dij ∈ K (as for dij, we consider two cases

only: dij = 0 and dij 6= 0). It means we investigate only Weyl–like

G–quantizations.

- d12 = d34 = 1

Since ∀ i < j dij ∈ K, for any well–ordering < on ∆(A2) we have

dij < xixj and ∆(A2) is a G–algebra in 4 variables, if non–degeneracy

conditions vanish. However, if we choose < to be a well–ordering, ∆(A2)

does not depend on the concrete one. In our encoding it looks the following

way:








x c12 c13 c14

1 ∂x c23 c24

d13 d23 y c34

d14 d24 1 ∂y








Since the set U3 = {(i, j, k) | 1 ≤ i < j < k ≤ 4} in this case is equal to

{(1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4)}, we have four equations derived from the

four non–degeneracy conditions which ∀ (i, j, k) ∈ U3 look as follows:

dij(cikcjk − 1) · xk + dik(cjk − cij) · xj + djk(1 − cijcik) · xi.

Now we define two sets of commutative variables C = {cij | 1 ≤ i < j ≤
4} and D = {dij | 1 ≤ i < j ≤ 4} \{d12, d34} (since d12 = d34 = 1). Then

7. APPLICATIONS OF NON–DEGENERACY CONDITIONS 31

we have the following ideal in the commutative polynomial ring K[C, D] in

10 variables,

I = 〈dij(cikcjk − 1), dik(cjk − cij), djk(cijcik − 1) | (i, j, k) ∈ U3〉.

Using a computer algebra system Singular ([35]), we compute the

Gröbner basis of I and then the primary decomposition of the radical of I
([21]). Performing the computations, we find out, that the 4–dimensional

variety, defined by
√
I, consists of 8 components (corresponding to associ-

ated prime ideals). Let us denote the corresponding types of algebras by

∆1, . . . , ∆8. Now we list them all, using the following considerations:

• dij: if there are no restrictions on some dij, we depict it by ∗ in the

matrix, interpreting it as a free (”random”) parameter,

• cij: if no conditions on some cij are given, we will introduce the

parameters q′, q′′ for ”single” (appearing only once) coefficients and

q for ”block” (appearing more than once) coefficients in the corre-

sponding matrix. These parameters are viewed then as the gener-

ators of the transcendental field extension K(q).

∆1 =








x 1 1 1

1 ∂x 1 1

∗ ∗ y 1

∗ ∗ 1 ∂y








, ∆2 =








x −1 −1 −1

1 ∂x −1 −1

∗ ∗ y −1

∗ ∗ 1 ∂y








,

∆3 = ∆3(q
′) =








x q′ 1 1

1 ∂x 1 1

0 0 y 1

∗ 0 1 ∂y








, ∆4 = ∆4(q
′) =








x q′ −1 −1

1 ∂x −1 −1

0 0 y −1

∗ 0 1 ∂y








,

∆5(q
′, q′′, q) =








x q′ q q−1

1 ∂x q−1 q

0 0 y q′′

0 0 1 ∂y








, ∆6 = ∆6(q) =








x q q−1 q

1 ∂x q q−1

0 ∗ y q

0 0 1 ∂y








,

∆7 = ∆7(q) =








x q q−1 q

1 ∂x q q−1

∗ 0 y q−1

0 0 1 ∂y








, ∆8 = ∆8(q) =








x q q q−1

1 ∂x q−1 q

0 ∗ y q−1

0 0 1 ∂y








.

Now we check, whether ∆i(1, . . . , 1) = A. Using the encoding it turns to

be especially simple — all the G–quantizations of A can be represented by

32 1. FROM NDC TOWARDS G–ALGEBRAS

the ∆5(q
′, q′′, q), since, substituting everywhere the free parameter ∗ with

0, we have

∆1 = ∆5(1, 1, 1), ∆3 = ∆5(q
′, 1, 1), ∆6 = ∆5(q, q, q

−1),

∆7 = ∆5(q, q
−1, q−1), ∆8 = ∆5(q, q

−1, q).

If we substitute ∗ with a unit, the only G–quantization of A is ∆5(q
′, q′′, q).

Note, that in any case ∆2 and ∆4 are not G–quantizations. We could have

avoided them by restricting cij to values in K+.

It’s interesting to see how this classification reflects some of classical

algebras related to A2. Recall the encodings of algebras:

A1 ∼
(

x 1

1 ∂x

)

, A1(q) ∼
(

x q

1 ∂x

)

Then it’s easy to see that

• A2 = A1 ⊗K A1 is of the type ∆1,

• A1(q
′) ⊗K(q′) A1 is of the type ∆3,

• A1(q
′) ⊗K(q′,q′′) A1(q

′′) is of the type ∆5(q
′, q′′, 1).

What happens to ∆3, ∆6, ∆7, ∆8, if we substitute the free parameter

with some unit? They are not G–quantizations anymore, but still interesting

G–algebras, like ∆7 where ∗ is replaced with 1: we get an algebra with ∂x, ∂y

acting as classical differentials on x, y (which generate A1(q
−1) = K〈x, y |

yx = q−1xy + 1〉).
In order to go back to the classical PBW basis {xn1yn2∂n3

x ∂n4
y } it is

enough just to change our encoding, permuting the corresponding entries:








x q′ q q−1

1 ∂x q−1 q

0 0 y q′′

0 0 1 ∂y








−→








x q q′ q−1

0 y q q′′

1 0 ∂x q

0 1 0 ∂y








The G–quantization of the type ∆ := ∆5 can be generalized for higher

Weyl algebras.

Theorem 7.3. Consider An = K〈x1, . . . , xn, ∂x1 , . . . , ∂xn
| ∂xi

xi =

xi∂xi
+ 1〉. Given n ”single” parameters p1, . . . , pn and m = 1

2
n(n − 1)

”block” parameters q1, . . . , qm, then there exists a m + n–parameter G–

quantization ∆n(p, q) which has the following form in the compact encoding:

7. APPLICATIONS OF NON–DEGENERACY CONDITIONS 33






















x1 p1 q1 q−1
1 qi q−1

i

1 ∂x1
q−1
1 q1 q−1

i qi

0 0 x2 p2
...

...

0 0 1 ∂x2
.

...
...

· · · · · · · · ·
0 0 0 0 qm q−1

m

0 0 0 0 q−1
m qm

0 0 0 0 xn pn

0 0 0 0 1 ∂xn






















We count in such a way that in the matrix above i = 1
2
(n− 1)(n− 2) +

1, n ≥ 2.

This deformation has the following properties:

(1) ∀n ≥ 1 ∆n(p, q) is a simple Noetherian domain with the PBW

basis

{xα1
1 ∂αn+1

x1
. . . xαn

n ∂α2n
xn

| α ∈ N2n},

which can be easily rewritten as the classical PBW basis.

(2) Let 1 ≤ s < m and ν(k) := 1
2
k(k − 1).

Define the index set

I =
m−s−1⊕

t=0

It, where It = {ν(s+t)+1, . . . , ν(s+t+1)−t} ∀ 0 ≤ t ≤ m−s−1.

Set q′ := {qi | i ∈ I} and q′′ := {qi | ν(s + 1) + 1 ≤ i ≤ m} \ q′.

Then, if q′ = 1, we have

∆n(p, q) = ∆s(p1, . . . , ps; q1, . . . , qν(s)) ⊗K(p,q\q′) ∆m−s(ps+1, . . . , pn; q′′).

In particular,

q′ := (qi, . . . , qm) = 1 ⇒ ∆n(p, q) = ∆n−1(p \ pn, q \ q′) ⊗K(p) A1(pn),

q = 1 ⇒ ∆n(p, q) = A1(p1) ⊗K(p) · · · ⊗K(p) A1(pn),

q = 1, p = 1 ⇒ ∆n(p, q) = An =
n⊗

i=1

A1.

Proof. We have to show that ∆ is a G–algebra. It becomes clear from

the definition we have to show only that the non–degeneracy conditions

vanish. We do it by induction on n. ∆1(p1) is a q–Weyl algebra A1(p1), and

the theorem is obviously true for it. Now assume that ∆n−1 is a G–algebra.

34 1. FROM NDC TOWARDS G–ALGEBRAS

We construct ∆n from ∆n−1 with a single parameter pn and n − 1 block

parameters qi, . . . , qm. We have to show that the following equalities hold:

∂xn
∗ (yk ∗ yl) − (∂xn

∗ yk) ∗ yl = 0, xn ∗ (yk ∗ yl) − (xn ∗ yk) ∗ yl = 0,

∂xn
∗ (xn ∗ yk) − (∂xn

∗ xn) ∗ yk = 0.

where (yk, yl) are pairs of generators of ∆n−1 with yk > yl and ∗ is the

multiplication on ∆. In fact it suffices to show that ∀1 ≤ k < n

∂xn
∗ (∂xk

∗ xk) − (∂xn
∗ ∂xk

) ∗ xk = 0,

xn ∗ (∂xk
∗ xk) − (xn ∗ ∂xk

) ∗ xk = 0,

∂xn
∗ (xn ∗ xk) − (∂xn

∗ xn) ∗ xk = 0,

∂xn
∗ (xn ∗ ∂xk

) − (∂xn
∗ xn) ∗ ∂xk

= 0.

Let us prove the first equality (the other will follow analogously). Denote

by R the polynomial pkxk∂xk
∂xn

+ ∂xn
. Then

∂xn
∗ (∂xk

∗ xk) = ∂xn
∗ (pkxk∂xk

+ 1) = pkq
−1
i+k−1xk∂xn

∂xk
+ ∂xn

= R,

(∂xn
∗ ∂xk

) ∗ xk = q−1
i+k−1∂xk

(∂xn
∗ xk) = qi+k−1∂xk

q−1
i+k−1xk∂xn

= R,

where i = 1
2
(n − 1)(n − 2) + 1. The claim follows.

The properties of ∆ one can read directly from the encoding we use.

¤

7.2. Quadratic Algebras in 3 Variables.

Consider a class of G–algebras in n variables which relations are homo-

geneous of degree 2. We call these algebras quadratic G–algebras. Let us

have a look at the case when n = 3.

Assume that the relations are given in terms of non–deformed commuta-

tors (i.e. cij = 1 ∀j > i). Let us fix an ordering, say, Dp (degree lexicograph-

ical ordering) with x > y > z. Then the relations of quadratic algebra A,

satisfying the ordering condition from the definition of G–algebras, should

be of the following form:

yx = xy + a1xz + a2y
2 + a3yz + ξ1z

2,

zx = xz + ξ2y
2 + a5yz + a6z

2,

zy = yz + a4z
2.

Computing the non–degeneracy conditions, we construct the ideal

I = 〈2a2a4 + a1a5 − a4a5, 2a2a
2
4 − a2

4a5 + a1a6 + a3a4〉.

7. APPLICATIONS OF NON–DEGENERACY CONDITIONS 35

We see that the non–degeneracy conditions do not depend on ξ1, ξ2 (this

fact motivates us to treat ξ1, ξ2 as generic parameters of a different na-

ture than the ai’s) so we are working further within the ring K[a1, . . . , a6].

Moreover, the ideal I is a radical ideal. Computing the primary decompo-

sition, we get two associated prime ideals I1 = 〈2a2a4 + a1a5 − a4a5, a1a
2
5 −

a3a5 + 2a2a6 − a5a6, a1a4a5 − a3a4 − a1a6〉 and I2 = 〈a1, a4〉, corresponding

to components V1 and V2 of the 4-dimensional variety V(I) = V1 ∪ V2.

Let us start with the component V2. Since a1 = a4 = 0 on it , consider

the subalgebra H = K〈y, z | zy = yz〉. In fact we may call the algebra A

”solvable”, since then [H, x] ∈ H, [A, A] = H and [[A,A], A] = 0. So, the

component V2 gives us the family of ”solvable” algebras, depending on six

arbitrary parameters a2, a3, a5, a6, ξ1, ξ2 having the following relations:

yx = xy + a2y
2 + a3yz + ξ1z

2, zx = xz + ξ2y
2 + a5yz + a6z

2, zy = yz.

Note that such solvable algebras admit a natural presentation as an Ore

extension K[y, z][x; Id, δ] with

δ = −(a2y
2 + a3yz + ξ1z

2) ∂
∂y

− (ξ2y
2 + a5yz + a6z

2) ∂
∂z

.

For the analysis of the rest of conditions, we use the decomposition

V(I) = V2 ∪ V1 = V2 ⊕ (V1 \ V2). On the latter semi–algebraic set the

parameters are algebraically dependent, so we can express, for example,

a2 =
1

2
(1 − a1

a4

)a5, a6 = a4(a5 −
a3

a1

).

We see, that the family of algebras, arising from V1 \ V2 depends on

two nonzero parameters (here a1, a4) and four arbitrary parameters (here

a3, a5, ξ1, ξ2). Moreover, for generic ξ1, ξ2 there are no solvable algebras in

this class. However, setting ξ2 = 0 and a5 = a3 = 0 implies that a2 = a6 = 0

and there is a family of algebras with relations

zx = xz, zy = yz + a4z
2, yx = xy + a1xz + ξ1z

2,

which are solvable algebras for the subalgebra H = K[x, z] (since then

[H, y] ∈ H, [A,A] = H and [[A,A], A] = 0) and can be realized as an Ore

extension K[x, z][y; Id, δ] with

δ = −a4z
2 ∂

∂y
+ (a1xz + ξ1z

2) ∂
∂z

.

In order to complete the list of quadratic G–algebras in 3 variables,

realizable as Ore extensions, we note, that taking H to be the proper

subalgebra, generated by x, y implies that a1 = a3 = 0 and ξ1 = 0.

Then H = K〈x, y | yx = xy + a2y
2〉 and A ∼= H[z; Id, δ] if additionally

a4 = a5 = a6 = 0, then δ = ξ2y
2 ∂

∂x
.

36 1. FROM NDC TOWARDS G–ALGEBRAS

This algebra belongs to algebras, associated with component V1 and

does exist (like the previous one) only for non–generic value of ξ (since ξ1

has to be zero).

Remark 7.4. We have divided quadratic G–algebras in 3 variables into

two distinct groups. The members of the first group are ”solvable” algebras,

where each algebra has a natural commutative subalgebra and is easily

realizable as an Ore extension.

The variables of algebras from the second group are mutually non–

commutative. Moreover, since by construction a1 6= 0, the relation of y

and x will always have a term a1xz, what makes the realization of such

an algebra as an Ore extension impossible. Note, that all these algebras

share the natural subalgebra S = K(a4)〈y, z | zy = yz + a4z
2〉, which is

not a ”solvable” algebra, too. The connection of a ”solvability” with the

genericity of parameters ξ1, ξ2 may have interesting consequences in further

investigations.

7.3. Witten’s Deformation of U(sl2).

E. Witten introduced and studied a 7–parameter deformation of the

universal enveloping algebra U(sl2). Witten’s deformation is a unital asso-

ciative algebra over a field K (which is assumed to be of characteristic 0),

depending on a 7–tuple of parameters ξ = (ξ1, . . . , ξ7). It is the algebra

K(ξ1, . . . , ξ7)〈x, y, z〉 subject to relations

xz − ξ1zx = ξ2x, zy − ξ3yz = ξ4y, yx − ξ5xy = ξ6z
2 + ξ7z.

The resulting algebra is denoted by W (ξ); in the sequel, we assume that

ξ1ξ3ξ5 6= 0. As an admissible ordering one can take Dp (degree lexicograph-

ical ordering) with x > y > z.

The structural analysis of W (ξ) was done in [8]. We are going to use

the non–degeneracy conditions to carry such an analysis on our own.

The only non–degeneracy condition equals (ξ3ξ6 − ξ1ξ6)z
3 + (ξ1ξ4ξ5 −

ξ2ξ3ξ5 + ξ2ξ5− ξ4ξ5)xy +(ξ1ξ4ξ6− ξ1ξ7− ξ2ξ3ξ6 + ξ3ξ7)z
2 +(ξ1ξ4ξ7− ξ2ξ3ξ7)z,

but we better write it in a factorized form,

((ξ3 − ξ1)z + ξ1ξ4 − ξ2ξ3)(ξ6z
2 + ξ7z) + ξ5(ξ1ξ4 − ξ2ξ3 + ξ2 − ξ4)xy.

So, W (ξ) is a G–algebra if and only if for all values of the parameters ξ

the polynomial above vanishes.

Let V1 ∈ A7
K

be the variety, corresponding to the radical ideal 〈ξ1 −
ξ3, ξ2 − ξ4〉. Denoting ξ1 = ξ3 =: q, we obtain the family of algebras

W1(ξ) : zx = q−1xz − q−1ξ2x, zy = qyz + ξ2y, yx = ξ5xy + ξ6z
2 + ξ7z,

7. APPLICATIONS OF NON–DEGENERACY CONDITIONS 37

depending on {q, ξ2, ξ5} ⊂ K∗ and {ξ6, ξ7} ⊂ K.

There is another interesting family of algebras, which are related to the

Witten’s deformation, namely conformal sl2–algebras. These algebras are

generated by x, y, z subject to 3–parameter relations

zx =
1

a
xz − 1

a
x, zy = ayz + y, yx = cxy + bz2 + z.

These algebras are G–algebras for any {a, c} ⊂ K∗ and b ∈ K.

We see, that W1(ξ) is isomorphic to the conformal sl2–algebra if and

only if ξ2ξ7 = 1. Then a = q, b = ξ6
ξ2
7

and c = ξ5.

The remaining possibilities are described by the semi–algebraic set

ξ4(ξ1 − 1) + ξ2(1 − ξ3) = 0, ξ6 = ξ7 = 0, ξ1 6= ξ3, ξ2 6= ξ4.

If ξ1 = 1, we have ξ2 = 0 and a family of algebras

W
(1)
2 (ξ) : zx = xz, zy = ξ3yz + ξ4y, yx = ξ5xy,

depending on {ξ3 6= 1, ξ4, ξ5} ⊂ K∗.

Similarly, ξ3 = 1 =⇒ ξ4 = 0 and there are algebras

W
(3)
2 (ξ) : zx =

1

ξ1

xz − ξ2

ξ1

x, zy = yz, yx = ξ5xy,

depending on {ξ1 6= 1, ξ2, ξ5} ⊂ K∗.

We see, that W
(1)
2 (ξ) ∼= W

(3)
2 (ξ) in a natural way.

Algebras of the type W2 contain both commutative subalgebra in 2

variables and a subalgebra, isomorphic to a quantum plane. They can be

realized as polynomial Ore extensions over these subalgebras. It cab be, for

instance, an Ore extension of a quantum plane K〈x, y | yx = ξ5xy〉 by z

with two parameters.

In the last two cases (ξ1 6= 1 6= ξ3), we have families

W
(2)
3 (ξ) : zx =

1

ξ1

xz − ξ2

ξ1

x, zy = ξ3yz + ξ2
(1 − ξ3)

(1 − ξ1)
y, yx = ξ5xy,

depending on {ξ1, ξ3 | ξ1 6= ξ3} ⊂ K∗ \ {1}, ξ5 ∈ K∗ and ξ2 ∈ K and

W
(4)
3 (ξ) : zx =

1

ξ1

xz − ξ4

ξ1

(1 − ξ1)

(1 − ξ3)
x, zy = ξ3yz + ξ4y, yx = ξ5xy,

for {ξ1, ξ3 | ξ1 6= ξ3} ⊂ K∗ \ {1}, ξ5 ∈ K∗ and ξ4 ∈ K.

Again, we observe a natural isomorphism W
(2)
3

∼= W
(4)
3 .

As we can see, we are easily able to give a detailed description of dif-

ferent classes of Witten’s deformation, even more detailed than in [8]. The

conditions on parameters are more natural as well as the division in the

subclasses.

38 1. FROM NDC TOWARDS G–ALGEBRAS

Remark 7.5. An important conclusion should be drawn from the analy-

sis above: Witten’s original construction involved three independent quan-

tum parameters {ξ1, ξ3, ξ5}, which induce three pairwise different

q–commutators, namely

[x, z]ξ1 = ξ2x, [z, y]ξ3 = ξ4y, [y, x]ξ5 = ξ6z
2 + ξ7z.

Here, we denote [x, y]q := xy − qyx, which moreover satisfies the property

[x, y]q = −[y, x]q−1 . We say then, that the q–commutators [·, ·]q and [·, ·]q−1

are equivalent.

In the analysis above we have shown, that the only possible G–algebra

with all three q–commutators being nonzero is of the form

W1(ξ) : [x, z]q = ξ2x, [z, y]q = ξ2y, [y, x]ξ5 = ξ6z
2 + ξ7z,

where {q, ξ2, ξ5} ⊂ K∗ and {ξ6, ξ7} ⊂ K. But we see, that in this case, at

most two different q–commutators (in our case, [·, ·]ξ5 and [·, ·]q) are indeed

possible. Three different commutators appear only in algebras, where at

least two variables constitute a quasi–commutative subalgebra.

7.4. Diffusion Algebras.

A diffusion algebra ([40]) is generated by {Di, 1 ≤ i ≤ n} over a field K
subject to the relations:

cijDiDj − cjiDjDi = xjDi − xiDj, ∀i < j

where cij ≥ 0 and xi are coefficients from the field (for easier comparison,

we use the notations of original article).

We will assume that ∀i, j cij > 0 and therefore concentrate our attention

on revealing the G–algebras among diffusion algebras (the authors of the

article [40] studied all the possible diffusion algebras including degenerate

ones).

For the diffusion algebras we compute the non–degeneracy conditions

for a fixed triple (i, j, k) in a similar way as we did for G–algebras. After

computing the primary decomposition, we get eight components and we

do the classification of algebras, following the approach from [40]. Each

component of the primary decomposition corresponds to a different form of

the algebra. One component corresponds to type A, three to type B, three

to type C and one component to type D.

A type : every xm is nonzero. Then there are relations

cjk = cki = cik = cji = cij = ckj, that is, we obtain universal

7. APPLICATIONS OF NON–DEGENERACY CONDITIONS 39

enveloping algebras of Lie algebras with relations

[Di, Dj] =
xj

cij

Di −
xi

cij

Dj.

B type : one of xm is equal to zero. In the case xi = 0, we have

cki = cij, cik − cki = cjk − ckj = cji − cij =: c

And the relations are the following:

cijDiDj − (cij + c)DjDi = xjDi,

cjkDjDk − (cjk − c)DkDj = xkDj − xjDk,

(cij + c)DiDk − cijDkDi = xkDi.

The cases xj = 0 and xk = 0 are handled in an analogous way.

C type : one of xm is nonzero. Let xj = 0, xk = 0.

Then cij − cji = cik − cki =: c, and there are relations

cijDiDj − (cij − c)DjDi = −xiDj,

cjkDjDk − ckjDkDj = 0,

cikDiDk − (cik − c)DkDi = −xiDk.

The cases xi = xk = 0 and xi = xj = 0 are done analogously.

D type : every xm is equal to zero. There are no additional constraints

on cij and it is not surprising, since this type consists of quasi–

commutative algebras with relations

DlDm =
cml

clm

DmDl, (l, m) ∈ {(i, j), (i, k), (j, k)}

As we can see, we obtained the same classification of G–algebras among

the diffusion algebras as in [40]. The advantage of our approach lies in the

automation of the process, in particular, we can consider more variables and

achieve the classification by using the computer algebra methods only. Thus,

our approach is limited only by the overall performance of the computing

facilities.

7.5. Completion of Relations.

When speaking on algebras, given by generators and relations, nonzero

non–degeneracy conditions (if there are some) complete the set of relations

for algebras, close to G–algebras to the full set of relations (by means of

Gröbner bases in free algebras). We illustrate the use of non–degeneracy

conditions in such situation.

40 1. FROM NDC TOWARDS G–ALGEBRAS

The concrete application, we are going to describe, arisen from the in-

vestigation of an analogue to the Hall–Ringel algebra for representations of

partially ordered sets, [47] and was asked to solve by Prof. Yu. Drozd.

We start with three variables {e0, e1, e2} and some relations between

them. Namely, the pairs (e0, e1) and (e0, e2), satisfying Serre’s relations:

[ei, [ei, ej]] = e2
i ej − 2eiejei + eje

2
i = 0 for each pair (ei, ej).

Introducing new variables by defining [e0, e1] = e01 and [e0, e2] = e02, we

obtain two non–degenerate algebras:

E01 := K〈e0, e1, e01 | e1e0 = e0e1 − e01, e01e0 = e0e01, e01e1 = e1e01〉,

E02 := K〈e0, e2, e02 | e2e0 = e0e2 − e02, e02e0 = e0e02, e02e2 = e2e02〉.
The third pair (e1, e2) satisfies a kind of ”negative” Serre’s relation:

{e1, {e1, e2}} = e2
1e2 + 2e1e2e1 + e2e

2
1 = 0, where {a, b} = ab + ba.

We define a new variable {e1, e2} = e12 and obtain a non–degenerate algebra

E12 := K〈e1, e2, e12 | e2e1 = −e1e2 + e12, e12e1 = −e1e12, e12e2 = −e2e12〉.

Problem: Find all the G–algebras, generated by the set of variables

{e0, e1, e2, e01, e02, e12}, satisfying the relations of E01, E02, E12. In other

words, given the incomplete set of relations, examine its possible non–

degenerate G–completions.

Here is the matrix encoding of the starting situation, where ∗ denotes

yet undetermined values:












e0 1 1 1 1 ∗
−e01 e1 −1 1 ∗ −1

−e02 e12 e2 ∗ 1 −1

0 0 ∗ e01 ∗ ∗
0 ∗ 0 ∗ e02 ∗
∗ 0 0 ∗ ∗ e12













We are computing all the non–degeneracy conditions between the triples

of ei and extract new relations from them.

(1) (e0, e1, e2, ·, ·, ·): {e01, e2} + {e02, e1} = [e0, e12].

We introduce new variables {e01, e2} := d and {e02, e1} := q.

Hence there are following new relations: e01e2 = −e2e01 + d,

e02e1 = −e1e02 + q and e12e0 = e0e12 − (d + q).

(2) (e0, e1, ·, e01, ·, ·): 0 from the construction.

(3) (e0, e1, ·, ·, e02, ·): (new) e02e01 = −e01e02 + [e0, q].

(4) (e0, e1, ·, ·, ·, e12): (tautological) e02e01 = −e01e02 + {e1, d + q}.
Together with 3) it gives us (new) [e0, q] = {e1, d + q}.

7. APPLICATIONS OF NON–DEGENERACY CONDITIONS 41

(5) (e0, ·, e2, e01, ·, ·): (tautological) e02e01 = −e01e02 + [e0, d]. Com-

paring with 3), we have (new) [e0, d − q] = 0.

(6) (e0, ·, e2, ·, e02, ·): 0 from the construction.

(7) (e0, ·, e2, ·, ·, e12): (new) e12e02 = −e02e12 − {e2, d + q}.
(8) (·, e1, e2, e01, ·, ·): (new) e12e01 = −e01e12 + {e1, d}.
(9) (·, e1, e2, ·, e02, ·): (tautological) e12e02 = −e02e12 + {e2, q}. With

the 7) we have (new) {e2, d + 2q} = 0.

(10) (·, e1, e2, ·, ·, e12): 0 from the construction.

(11) (e0, ·, ·, e01, e02, ·): (new) [e0, [e0, d]] = 0 (relation of Serre’s type).

Note, that it follows also from 5), since [e01e02, e0] = 0.

(12) (e0, ·, ·, e01, ·, e12): (new) {e01, d + q} = [e0, {e1, d}].
(13) (e0, ·, ·, ·, e02, e12): (new) {e02, d + q} = [e0, {e2, q}].
(14) (·, e1, ·, e01, e02, ·): (new) {e01, q} = {e1, [e0, q]} (together with 12

produces tautology).

(15) (·, e1, ·, e01, ·, e12): (new) {e1, {e1, d}} = 0.

(16) (·, e1, ·, ·, e02, e12): (new) −[e12, q] = [e1, {e2, q}].
(17) (·, ·, e2, e01, e02, ·): (new) {e02, d} = {e2, [e0, d]} (together with 13

produces tautology).

(18) (·, ·, e2, e01, ·, e12): (new) −[e12, d] = [e2, {e1, d}].
(19) (·, ·, e2, ·, e02, e12): (new) {e2, {e2, q}} = 0.

(20) (·, ·, ·, e01, e02, e12): (new)

[e01, {e2, q}] + [e12, [e0, d]] + [e02, {e1, d}] = 0.

We see, that there are many relations between the generators resembling

G–algebra relations and some more. In fact, the following lemma holds.

Lemma 7.6. The only G–algebras in 6 variables, satisfying the relations

of E01, E02, E12 are the algebras {Ek, k ∈ K} with the encoding













e0 1 1 1 1 1

−e01 e1 −1 1 −1 −1

−e02 e12 e2 −1 1 −1

0 0 k · e12 e01 −1 −1

0 −k · e12 0 0 e02 −1

0 0 0 0 0 e12













42 1. FROM NDC TOWARDS G–ALGEBRAS

Proof. In fact, after computing all the non–degeneracy conditions, we

have the algebra with the relations, encoded in the following matrix












e0 1 1 1 1 1

−e01 e1 −1 1 −1 −1

−e02 e12 e2 −1 1 −1

0 0 d e01 −1 −1

0 q 0 [e0, d] e02 −1

−(d + q) 0 0 {e1, d} {e2, q} e12













And there are even more relations, which d, q should fulfill, namely

• [e0, [e0, d]] = 0, [e0, d] = [e0, q],

• [e0, q] = {e1, d + q}, {e2, d + 2q} = 0,

• {e01, d + q} = [e0, {e1, d}], {e02, d + q} = [e0, {e2, q}],
• {e01, q} = {e1, [e0, q]}, {e02, d} = {e2, [e0, d]},
• {e1, {e1, d}} = 0, {e2, {e2, q}} = 0,

• [e12, q] = −[e1, {e2, q}], [e12, d] = −[e2, {e1, d}],
• [e01, {e2, q}] + [e12, [e0, d]] + [e02, {e1, d}] = 0.

First of all, we show that d = 0 ⇔ q = 0, hence d, q are dependent

in a special way. In particular, there is no sense introducing them as new

variables.

Let d = 0. Then [e0, q] = {e1, q} = {e2, q} = {e01, q} = {e02, q} = 0

and [e12, q] = 0, what could be true if and only if q = 0. The implication

q = 0 ⇒ d = 0 holds similarly. Note, that for d = q = 0 we obtain a

G–algebra.

Now let d 6= 0. Then {e2, d + 2q} = 0 ⇒ d + 2q = ke12 for some k ∈ K.

Then [e0, d + 2q] = 3[e0, d] = 3k[e0, e12] = 3k(d + q). By Serre’s relation,

[e0, [e0, d]] = 0 implies [e0, [e0, d + 2q]] = 0, since [e0, d] = [e0, q]. On the

other hand, [e0, [e0, d + 2q]] = 3k[e0, d + q] = 6k[e0, d]. Hence, either k = 0

or [e0, d] = 0 = [e0, q].

If k = 0, d = −2q and [e12, q] = 0. This could only happen if q = te12

what contradicts other consequences like [e0, q] = 0, {e1, q} = 0.

Now, d 6= 0, d 6= −2q and [e0, d] = 0 = [e0, q]. Then we have {e1, d+q} =

0, what is satisfied only by d+q = te12 for some t ∈ K. Hence, q = (k−t)e12

and 0 = [e0, q] = (k − t)[e0, e12] = (k − t)(d + q). So, we have either k = t

and q = 0 (a contradiction to the assumption) or d + q = 0.

With the latter, we have [e0, d] = {e1, d} = {e2, d} = {e01, d} =

= {e02, d} = 0 and [e12, d] = 0. The only possible value of d, satisfying these

is d = ke12 (since {e0, e12} = −(d + q) = 0). ¤

Remark 7.7. One of the possible approaches to problems like the de-

scribed one is computing the Gröbner basis of the ideal, generated by the

8. CONCLUSION AND FUTURE WORK 43

initial set of relations, in a free algebra. However, the universality of this

recipe turns to be inefficient in some concrete situations. In our example,

without introducing ”shortcuts” for d and q we would obtain a basis of infi-

nite length. Even our definition of d and q as skew–commutators has been

motivated by the condensed form of the non–degeneracy condition of the

first explored triple.

These observations show that the full automation of such procedures

is, unfortunately, almost impossible. On the other hand, combining both

theoretical knowledge and human intuition together with careful and fast

implementation produces such interesting and somehow unexpected results

like the previous lemma.

8. Conclusion and Future Work

We have shown the nature of non–degeneracy conditions and their in-

terplay with the PBW basis property in a wide class of algebras. By com-

bining both non–commutative and commutative computational methods we

are able to classify families of parametric algebras having PBW basis and

being Noetherian domains.

We have seen how the non–degeneracy conditions can help us to ”nor-

malize” the set of relations of a non–commutative algebra: minimize it like

in 2.1 or enlarge by completing in 7.5.

We used the non–degeneracy conditions for revealing realizability of

parametric algebras as Ore extensions in 7.2 and 7.3.

It turns out to be very useful to perform computations like before, that

is, we need combined (i.e. both commutative and non–commutative) appli-

cations of Gröbner bases at the same time. As far as we know, our system

Singular:Plural is the only modern system allowing the user to do such

combined computations on a substantially large class of non–commutative

algebras.

One of the most interesting perspectives is the investigation of the role of

the non–degeneracy conditions for quantum Lie algebras, studied by Delius

([22]). A generalization of Jacobi identities for such algebras is needed

but is not discovered yet. In the classical case of Lie algebras, one utilizes

properties of the Lie bracket a lot. The problem in the quantum case, which

has been already partially discussed in Example 7.3 is the following: one

has to introduce several q–commutators of the form [a, b]cij
:= ab− cijba for

cij ∈ K, which are connected to each other in some way (we have shown

a variation of this principle in Remark 7.5). However, this treatment is

44 1. FROM NDC TOWARDS G–ALGEBRAS

not really uniform and causes several difficulties. Nevertheless it should be

investigated further.

Concerning algebras of linear operators, described with plenty of exam-

ples in Section 6, we should note that despite the impression one gets from

the impressive list of operators leading to G–algebras, there are important

linear operators, which do not behave so well.

For example, the inverse to the partial differentiation ∂x can be only one–

sided. That is, the operator of indefinite partial integration
∫

x
: C → C,

∫

x
(g) =

∫
g dx is a right inverse to ∂x, since ∀g ∈ C, (∂x ◦

∫

x
)(g) =

∂
∂x

(
∫

g dx) = g. But it is not a left inverse, since
∫

∂g
∂x

dx = g + c for

c ∈ C such, that ∂c
∂x

= 0, hence ∂x ◦
∫

x
=

∫

x
◦∂x + c for indefinite c. Since

ker ∂x is a subalgebra of C, we cannot even restrict ourself to an algebra

smaller than C and where c is identically zero. However, the authors of [68]

propose several possibilities to deal with such operator equations in some

specified (but still general enough) setting. They end up with an algebra,

which is not a G–algebra but still enjoys some nice properties. A further

investigation of operators, which lead to operator G–algebras is needed and

will be developed further.

CHAPTER 2

Gröbner bases in G–algebras

”Aren’t you acquainted with the red–faced

person with three eyes and a necklace from

skulls?” – he asked, – ”A man, who dances

between fires? Eh? A tall one, who likes to

brandish with two hooks?”

”Perhaps I do” – I anwered politely, – ”but I

cannot get who’s the person you’re talking

about. You know, the description is too

general. So many fit in it”.

Viktor Pelevin, Chapayev and Void

1. Left Gröbner Bases

From now on we mean by a module a left submodule of a free module1

of a finite rank, if not additionally specified. In this section we present

Gröbner bases theory for modules in G–algebras.

We have shown that G–algebras are close to commutative, in the sense

that on one hand they have similar properties as commutative polynomial

algebras (which are G–algebras too). On the other hand G–algebras clearly

constitute a generalization of commutative polynomials algebras. We ex-

ploit this similarity by dividing the properties and algorithms in G–algebras

into two groups: the first one, which could be called native consists of meth-

ods and properties whose generalization behave in the same way as in the

classical commutative case. The objects belonging to the second group de-

pend too much on the commutativity. While working with native objects,

we will try to keep the notations and arguments as close to the original

commutative theory as possible, taking the book [35] as our basis. Not

only the way we go through the theory follows this book: the implementa-

tion of the computer algebra system Singular:Plural, made on the top

of the commutative system Singular, profited a lot from using the same

language and framework for both the non–commutative and commutative

1Here module means a unitary module over some K–algebra.

45

46 2. GRÖBNER BASES IN G–ALGEBRAS

cases of the theory. We reported on aspects of the implementation in the ar-

ticle [53]; we make computational remarks in the text which follows. More

questions related to our implementation are discussed in the Chapter 4.

Let A = K〈x1, . . . , xn | {xjxi = cijxixj + dij}1≤i<j≤n〉 be a G–algebra

over a field K.

Definition 1.1. Let m1 = xα, m2 = xβ be monomials in A. We say

that m1 divides m2 and denote it by m1|m2, if αi ≤ βi ∀i = 1 . . . n.

When A is commutative, there is p ∈ Mon(A) such that m2 = p · m1.

Otherwise, it means that m2 is left reducible by m1, i.e. there exist c ∈
K\{0}, p ∈ Mon(A) and r ∈ A such that lm(r) < m1 and m2 = c ·p ·m1+r.

Example 1.2. Let us take two exponent vectors α = (1, 1) and β =

(1, 2) from N2. Then in any G–algebra in two generators, say, {x, ∂}, we

have m1 := x∂ | x∂2 =: m2, but the division of one by another gives quite

different answers in different algebras.

In the commutative polynomial ring R = K[x, ∂], we have m2 = ∂m1.

In the first quantized Weyl algebra Aq = K(q)〈x, ∂ | ∂x = q2x∂ + 1〉, we

obtain m2 = q−2 · ∂ · m1 − q−2∂.

We extend the notion of a monomial ordering to the free left module

Ar = Ae1 ⊕ . . . ⊕ Aer, where ei = (0, . . . , 1i, . . . , 0). Since any ei commutes

with any element of A, Ar is indeed a free bimodule. Denote by Nr :=

{1, . . . , r} the set of components.

We call xαei ∈ Ar a monomial (involving component i). So,

Mon(Ar) := {xαei | α ∈ Nn, 1 ≤ i ≤ r} ∼= Nr × Nn.

It is quite natural to view the component of a free module as the 0’s

component of the exponent vector, hence we present a monomial xαei by

the vector ᾱ := (i, α1, . . . , αn) ∈ Nr × Nn.

Definition 1.3. Let < be a monomial ordering on A. A monomial

(module) ordering on Ar is a total ordering <m on the set of monomials

Mon(Ar), satisfying for all α, β, γ ∈ Nn, 1 ≤ i, j ≤ r

(1) xαei <m xβej ⇒ xα+γei <m xβ+γej,

(2) xα < xβ ⇒ xαei <m xβei.

In the language of exponents, both conditions mean nothing but

(1) (i, α) ≺m (j, β) ⇒ (i, α + γ) ≺m (j, β + γ),

(2) α ≺ β ⇒ (i, α) ≺m (i, β).

Hence, the action of Nn on Nr×Nn, γ : (i, α) 7→ (i, α+γ) makes Nr×Nn

an ideal in the monoid Nn (or, shortly, a Nn–monoideal) with respect to

addition.

1. LEFT GRÖBNER BASES 47

Since any f ∈ Ar r {0} can be written uniquely as f = cαxαei + g with

cα ∈ K∗ and xβej < xαei for any nonzero term dxβej of g, we define

lm(f) = xαei ∈ Mon(Ar), the leading monomial of f ,

lc(f) = cα ∈ K∗, the leading coefficient of f ,

lcomp(f) = i ∈ Nr, the leading component of f ,

le(f) = (i, α) ∈ Nr × Nn, the leading exponent of f .

Remark 1.4. Every monomial ordering < on A can be extended to

the monomial module ordering in at least two following ways. We can order

components either in ascending or in descending way, denoting it by symbols

”C” and ”c” respectively. Below, we are using the ascending ordering ”C”,

where e1 < e2 < Then,

<m= (C, <) is a position over term (POT) ordering, if

xαei <POT xβej
def⇐⇒ i < j or, if i = j, xα < xβ.

<m= (<,C) is a term over position (TOP) ordering, if

xαei <TOP xβej
def⇐⇒ xα < xβ or, if α = β, i < j.

Definition 1.5. Let S be any subset of Ar.

• We define L(S) ⊆ Nr ×Nn to be a Nn–monoideal, generated by the

leading exponents of elements of S, that is

L(S) = Nn〈(i, α) | ∃s ∈ S, le(s) = (i, α)〉.
We call L(S) a monoideal of leading exponents. By Dixon’s

Lemma, L(S) is finitely generated, i.e. there exist (i1, α1), . . .,

(im, αm) ∈ Nr × Nn, such that L(S) = Nn〈(i1, α1), . . . , (im, αm)〉.
• The span of leading monomials of S is defined to be the K–

vector space, spanned by the set {xαei | (i, α) ∈ L(S)} ⊆ Mon(Ar).

We denote it by L(S) := K〈{xαei | (i, α) ∈ L(S)}〉 ⊆ Ar.

Definition 1.6. Let < be a monomial ordering on Ar, I ⊂ Ar a left

submodule and G ⊂ I a finite subset.

G is called a left Gröbner basis of I if and only if for any f ∈ I r {0}
there exists g ∈ G satisfying lm(g) | lm(f).

Remark 1.7. In general, for S ⊂ Ar, L(S) is just a K–vector subspace

of A. Using the filtration by the monomial ordering on Ar, we see that

indeed, L(S) can be considered as a K–subspace of Gr<(A). The set Λ =

{(i, α) | ∃f ∈ S : lm(f) = xαei} ⊂ Nr × Nn is equal to L(S). Hence,

Gr<(S) =
⊕

(i,α)∈Λ

Kxαei = L(S).

It follows that L(S) is a Gr<(A)–module.

48 2. GRÖBNER BASES IN G–ALGEBRAS

Hence, if A ∼= Gr<(A) as K–algebras, L(S) is an A–module. It means

that for commutative and quasi–commutative algebras, we can define L(S)

to be L′(S) = A〈{lm(f) | f ∈ S}〉 and call it a leading submodule of S

(clearly, L(S) = L′(S) as K-vector spaces). Then, a finite set S is a Gröbner

basis of A〈S〉 if and only if L′(S) = L′(A〈S〉).
In order to see that the definition of Gröbner basis via leading submod-

ules cannot be transfered directly to the general non–commutative case,

consider the following example.

Take the Weyl algebra A = 〈x, ∂|∂x = x∂ + 1〉, the set S = {x∂ + 1, x}
and the ideal I = A〈S〉. I is a proper left ideal, equal to A〈x〉 with {x} a

reduced Gröbner basis of I. Hence, the K–vector spaces L′(I) and A〈x〉 are

equal, but L′(S) = A〈{x∂, x}〉 = A · 1.

After the remark, we can give an alternative definition for Gröbner basis

in terms of L(S): under assumptions of the Definition 1.6, G is called a left

Gröbner basis of I if and only if L(G) = L(I) (as vector spaces). The

latter is equivalent to the equality of Nn–monoideals L(G) and L(I). Yet

another definition is given in Remark 1.10.

A subset S ⊂ Ar is called minimal, if 0 6∈ S and lm(s) 6∈ L(S r{s}) for

all s ∈ S. We say that f ∈ Ar is (completely) reduced with respect

to S ⊂ Ar, if no monomial of f is contained in L(S). A subset S ⊂ Ar is

called reduced, if 0 6∈ S, and if for each s ∈ S, s is reduced with respect

to S r {s}, and, moreover, s − lc(s) lm(s) is reduced with respect to S. It

means that for each s ∈ S ⊂ Ar, lm(s) does not divide any monomial of

every element of S except itself.

Definition 1.8. Denote by G the set of all finite ordered subsets of Ar.

(1) A map NF : Ar × G → Ar, (f,G) 7→ NF(f |G),

is called a (left) normal form on Ar if, for all f ∈ Ar, G ∈ G,

(i) NF(0 | G) = 0,

(ii) NF(f |G) 6= 0 ⇒ lm
(
NF(f |G)

)
6∈ L(G),

(iii) f − NF(f |G) ∈ A〈G〉.
NF is called a reduced normal form if NF(f |G) is reduced

with respect to G.

(2) Let G = {g1, . . . , gs} ∈ G. A representation of f ∈ A〈G〉,

f =
s∑

i=1

aigi, ai ∈ A,

satisfying lm(f) ≥ lm(aigi) for all i = 1 . . . s such that aigi 6= 0 is

called a standard left representation of f (with respect to G).

1. LEFT GRÖBNER BASES 49

Lemma 1.9. Let I ⊂ Ar be a submodule, G ⊂ I be a left Gröbner basis

of I and NF(·|G) be a left normal form on Ar with respect to G.

(1) For any f ∈ Ar we have f ∈ I ⇐⇒ NF(f | G) = 0.

(2) If J ⊂ Ar is a submodule with I ⊂ J , then L(I) = L(J) implies

I = J . In particular, G generates I as a left A–module.

(3) If NF(·|G) is a reduced normal form, then it is unique.

Proof. (1) If NF(f |G) = 0 then f ∈ I. If NF(f |G) 6= 0, then

lm
(
NF(f | G)

)
6∈ L(G) = L(I), hence NF(f | G) 6∈ I, which

implies f 6∈ I.

(2) Let f ∈ J and assume that NF(f |G) 6= 0. Then lm
(
NF(f |G)

)
6∈

L(G) = L(I) = L(J), which is a contradiction since NF(f |G) ∈ J .

Hence, f ∈ I by (1).

(3) Let f ∈ Ar and assume that h, h′ are two reduced normal forms

of f with respect to G. Then h − h′ ∈ A〈G〉 = I. If h − h′ 6= 0,

then lm(h − h′) ∈ L(I) = L(G), which contradicts the fact that

lm(h − h′) is a monomial of either h or h′.

¤

Remark 1.10. In view of the property 2), we can give another charac-

terization of Gröbner bases. Namely, with the assumptions of the Def. 1.6,

a finite subset G is called a left Gröbner basis of I ⊂ Ar if and only if

Nn〈L(G)〉 = L
(
I
)

= L
(

A〈G〉
)
.

Definition 1.11. Let xα and xβ be two monomials from A. For ∀1 ≤
i ≤ n, set µi = max(αi, βi) and µ := µ(α, β) = (µ1, . . . , µn). Then the

pseudo-lcm of xα and xβ is defined to be lcm(xα, xβ) := xµ(α,β).

It enjoys a nice property: xα | xµ(α,β) and xβ | xµ(α,β).

Why we use the name pseudo–lcm? Using the latter property, let us

define a function f : K → A, f(c) = xµ(α,β)−α · xα − c · xµ(α,β)−β · xβ for

c ∈ K.

Let c0 := lc(xµ(α,β)−αxβ)

lc(xµ(α,β)−βxα)
. Then, we see that c0 is the unique number, such

that lm(f(c0)) < xµ (otherwise, for c 6= c0, lm(f(c)) = xµ).

In the commutative case, c0 = 1, f(c0) = 0 and hence xµ(α,β) is regarded

as the generalization of the classical lcm function.

However, in the non–commutative case f(c0) 6= 0 in general, but we will

make an essential use of the property lm(f(c0)) < xµ.

If A is a G–algebra of Lie type, c0 = 1 but, in general, f(c0) 6= 0.

If A is quasi–commutative, f(c0) = 0 but, in general, c0 6= 1.

50 2. GRÖBNER BASES IN G–ALGEBRAS

Definition 1.12. Let f, g ∈ Ar r {0} with lm(f) = xαei and lm(g) =

xβej, respectively. Set γ := µ(α, β) and define the (left) s–polynomial of

f and g to be

LeftSpoly(f, g) :=







xγ−αf − lc(xγ−αf)

lc(xγ−βg)
xγ−βg, if i = j,

0, if i 6= j.

Of course, LeftSpoly(f, g) ∈ Ar is a polynomial if and only if r = 1 and

f, g ∈ A, and it is a vector of polynomials otherwise. We will also denote

LeftSpoly by spoly below.

Remark 1.13. It is easy to see that lm(spoly(f, g)) < lm(f · g) holds.

If lm(g) | lm(f), say lm(g) = xβei, lm(f) = xαei, then the s–polynomial is

especially simple,

spoly(f, g) = f − lc(f)

lc(xα−βg)
xα−βg,

and lm
(
spoly(f, g)

)
< lm(f). For the normal form algorithm, the s–

polynomial is used in this form, while for the Gröbner basis algorithm we

need it in the general form as above.

Computational Remark 1.14. The intermediate swell of coefficients

is a quite known issue in all Gröbner bases computations. One of the ways

to avoid extra growth is to follow the so–called ”integer strategy”, that is

do not divide but multiply both sides with a smallest possible value and

then extract the content from the resulted difference.

Suppose that f, g have their leading terms in the same component.

If A is a G–algebra of Lie type, then the symmetric formula is simply

SymLeftSpolyLie(f, g) =
lc(g)

gcd(lc(f), lc(g))
xγ−αf − lc(f)

gcd(lc(f), lc(g))
xγ−βg,

and it looks exactly the way it does in the commutative case, hence the

same strategy as in the commutative case can be applied.

For a general G–algebra the situation is more difficult.

Since lc(xδh) = lc(h) lc(xδ lm(h)),

SymLeftSpoly(f, g) = lc(g) lc(xγ−β lm(g))xγ−αf−lc(f) lc(xγ−α lm(f))xγ−βg,

and we should moreover compute and divide out gcd’s of products of coeffi-

cients. This can be done in two different ways. Suppose we have two pairs

of coefficients, (a, b) and (c, d). Then

a′ =
a

gcd(a, c)
, c′ =

c

gcd(a, c)
, a′′ =

a′

gcd(a′, d)
, d′ =

d

gcd(a′, d)
,

b′ =
b

gcd(b, c′)
, c′′ =

c′

gcd(b, c′)
, b′′ =

b′

gcd(b′, d′)
, d′′ =

d′

gcd(b′, d′)
.

1. LEFT GRÖBNER BASES 51

Thus we obtain two new pairs, (a′′, b′′) and (c′′, d′′), which have no com-

mon divisors. Of course, the required product a′′b′′ equals also
ab

gcd(ab, cd)
,

but the complexity of computing it directly is evidently much bigger than

the method we propose. The overall complexity of operations with coef-

ficients in Gröbner basis–related algorithms will vary with respect to the

ground field K and is a good subject for further investigation.

Having an algorithm for computing s–polynomials, we proceed with the

normal form algorithm.

For all algorithms below we assume that A is a G–algebra and < is

a fixed monomial (module) ordering on Ar, which is a well–ordering on

Mon(A).

Algorithm 1.1 LeftNF

Input : f ∈ Ar, G ∈ G;

Output: h ∈ Ar, a left normal form of f with respect to G.

h := f ;

while ((h 6= 0) and (Gh = {g ∈ G : lm(g) | lm(h)} 6= ∅)) do

choose any g ∈ Gh;

h := LeftSpoly(h, g);

end while

return h;

Proof. (of 1.1) Note, that the proof is essentially the same, that the

one we used for free associative algebras in the Algorithm §1, 1.1.

Termination:

Again, every specific choice of ”any” in the algorithm may give us a dif-

ferent normal form function. Let h0 := f , and in the i–th step of the while

loop we compute hi = spoly(hi−1, g). Since lm(hi) = lm(spoly(hi−1, g)) <

lm(hi−1), we obtain a set {lm(hi)} of leading monomials of hi, where ∀i

lm(hi+1) < lm(hi). Since < is a well–ordering, this set has a minimum,

hence the algorithm terminates.

Correctness:

Suppose this minimum is reached at the step m. Let h = hm, ai are

terms (monomials times coefficients) and gi ∈ G. Making substitutions

backwards, we obtain the following expression

h = f −
m−1∑

i=1

aigi,

52 2. GRÖBNER BASES IN G–ALGEBRAS

satisfying lm(f) = lm(a1g1) > lm(aigi) > lm(hm). By the construction

lm(h) 6∈ L(G) if h 6= 0, hence the correctness follows. ¤

We can extend LeftNF easily to the reduced normal form algorithm.

Algorithm 1.2 redLeftNF

Input : f ∈ Ar, G ∈ G;

Output: h ∈ Ar, a reduced left normal form of f with respect to G.

h := 0, g := f ;

while (g 6= 0) do

g := LeftNF(g | G);

h := h + lc(g) lm(g);

g := g − lc(g) lm(g);

end while

return h;

Proof. (of 1.2) Since the ”tail” g− lc(g) lm(g) of g has strictly smaller

leading monomial than g and < is a well–ordering, the algorithm terminates.

The correctness of the algorithm follows from the correctness of LeftNF.

¤

Now we present the Left Buchberger’s Algorithm.

Algorithm 1.3 LeftGröbnerBasis
Input : G ∈ G;

Output : S ∈ G, a left Gröbner basis of the left submodule

I = A〈G〉 ⊂ Ar.

S := G;

P := {(f, g) | f, g ∈ S} ⊂ S × S;

while (P 6= ∅) do

choose (f, g) ∈ P ;

P := P \ {(f, g)};
h := LeftNF

(
LeftSpoly(f, g) | S

)
;

if (h 6= 0) then

P := P ∪ {(h, f) | f ∈ S};
S := S ∪ h;

end if

end while

return S;

1. LEFT GRÖBNER BASES 53

Proof. (of 1.3)

Termination:

By the property 1.8,ii) we know that if h 6= 0 then lm(h) 6∈ L(S). Then,

A〈S〉 ⊂ A〈{S, h}〉 and we obtain a strictly increasing sequence of submod-

ules of A. Since A is Noetherian, this sequence stabilizes. It means that,

after finitely many steps, we always have LeftNF
(
LeftSpoly(f, g) | S)

)
= 0

for all (f, g) ∈ P and, after several more steps, the set P of pairs will be-

come empty. Thus LeftGröbnerBasis terminates.

Correctness:

the proof of correctness follows from the Left Buchberger’s Criterion

(Theorem 1.16). ¤

Note, that the algorithms RightNF and RightGröbnerBasis are

analogous.

Remark 1.15. If LeftNF is a reduced normal form and if G is reduced,

then S is a reduced Gröbner basis. If G is not reduced, we may apply

LeftNF afterwards to (f, S \ {f}) for all f ∈ S in order to obtain a reduced

Gröbner basis.

In the implementation we use generalized criteria for detecting useless

reductions within the set of pairs P , see the Section 4.4.

Theorem 1.16. Let I ⊂ Ar be a left submodule and G = {g1, . . . , gs},
gi ∈ I. Let LeftNF(·|G) be a left normal form on Ar with respect to G.

Then the following are equivalent:

(1) G is a left Gröbner basis of I,

(2) LeftNF(f |G) = 0 for all f ∈ I,

(3) each f ∈ I has a left standard representation with respect to G,

(4) LeftNF
(
LeftSpoly(gi, gj)|G

)
= 0 for 1 ≤ i, j ≤ s.

Proof. The implication (1 ⇒ 2) follows from Lemma 1.9, (2 ⇒ 3)

follows from the corresponding definitions. As for implication (3 ⇒ 1), we

see that if f has a left standard representation with respect to G, then

lm(f) must occur as the leading monomial of aigi for some i. It means

that lm(gi)| lm(f), hence G is a left Gröbner basis of I. To prove (3 ⇒ 4),

we note first that h = LeftNF
(
LeftSpoly(fi, fj)|G) ∈ I and hence, by 3, if

h 6= 0, we have lm(h) ∈ L(G), what contradicts the property (iii) of NF.

The implication (4 ⇒ 1) is an important criterion which allows checking

and construction of Gröbner bases in a finite number of steps. This impli-

cation follows from the more general Theorem 4.8, where the proof is done

using syzygies. ¤

54 2. GRÖBNER BASES IN G–ALGEBRAS

2. Gröbner basics I

Let us enlist the most basic but important applications of Gröbner bases,

called ”Gröbner basics” by B. Sturmfels. We removed from this list appli-

cations, which are ”too commutative” and therefore have less impact on

the non–commutative case (such as Zariski closure of the image of a map,

solving polynomial equations and radical membership).

• Ideal (resp. module) membership problem

• Intersection with subrings (elimination of variables)

• Intersection of ideals (resp. submodules)

• Quotient of ideals

• Saturation of ideals

• Kernel of a module homomorphism

• Kernel of a ring homomorphism

• Algebraic relations between polynomials

• Hilbert polynomial of graded ideals and modules

We will present algorithms to compute every application at different

places of this work, since for some applications we’ll need preparatory re-

sults. We will not consider Hilbert polynomials in this thesis, since this was

treated in details in both books [14] and [56].

Let K be a field, A = K〈x1, . . . , xn | {xjxi = cijxixj + dij}1≤i<j≤n〉 be a

G–algebra and < be a monomial ordering on Ar.

2.1. Equality of Submodules.

Suppose RedMinGB to be the algorithm, computing a reduced minimal

Gröbner basis for a given module and, moreover, normalizing the output by

dividing by the leading coefficient of every generator. If for two submodules

M,N ∈ Ar RedMinGB(M) = RedMinGB(N), then M = N . (See also

Lemma 1.9,3).

Equivalently, M = N if and only if NF(M | N) = 0 = NF(N | M).

Here M and N should be given in Gröbner bases, although not necessarily

minimal or reduced.

Example 2.1. Let us compute an example with Plural.

LIB "ncalg.lib";

def A = makeUsl2();

setring A;

ideal I1 = f^2, h^2-1;

ideal I2 = e^2, f^2, h^2-1;

ideal tst;

2. GRÖBNER BASICS I 55

// let us compare I1, I2 as two--sided ideals with the NF

ideal T1 = twostd(I1); ideal T2 = twostd(I2);

tst = NF(T1,T2); print(matrix(tst));

==>

0,0,0,0,0,0 // T2 lies in T1

tst = NF(T2,T1); print(matrix(tst));

==>

0,0,0,0,0,0 // T1 lies in T2, hence T1=T2

// now let us compare I1, I2 as left ideals with RedMinGB

option(redSB); // under these options both std and twostd

option(redTail); // return minimal reduced bases

ideal L1 = std(I1); ideal L2 = std(I2);

print(matrix(L1)); // a compact form

==>

h2-1,f2

print(matrix(L2));

==>

h2-1,fh-f,eh+e,f2,2ef-h-1,e2 // hence, L1 < L2

2.2. Left Module Membership Problem.

Let M ⊆ Ar be a left submodule, f ∈ Ar and G = {f1, . . . , fm} be a

left Gröbner basis of M . Then f ∈ M if and only if LeftNF(f |G) = 0. (See

Lemma 1.9,1).

2.3. Intersection with Free Submodules.

Suppose there is a monomial well–ordering <A on A. Consider the

free left module Ar. Recall from the Remark §2, 1.4, that the ordering

<m= (c,<A) on Ar =
r
⊕
i=1

Aei is the POT ordering (where the components

are ordered in a descending way, e1 > e2 > . . .). More concrete, it is defined

as follows:

xαei <m xβej ⇔ j < i or j = i and xα <A xβ.

Lemma 2.2. Let M ⊆ Ar be a submodule. Let G = {g1, . . . , gm} be a

Gröbner basis of M with respect to <m= (c,<A).

Then ∀ 1 ≤ s ≤ r G ∩
r
⊕
i=s

Aei is a Gröbner basis of M ∩
r
⊕
i=s

Aei.

56 2. GRÖBNER BASES IN G–ALGEBRAS

Proof. Since G is a Gröbner basis of M , for any h ∈ M ∩
r
⊕
i=s

Aei

there exists g ∈ G such that lm(g) | lm(h). Then lm(g) ∈
r
⊕
i=s

Aei, hence,

by definition of the ordering <m, we have g ∈
r
⊕
i=s

Aei and, consequently,

g ∈ G ∩
r
⊕
i=s

Aei. Hence the claim. ¤

We say, that for fixed s, 1 < s ≤ r we have eliminated the components

e1, . . . , es−1 from the module M .

Further we refer to this application as to elimination of the module com-

ponents and for such a module ordering as an elimination ordering for com-

ponents e1, . . . , es−1.

Computational Remark 2.3. We need to formalize the Lemma to

become an algorithm. Suppose there is a submodule M ⊂ An and an index

set I = {i1, . . . , is} ⊂ {1, . . . , n}.
Then the procedure ElimComponent(module M, list I) computes

the intersection of M with ⊕i∈IAei as follows:

1. choose an elimination ordering <I for components ei1 , . . . , eis ;

2. compute a Gröbner basis of M with respect to <I ;

3. throw away all the elements from the result, whose leading components

are not in {ei | i ∈ I}.
There is no built–in command in Plural, performing such an algo-

rithm, hence one has to do the steps as above manually. On the other

hand, the algorithm ElimComponent is used mostly as a sub-algorithm

in various kernel procedures, so it is implemented in the kernel of Plural.

2.4. Elimination of Variables.

Let A = K〈x1, . . . , xn | {xjxi = cijxixj + dij}1≤i<j≤n〉 be a G–algebra.

Consider a subalgebra Ar, generated by some subset, say, {xr+1, . . . , xn} of

{x1, . . . , xn} for some r ≥ 1 subject to the relations from A.

We say that such Ar is an admissible subalgebra, if dij are polynomials

in xr+1, . . . , xn for r + 1 ≤ i < j ≤ n. Hence, Ar is closed with respect to

the multiplication, inherited from A and it is a G–algebra.

Definition 2.4. (Elimination ordering) Let A be a G–algebra in n vari-

ables, generated by {x1, . . . , xn} such that {xr+1, . . . , xn} generate an ad-

missible sub–G–algebra B ⊂ A.

An ordering < on A is an elimination ordering for x1, . . . , xr,

if for any f ∈ A, lm(f) ∈ B implies f ∈ B. If, moreover, x1, . . . , xr

generate an admissible sub–G–algebra C, we say in addition, that < is an

elimination ordering for C.

2. GRÖBNER BASICS I 57

We call such an ordering an admissible elimination ordering <Ar
, if the

condition ∀i < j lm(dij) <Ar
xixj is satisfied.

If f ∈ B, then of course, for any monomial ordering <, lm(f) ∈ Mon(B).

Note, that the converse is true if and only if < is an elimination ordering

like in the definition, where we have lm(f) ∈ B ⇔ f ∈ B.

Remark 2.5. Under ”elimination of variables x1, . . . , xr from an ideal

I” we mean the intersection I ∩ Ar with an admissible subalgebra Ar. In

contrast to the commutative case, not every subset of variables determines

an admissible subalgebra. It can happen that there could be no admissi-

ble elimination ordering <Ar
(that is, every elimination ordering is non–

admissible, see Example 2.11). If Ar or <Ar
are not admissible, we cannot

“eliminate” x1, . . . , xr.

Example 2.6. The classical elimination ordering in the commutative

case is lp (lexicographical ordering). Since for many non–commutative G–

algebras it is not an admissible monomial ordering, a usual elimination

ordering in the non–commutative setting is a block ordering of the form

(dp(1 . . . r),dp(r + 1 . . . n)), or the ordering with extra weights

(a(w1, . . . , wr),<).

Let A,B be two ordering matrices. Then the block ordering (<A, <B)

is given by the matrix

(

A 0

0 B

)

.

A matrix for an ordering with extra weights look like follows:

(a(ω̄),Dp) ∼











ω1 . . . ωr 0 . . . 0 0 0

1 . . . 1 1 . . . 1 1 1

1 . . . 0 0 . . . 0 0 0
...

. . .
...

...
. . .

...
...

...

0 0 0 0 . . . 1 0 0











.

However, for a few algebras (e. g. Weyl algebras) the lexicographical

ordering is admissible.

Lemma 2.7. Let I ⊆ A be an ideal, B = K〈xr+1, . . . , xn | xjxi =

cijxixj + dij〉 be an admissible subalgebra of A, and <B an admissible elim-

ination ordering for x1, . . . , xr on A . If S = {f1, . . . , fm} is a Gröbner basis

of I, then S ∩ B is a Gröbner basis of I ∩ B.

Proof. Take any xα ∈ L(I), then there exists such f ∈ I, that lm(f) =

xα. Since < is an elimination ordering for x1, . . . , xr, from lm(f) ∈ Mon(B)

follows that f ∈ B. Hence, L(I) ∩ B equals to

⊕{Kxα | ∃f ∈ I, lm(f) = xα} ∩ B = ⊕{Kxα | ∃f ∈ I ∩ B, lm(f) = xα},

58 2. GRÖBNER BASES IN G–ALGEBRAS

and the latter is just L(I∩B). Then, L(S)∩B = L(I)∩B = L(I∩B) =

L(S ∩ B), hence S ∩ B is a Gröbner basis of I ∩ B by the definition. ¤

Computational Remark 2.8. We formalize the previous lemma into

the following algorithm. Suppose the subalgebra S, generated by a subset

of the set of variables is given together with an ideal I.

Then the procedure Eliminate(ideal I, subalgebra S) computes

the intersection of I with S as follows:

1. check whether S is an admissible subalgebra;

2. choose the elimination ordering <S heuristically;

3. check whether <S is admissible;

4. compute the Gröbner basis of I with respect to <S;

5. throw away all the elements from the result, whose leading monomials

involve variables other than those from S.

The built–in command eliminate in Plural works exactly in the way

we have described above, where S is given in form of a monomial. This com-

mand does not require the ordering of a current ring to have the eliminating

property.

Example 2.9. Let us compute a concrete example with Plural. There

are two possibilities: one can either use the command eliminate or set up

the ring with the elimination ordering manually, compute Gröbner basis

and pick up the needed elements from it. In the example we show how both

of them work.

ring r=0,(e,f,h,a),(dp(3),dp(1));

// r is equipped with the elimination ordering for e,f,h

matrix d[4][4];

d[1,2]=-h; d[1,3]=2*e; d[2,3]=-2*f;

ncalgebra(1,d); // it is U(sl_2) \otimes_K K[a]

poly p = 4*e*f+h^2-2*h-a; // this is a central element

ideal I = e^2, f^2, h^2-1, p;

ideal J = std(I); // computes a Groebner basis first

print(matrix(J));

==>

a-3, h2-1, 6fh+fa-9f, 6eh-ea+9e, f2, 4ef+h2-2h-a, e2

// hence, applying the lemma, the result is just a-3

eliminate(I,e*f*h); // a direct application

==>

_[1]=a-3

With the next examples we are going to illustrate the crucial difference to

commutative elimination. Indeed, there are concrete situations, appearing

2. GRÖBNER BASICS I 59

in applications, where elimination requires extra computations and it may

happen that no elimination is possible.

Example 2.10. (Complicated elimination)

Let W1 be the Weyl algebra K〈x, d | [d, x] = 1〉. Consider a deformation

algebra X of the algebra X0 = K〈a, b | [b, a] = 3a〉 ⊗K W1, X = K〈a, b, x, d〉
subject to relations [b, a] = 3a, [d, a] = 3x2, [x, b] = −x, [d, b] = d, [d, x] = 1.

We fix a PBW basis {apbqxrds}. An admissible well–ordering < on

X has to satisfy only one condition x2 < ad, what is easily achieved by

any degree ordering like dp, Dp. Since both {a, b} and {x, d} generate

admissible subalgebras, any block ordering, giving priority to {a, b} and

having degree orderings in every block, is an admissible elimination ordering

for {a, b}. Small computation ensures, that with respect to all admissible

orderings, the non–degeneracy conditions on X vanish.

Any elimination ordering for {x, d} has to satisfy x2 < da whereas x ≫
a and d ≫ a, what is impossible with standard block orderings (like in

Example 2.6). We have to introduce extra weights on {x, d}, although the

algebra X does not have any weight in its definition. The ordering condition

on weights is satisfied as soon as 2 degω(x) ≤ degω(a) + degω(d) = degω(d).

For example, for the algebra X with the PBW basis {xpdqarbs} possible

solutions can be the ordering (a(1,3),Dp), what is an elimination ordering

with extra weights 1 resp. 3 for x resp. d.

Example 2.11. (No elimination is possible)

Let W1 be the Weyl algebra K〈X,D | [D, X] = 1〉.
Consider the algebra Y = K〈e, f, h,X, D〉 subject to the relations

[f, e] = −h, [h, e] = 2e, [h, f] = −2f, [D, e] = 1, [X, f] = 2XD,

[D, f] = −D2, [X, h] = −2X, [D, h] = 2D, [D,X] = 1.

It arises as a deformation of the Y0 = U(sl2)⊗K W1 (the first three relations

are defining for U(sl2)).

An admissible ordering on Y with the PBW basis {epf qhrXsDt} requires

that ef > h (hence a degree ordering is needed) and fX > XD and fD >

D2, which is true if and only if f > D. Of course, in the given PBW basis

this holds for any degree ordering, in particular, for any elimination ordering

for {e, f, h}.
But, as we see, the eliminating conditions for {X, D}, namely {X, D} ≫

{e, f, h} in the PBW basis {XpDqerf sht} are not compatible with the re-

quirement f > D. Hence, for any ideal IY ⊂ Y the intersection IY ∩U(sl2)

cannot be computed.

60 2. GRÖBNER BASES IN G–ALGEBRAS

However, S = K〈e, h|[h, e] = 2e〉 ⊂ U(sl2) is an admissible subalgebra.

Hence, we are able to eliminate {f,X,D}, taking either {fpXqDresht} or

{Xpf qDresht} as the PBW basis.

Example 2.12. (Easy example with no elimination)

Let A = K〈p, q | qp = pq + d(p, q)〉 be a G–algebra, that is lm(d) < pq.

Then, if for some m ≥ 2, lm(d) = qm, the intersection of any ideal I ⊂
A with the subalgebra K[p] cannot be computed because of the following

objection. The elimination ordering for such computation requires q ≫ p,

what implies q2 > pq and hence lm(d) > pq, what contradicts the ordering

condition for A as a G–algebra.

2.5. Intersection of Ideals.

Lemma 2.13. Let I = A〈f1, . . . , fr〉, J = A〈g1, . . . , gs〉 be two left ideals.

Consider the ideal D := t · I + (1 − t) · J ⊆ At, where At = A ⊗K K[t] is

viewed as algebra, generated by {x1, . . . , xn, t}, t commutes with A. Let <

be an elimination ordering for t on At. Then I ∩ J = D ∩ A.

Proof. Assume that {fi} and {gi} are already Gröbner bases of I and

J . Let f ∈ D ∩ A. Then we can present it as a sum

f =
r∑

i=1

aitfi +
s∑

i=1

bi(1 − t)gi.

Specializing t at some value, we obtain the following : t = 0 ⇒ f =
∑s

i=1 bigi ∈ J , t = 1 ⇒ f =
∑r

i=1 aifi ∈ I. Hence, f ∈ I ∩ J and

I ∩ J ⊇ D ∩ A.

Conversely, let f ∈ I ∩ J . Then f could be represented in two ways:

f =
r∑

i=1

aifi =
s∑

i=1

bigi.

Since t commutes with A, consider

f = tf + (1 − t)f =
r∑

i=1

aitfi +
s∑

i=1

bi(1 − t)gi.

Hence, f ∈ D ∩ A and I ∩ J = D ∩ A. ¤

3. TWO–SIDED GRÖBNER BASES AND GR–ALGEBRAS 61

3. Two–sided Gröbner Bases and GR–algebras

3.1. An Approach for Two–sided Ideals.

For any polynomial f from a left (resp. right) module M in a G–

algebra there exists a standard left (resp. right) representation of f . This

representation is clearly a generalization of the one in the commutative

theory. But for such important objects as two–sided ideals (they appear,

for instance, as annihilators of modules) we have no direct analogue.

Example 3.1. Consider U(sl2) (§5, 1.1) and the two–sided ideal I,

generated by the variable f . Consider the polynomial f + efh ∈ I. There

are no a, b ∈ U(sl2), such that f+efh = afb. Hence, we have a presentation

g =
∑

i∈Λ

ligiri, g ∈ A〈g1, . . . , gn〉A, li, ri ∈ A,

for some index set Λ with #Λ > n.

This shows that two–sided generators of an ideal or bimodule are rarely

revealing essential structural information. The idea is to consider the two–

sided structure not as a set of two–sided generators (like we do with the left

generators for left modules), but as one–sided (left or right) structure, equal

to the given two–sided one (see also [41] or [46]). Then, in the algorithm

which follows we start from the left structure and complete (the term itself

goes back to J. Apel, [4]) it successively to the right structure, keeping the

left one.

Of course, the result of such a completion will be both a left and a right

Gröbner basis, hence the same could be done for right–sided input by means

of completion to the left. If for a minimal set of generators F = {f1, . . . , fn}
of a two–sided ideal I we have A〈F 〉 = A〈F 〉A = I, the classical result ([41])

assures two more equalities 〈F 〉A = A〈F 〉A = I, and A〈F 〉 = 〈F 〉A = I

follows.

We say that F is a two–sided Gröbner basis of a two–sided ideal I,

if it satisfies one of three conditions above. We compute such bases with

the following algorithm.

Remark 3.2. Note, that if F is a left Gröbner basis of A〈F 〉 and a

right Gröbner basis of 〈F 〉A, in general both ideals are not two–sided and

A〈F 〉 6= 〈F 〉A. Consider the following example: let A = U(sl2) (see §5, 1.1)

over the field K(α) and the set of generators F = {e, h − α}. Then F is

both a right and a left Gröbner basis, but not a two–sided one, because the

ideals A〈F 〉 and 〈F 〉A are strictly left respectively right ideals.

62 2. GRÖBNER BASES IN G–ALGEBRAS

Let < be a well-ordering on a G–algebra A, which is generated by

x1, . . . , xn. Assume there is an algorithm UpdateGröbnerBasis(G,S)

which computes a (left) Gröbner basis of G∪S for sets G (being a Gröbner

basis) and S (being an arbitrary finite set). Technically it means that during

the Buchberger’s algorithm, no critical pairs within G are considered.

Let NF be a fixed left normal form on A.

Algorithm 3.1 TwoSidedGröbnerBasis

Input : T , a set of two–sided generators from A;

Output : L, a left Gröbner basis of the ideal I = A〈T 〉A ⊆ A.

L :=LeftGröbnerBasis(T, NF);

W := ∅; G := L;

loop

for i = 1 to size(G) do

for j = 1 to n do

g := G[i] · xj;

h := LeftNF
(
g | L

)
;

if (h 6= 0) then

W = W ∪ h;

if IsConstant(h) then

return (1);

end if

end if

end for

end for

if W = ∅ then

break; ⊲ i.e. quit the loop

else

L := UpdateGröbnerBasis(L,W);

end if

G := W ;

W := ∅;
end loop

return L;

Proof. (of 3.1)

Termination: Since A is Noetherian, any ideal admits a finite gener-

ating set, hence we quit the loop . . . end loop cycle after finitely many

3. TWO–SIDED GRÖBNER BASES AND GR–ALGEBRAS 63

steps. However, it is not clear how many iterations we should do before

obtaining a result.

Correctness: We have started from the two–sided generating set, ob-

tained its left Gröbner basis as of a left generating set G = L (we can

require its minimality furthermore). In the loop . . . end loop cycle we are

adding into the set W new generators, multiplying elements from G from

the right side by the algebra generators x1, . . . , xn, and then reducing them

with respect to the L.

After the first execution of the loop . . . end loop cycle, we have

computed the set W of all the nonzero normal forms {rij} of products

{fixj | fi ∈ G}. Now for some element fi ∈ G we see that (fi ·xj)xk equals

to

(
∑

p

apfp + rij)xk =
∑

p

(
∑

q

apbqfq + aprpk

)

+ rijxk.

So, the only element we have to reduce further is rijxk, hence it suffices

to continue iterations with the set W only. We update L performing the

UpdateGröbnerBasis(L,W). We quit the cycle either if L = {1} or

if W = ∅, that is when all the recently computed ”candidates” (h in the

algorithm) are reduced to zero with respect to L. This means, that L is the

complete basis. ¤

Remark 3.3. Comparing our algorithm with the algorithm Gröbner,

proposed in [41], we should point out that our algorithm is optimized: we

consider less critical pairs by using the UpdateGröbnerBasis algorithm.

An algorithm TSGB of Kredel ([46]), being a modified Gröbner basis al-

gorithm itself uses a different strategy, which still needs to be compared to

what we use. In addition, we use the early detection of the appearance of

constants among the elements which indicates that the result coincides with

the whole algebra.

The algorithm could also be used for checking, whether a given set of

generators is a two–sided Gröbner basis. Provided the given ideal L is

already given in a left Gröbner basis, we have to perform n · m reductions

(calls of LeftNF) for n,m being the numbers of generators of A and L

respectively.

Example 3.4. Let us compute a small but interesting example with

Plural. Consider the algebra U(sl2) over Q and the set

K = {e3, f 3, h3 − 4h} ⊂ U(sl2). Let NF be the fixed left normal form, I =

LeftGröbnerBasis(K, NF) and J = TwoSidedGröbnerBasis(K).

Moreover, the results are completely reduced Gröbner bases.

64 2. GRÖBNER BASES IN G–ALGEBRAS

LIB "ncalg.lib";

def A = makeUsl2();

setring A;

ideal K = e^3, f^3, h^3-4*h;

option(redSB); // these options ensure that the result

option(redTail); // is completely reduced

ideal I = std(K); // left GB

ideal J = twostd(K); // two--sided GB

We obtain

I = {e3, f 3, h3 − 4h, eh2 + 2eh, fh2 − 2fh, 2efh − h2 − 2h},
J = I ∪ {e2f − eh − 2e, ef 2 − fh, e2h + 2e2, f 2h − 2f 2}.
One can see the exact difference between the ideals. See the article [53] and

§4, 3 for more examples and timings.

Example 3.5. We have reported in [48], [53] on the following curious

example: consider the universal enveloping algebra U(g2) (§5, 1.4) in 14

variables over Q and a two–sided ideal, generated by the third power of

the variable x1, being an image of the shortest positive root from the root

system of the Lie algebra g2 under the canonical inclusion. Then its minimal

two–sided Gröbner basis consists of 106 elements and does not even involve

the initial generator. Let us compute the left standard presentation of x3
1

with respect to the basis B. This can be done with the commando lift

(see 4.5).

LIB "ncalg.lib";

def G2 = makeUg2();

setring G2;

option(redSB);

option(redTail);

ideal I = x(1)^3;

ideal B = twostd(I);

size(B);

==>

106

module T = lift(B,I); // transformation matrix between I and B

T[1];

==>

x(1)*gen(77)-2x(5)*gen(43)-2x(5)*gen(1)+2y(2)*gen(6)+2*gen(47)

We see, that the standard representation of the initial generator involves

five polynomials. Namely, x3
1 = x1B77 − 2x5B43 − 2x5B1 + 2y2B6 + 2B47,

where B1 = y2hβ − y2, B6 = x5hα + x5hβ + x5, B43 = x1y3 + y2hα + 3y2,

3. TWO–SIDED GRÖBNER BASES AND GR–ALGEBRAS 65

B47 = x5y2, B77 = x2
1 + 2x5y3.

This example is a good demonstration of the fact how different left and

two–sided ideals can be, built from the same generating set. In particular,

U(sl2)/I has Gel’fand–Kirillov dimension 13 and U(sl2)/B dimension 0 (in-

deed, it is even of dimension 50 over K).

Perspectives

Very recently, there appeared two articles, which give new ideas for

computations with two–sided (bimodule) structures.

In [44], Kobayashi presents a very general approach to subbimodules

over associative algebras, gives algorithm for computing the free bimodule

resolution (using ideas of Anick ([1]) and generalizing them further for the

bimodule situation) and describes as an important application as the com-

putation of Hochschild cohomology groups for associative algebras. How-

ever, there is no implementation and all the computations in the article are

made by hand.

In the article [28], Manuel and Maria Garćıa Román propose a new

method for computing Gröbner bases for subbimodules of G–algebras which

could be better than the one proposed by us, although there is no suffi-

ciently good implementation yet (only a preliminary ”check of ideas”, done

in Maple) and no real comparisons with the methods we propose are avail-

able. This topic should be carefully investigated for its complexity and

efficiency; the authors have already decided to implement it in our system

Singular:Plural as soon as possible.

3.2. GR–algebras and Gröbner bases in factor algebras.

Having implemented two–sided Gröbner bases, we are able to perform

Gröbner basis computations in factor algebras (GR–algebras), what is quite

important prerequisite for many applications. Moreover, we are able to do

it within the same framework of Gröbner bases we developed for G–algebras.

Notation: We are using standard capital letters for G–algebras and

their ideals (say, I ⊂ B) and calligraphic capital letters for GR–algebras

and their ideals (say, J ⊂ A).

A Gröbner–ready algebra was already defined in Def. §1, 3.7.

It is clear, that any GR–algebra is Noetherian algebra of PBW type,

that is its K–basis is a subset of PBW basis, spanned on the same set of

66 2. GRÖBNER BASES IN G–ALGEBRAS

algebra generators. Working with GR–algebras of the type A = B/I, we

will make some assumptions. First of all, we assume that n and I are chosen

in such a way that n is a minimal number for which there exists B, a G–

algebra in n variables, I ⊂ B, and we have A ∼= B/I. Secondly, we assume

that the nontrivial ideal I is given by its two–sided Gröbner basis (which

we can compute with the help of 3.1).

Since by Lemma 1.9,3 the reduced normal form is unique, we can identify

any class [f] ∈ A with its canonical representative f̄ := redNFB(f | I) ∈ B.

Definition 3.6. Let B be a G–algebra in n variables and A = B/I be

a GR–algebra.

1) For any α ∈ Nn, xα is called a monomial in A, if xα 6= 0 and

xα = xα. The set of monomials in A is identified with the subset of the

PBW basis of B, namely Mon(A) = {lmB(xα) | α ∈ Nn} \ {0}.
2) An ordering < is called a monomial ordering on A, if the following

conditions hold:

• ∀ α, β ∈ Nn such that xα and xβ are monomials, α < β ⇒ xα <A xβ,

• ∀ α, β, γ ∈ Nn, such that xα and xβ are monomials and the inequalities

xα <A xβ, xα+γ 6= 0, xβ+γ 6= 0 hold, then also holds

lm(xα+γ) <A lm(xβ+γ).

3) Any f̄ 6= 0̄ can be written uniquely as the sum f̄ = cxα+f ′, where c ∈
K∗ and xα′

<A xα for any nonzero term c′xα′

from f ′. We define lm([f]) :=

lm(f̄) = xα, the leading monomial of [f], respectively lc([f]) := c, the

leading coefficient of [f].

Lemma 3.7. Let A = B/I and NFB be a normal form on B. Suppose we

have [f] ∈ A and a left ideal J ⊂ A. Define J̃ :=LeftGröbnerBasis(I +

J , NF). Then NFA([f] | J) := NFB(f | J̃) is a normal form of [f] with

respect to J in A, according to Definition 1.8.

Notation: For an ideal I and a two–sided ideal T , we also use the

notation ”I mod T” for the NF(I + TA | TA).

Lemma 3.8. Let A = B/I be a GR–algebra and J ⊂ A be a left ideal.

Let F = {f1, . . . , fk} be a Gröbner basis of an ideal I + J ⊆ B. Then the

set {redNF(fi | I) | 1 ≤ i ≤ k} \ {0} is a Gröbner basis of J ⊂ A.

Examples of important GR–algebras were already given in §1, 3.11.

4. SYZYGIES AND FREE RESOLUTIONS 67

Lemma 3.9. There is a category GR, with GR–algebras as objects and

K-algebra homomorphisms as morphisms. The category GR is closed under

the following operations:

(i) tensor product over the ground field K,

(ii) factor by two–sided ideal,

(iii) taking the opposite algebra.

Proof. (i). Let A (resp. B) be a G–algebra in n (resp. m) variables

with an ordering <A (resp. <B): A = K〈x1, . . . , xn | fji = 0, 1 ≤ i <

j ≤ n〉, B = K〈y1, . . . , ym | gji = 0, 1 ≤ i < j ≤ m〉. Let, moreover,

TA ⊂ A and TB ⊂ B be proper two–sided ideals, such that A = A/TA and

B = A/TB are GR–algebras. We claim, that A⊗K B is a GR–algebra.

At first, C = A ⊗K B is generated by {xi ⊗ 1 | 1 ≤ i ≤ n} and {1 ⊗ yj |
1 ≤ j ≤ m} which we identify with {xi} and {yj} respectively. A natural

block ordering (<A, <B) (although it is not the only admissible ordering)

makes C into a G–algebra in m + n variables, since ∀ i, j yjxi = xiyj and

consequently all non–degeneracy conditions in C vanish because they do on

A and B (by the same argument as in the proof of §1, 7.3).

If TA and TB were given as two–sided Gröbner bases, their images in C

under canonical inclusions keep this property. Hence, the ideal TC = TA+TB

is a two–sided ideal, given in its two–sided Gröbner basis.

Then, A⊗K B ∼= C/TC = A ⊗K B/{TA + TB}.
(ii). Let J ⊂ A/I be a proper two–sided ideal in a GR–algebra. Then,

K := I + J ⊂ A is a proper two–sided ideal too. Hence, (A/I)/J ∼= A/K

is a GR–algebra.

(iii). It has been proved already in §1, 5. ¤

In particular, for every GR–algebra A, its enveloping algebra

Ae := A⊗K Aopp is a GR–algebra.

Note, that any (A,A)–bimodule M can be presented in a canonical way

as a left Ae–module.

4. Syzygies and Free Resolutions

Syzygies and resolutions are very important objects both on their own

and as necessary components for many constructions, for example, in ho-

mological algebra. In this section we discuss two methods for computing

left syzygy modules and free resolutions of modules using Gröbner bases.

The first method goes back to a special Gröbner basis computation (4.3) in

the free module.

68 2. GRÖBNER BASES IN G–ALGEBRAS

The second one is the generalized Schreyer’s method (4.8), which leads

us to an elegant proof of Left Buchberger’s criterion for a left Gröbner ba-

sis as well as to important result on a Gröbner basis of a syzygy module.

Moreover, with the help of this method, we established an upper bound for

global homological dimension of G–algebras (Theorem 4.16).

4.1. Homomorphisms of Free Modules.

Let K be a field, A a G–algebra and < a monomial module ordering on

An for any n.

The free A–module An can be viewed both as left and a right A–module.

For a vector v ∈ An respectively a matrix M , we denote vt resp. M t

transposed vector resp. matrix.

Consider two free left A–modules Am, An with canonical bases {εi} and

{ej} respectively. Any left homomorphism φ is given by its values on gen-

erators, that is

φ : Am =
m⊕

i=1

Aεi −→ An =
n⊕

j=1

Aej, εi 7−→ f̄i,

where f̄i =
∑n

j=1 Φjiej ∈ Am are vectors with Φji ∈ A. A left A–linearity

implies

φ
(

m∑

i=1

aiεi

)
=

m∑

i=1

aif̄i =
n∑

j=1

(
m∑

i=1

aiΦji

)
ej ∀ai ∈ A.

Hence, we can present φ by the matrix Φ =
(
Φkl

)
= (f̄1, . . . , f̄m) ∈

An×m. But, in contrast to the commutative intuition, instead of the action

φ(x̄) = Φ · x̄, which is indeed right but not left A–linear, we must take the

only correct action

φ(x̄) := (x̄t · Φt)t.

Then, the image of φ is a submodule of An, generated by the columns of a

matrix Φ. In the sequel, a submodule of a free module and a homomorphism

will be both presented by a matrix, which columns constitute the generating

set of a module.

Let ψ : Am −→ An be a right homomorphism of free right modules,

given by the same matrix Φ. Then ψ(x̄) := Φ · x̄ is well–defined right

homomorphism.

Note that if Φ consists of elements, central in A (in particular, this is

true for any Φ over a commutative algebra A), then (Φx̄)t = (x̄t · Φt) and

both left and right homomorphisms, associated to the matrix Φ are acting

identically.

4. SYZYGIES AND FREE RESOLUTIONS 69

From the facts above it is easy to conclude the following

Lemma 4.1. The right A–module of left homomorphisms between two

left free A–modules HomA(Am, An) is isomorphic to the right free A–module

Anm.

4.2. Syzygies and Their Computation via Gröbner Basis.

Definition 4.2. A left (resp. right) syzygy between k elements

{f̄1, . . . , f̄k} ⊂ Ar is a k–tuple (a1, . . . , ak) ∈ Ak satisfying

k∑

i=1

aif̄i = 0 (resp.
k∑

i=1

f̄iai = 0).

The set of all left (resp. right) syzygies between {f̄1, . . . , f̄k} is a left (resp.

right) submodule S := Syz({f̄1, . . . , f̄k}) of Ak.

Since the definition of the right syzygy is analogous to the left one, we

will work only with left syzygies and mention by syzygy (resp. normal form

NF) below the left syzygy (resp. LeftNF).

We can view S = Syz({f̄1, . . . , f̄k}) as the kernel of the following

homomorphism of left A–modules

ϕ1 : F1 = Ak =
k⊕

i=1

Aεi −→ F0 = Ar =
r⊕

j=1

Aej, εi 7−→ f̄i.

Let I = A〈f̄1, . . . , f̄k〉 be the left submodule of F0, then ϕ1 surjects onto

I and Syz(I) := Ker ϕ1 is called the (first) module of syzygies of I with

respect to the set of generators {f̄1, . . . , f̄k}. Easy computations ensure

that the isomorphism class of Syz(I) as of A–module does only depend on

the isomorphism class of I, in particular, it is independent of the set of

generators.

In particular, let S be a matrix, corresponding to the left submodule

Syz(I). Then, using the results before, we have St · I t = 0.

Lemma 4.3. Let I = A〈f̄1, . . . , f̄k〉 ⊂ Ar. Define a free module M =
⊕r+k

i=r+1 Aei and consider canonical embedding i and canonical projection π

i : Ar → Ar+k = Ar ⊕ M, π : Ar+k → Ak.

Let G = {ḡ1, . . . , ḡs} be a left Gröbner basis of F = A〈f̄1+er+1, . . . , f̄k+er+k〉
with respect to an ordering, being an elimination ordering for components

e1, . . . , er (see 2.3). Suppose that G ∩ M = {ḡ1, . . . , ḡℓ}, then

Syz(I) = A〈π(ḡ1), . . . , π(ḡℓ)〉 .

70 2. GRÖBNER BASES IN G–ALGEBRAS

Proof. As an elimination ordering we can take, for example, the order-

ing (c,<): xαei < xβej if j < i or j = i and xα < xβ. G∩M is a left Gröbner

basis of F ∩ M by Lemma 2.2. On the other hand, π
(
F ∩ M

)
= Syz(I).

Namely, let h̄ ∈ F ∩ M , that is, h̄ =
∑r+k

ν=r+1 hνeν =
∑k

j=1 bj(f̄j + er+j) for

suitable bj ∈ A. This implies that
∑k

j=1 bj f̄j = 0 and bj = hr+j.

Conversely, let h̄ = (h1, . . . , hk) ∈ Syz(I), then if
∑k

ν=1 hν f̄ν = 0, we

have
∑k

ν=1 hν(f̄ν + er+ν) ∈ F ∩ M . ¤

Remark 4.4. In order to illustrate the method, we draw two matrices.

Suppose we are given I = {f̄1, . . . , f̄k} ⊂ Ar and let F be a matrix with

f̄i as columns. We append from below a r × r unit matrix to F , written

column-wise. We put the result of the Gröbner basis computation of this

matrix with respect of a fixed ordering in the second matrix, sorting the

columns in such a way, that the elements, having first r components zero,

are moved to the left. (We denote 0̄ = (0, . . . , 0) ∈ Ar).








f̄1 . . . f̄k

1 0
. . .

0 1









GB−−→








0̄ . . . 0̄ h̄1 . . . h̄t

S T








.

Let H be a matrix with columns h̄i. Then

• {h̄1, . . . , h̄t} is a Gröbner basis of I,

• columns of S generate Syz({f̄1, . . . , f̄k}),
• T is a left transition matrix between two bases of F , i.e. H t = TtF t.

Computational Remark 4.5. Note, that the algorithm for comput-

ing the left transition matrix between two bases follows from the previous

remark. It is implemented as the command lift, whereas the command

liftstd returns both a left Gröbner basis and a left transition matrix, and

the command syz returns a generating set (not necessary a Gröbner basis)

of the first module of syzygies.

Example 4.6. (liftstd command)

LIB "ncalg.lib";

def A = makeUsl2(); setring A;

ideal i = e2,f;

option(redSB);

option(redTail);

matrix T; // transformation matrix will be written into T

ideal j = liftstd(i,T);

print(matrix(j)); // ideal in a compact form

4. SYZYGIES AND FREE RESOLUTIONS 71

==> f, 2h2+2h, 2eh+2e, e2

print(T);

==> 0,f2, -f,1,

==> 1,-e2f+4eh+8e,e2,0

ideal tj = ideal(transpose(T)*transpose(matrix(i)));

std(ideal(j-tj)); // test whether tj coincides with j

==> _[1]=0

4.3. Schreyer’s Method.

Let us define a monomial ordering on F1 which is tightly connected with

Gröbner bases of modules. This was first introduced and used by

F.–O. Schreyer (1980, 1986). Let >0 be some monomial ordering on F0,

then a new ordering >1 on F1 is defined as follows:

xαεi >1 xβεj ⇔ lm(xαfi) >0 lm(xβfj) or

lm(xαfi) = lm(xβfj) and i < j.

Note, that both orderings induce the same ordering on A. We call

the ordering >1 the Schreyer ordering. It is clear that it depends on

f1, . . . , fk.

Suppose we have some (left) normal form NF on Ar. For each i < j

such that fi and fj have the leading term in the same component, say

lm(fi) = xαieν , lm(fj) = xαjeν , define the monomial

mji := xµ(αi,αj)−αi ∈ A,

Setting ci = lc(mjifi) and cj = lc(mijfj), we have

mjifi −
ci

cj

mijfj = spoly(fi, fj).

Assume now that i < j and NF
(
spoly(fi, fj) | G

)
= 0. Then we have a

standard (left) representation

mjifi −
ci

cj

mijfj =
k∑

ν=1

a(ij)
ν fν , a(ij)

ν ∈ A.

Now, for every i < j such that lm(fi) and lm(fj) involve the same compo-

nent, define the elements from Ak

sij := mjiεi −
ci

cj

mijεj −
k∑

ν=1

a(ij)
ν εν .

Then sij ∈ Syz(I) and the following result holds :

72 2. GRÖBNER BASES IN G–ALGEBRAS

Lemma 4.7. lm(sij) = mjiεi.

Proof. Since lm(mijfj) = lm(mjifi) and i < j, we have lm(mjiεi) >1

lm(mijεj). By the standard representation’s property we obtain

lm(a(ij)
ν fν) ≤ lm(mjifi −

ci

cj

mijfj) < lm(mjifi).

¤

Theorem 4.8. Let G = {g1, . . . , gs} be a set of generators of a left

submodule I = A〈G〉 ⊂ Ar and there is an index set

M = {(i, j) | 1 ≤ i < j ≤ s, {lm(gi), lm(gj)} involve the same component}.

Suppose, that for some (left) normal form NF on Ar,

NF
(
spoly(gi, gj) | G

)
= 0, ∀(i, j) ∈ M.

Then the following holds:

1) G is a (left) Gröbner basis of I.

2) S := {sij | (i, j) ∈ M} is a (left) Gröbner basis of Syz(I) with respect

to the Schreyer ordering.

Proof. We give a proof of 1) and 2) at the same time.

Since G generates I, consider some f ∈ I and its preimage g ∈ F1,

g =
s∑

i=1

aiεi, f = ϕ(g) =
s∑

i=1

aigi.

In case 1), we assume f 6= 0, in case 2) f = 0. Let h =
∑

hjεj ∈ F1 be

a normal form of g with respect to S for some normal form on F1. Consider

a standard representation of g − h,

g =
∑

(i,j)∈M

aijsij + h, aij ∈ A,

We have, if h 6= 0,

lm(h) = lm(hν) · εν for some ν

and lm(h) 6∈ L(S) by Lemma 4.7. So, for all j such that lm(gj) and lm(gν)

involve the same component, we have mjν ∤ lm(hν). Since g − h ∈ 〈S〉 ⊂
Syz(I), we obtain

f = ϕ(g) = ϕ(h) =
∑

hjgj.

Assume that for some j 6= ν, lm(hjgj) = lm(hνgν). Then lm(hνgν) is

divisible by lm(gν) and by lm(gj).

Moreover, we are in the following situation: let us denote monomials

lm(hν) = xα, lm(gν) = xβ, lm(hj) = xγ, lm(gj) = xδ. Then lm(hjgj) =

lm(lm(hj) lm(gj)) = lm(xγxδ) = xγ+δ, analogously lm(hνgν) = xα+β, so

4. SYZYGIES AND FREE RESOLUTIONS 73

α + β = γ + δ. Define τ component-wise by τi := max(βi, δi), then xτ |xα+β,

xτ−β = mjν and

xτ = lm(lm(gν)mjν) = lm(gνmjν).

Thus lm(hνgν) = lm(hν lm(gν)) is divisible by lm(gνmjν) = lm(mjν lm(gν)),

hence mjν itself divides lm(hν), what is a contradiction.

In case 1) we obtain lm(f) = lm(hνgν) ∈ L(G), in case 2) it shows that

h 6= 0 leads to a contradiction. In case 1) G is a Gröbner basis by definition

and in case 2) S is a Gröbner basis of Syz(I) by Theorem 1.16. ¤

We should note the connection of Schreyer’s method with the defining

relations on the algebra. Let A be a G–algebra in n variables, such that

the maximal left ideal m = A〈x1, . . . , xn〉 is proper in A. This is equivalent

to the fact that ∀ i < j, the structural polynomials dij do not contain a

constant. Then, dij =
∑n

k=1 pij
k xk and we define a vector s̄ = s̄ij component-

wise by si = −xj + pij
i , sj = cijxi + pij

j , and sk = pij
k for i 6= k 6= j. Clearly,

∀ i < j s̄ij ∈ Syz(m). By Schreyer’s theorem, {s̄ij | 1 ≤ i < j ≤ n} is

a Gröbner basis of Syz(m). We can prove this fact directly, by using the

non–degeneracy conditions.

4.4. Generalized Criteria for Buchberger’s Algorithm.

Since their appearance in [13], criteria for detecting ”useless pairs” are

playing an important role in every implementation of Gröbner basis algo-

rithm.

Lemma 4.9. (Chain Criterion) With the notations of Theorem 4.8, as-

sume that (i, j) ∈ M and (j, k) ∈ M . Let lm(fi) = xαieν , lm(fj) = xαjeν

and lm(fk) = xαkeν . If xαj divides lcm(xαi , xαk) then mkiεi ∈ A〈mjiεi〉. In

particular, if sij, sik ∈ S then S \ {sik} is already a Gröbner basis of Syz(I).

Proof. xαj | lcm(xαi , xαk) implies that lcm(xαi , xαj) | lcm(xαi , xαk).

Extracting the exponent vector αi from both sides, we obtain that mji

divides mki. ¤

Remark 4.10. As in the commutative case, we use the chain criterion

in the Gröbner Basis Algorithm. Namely, if (fi, fj), (fi, fk) and (fj, fk) are

in the set of pairs P and xαj | lcm(xαi , xαk), then we can delete (fi, fk)

from P . Note, that this criterion is quite universal, since it applies without

restrictions to any module over any G–algebra. Historically, the ideas, quite

similar to the Schreyer’s philosophy, were formulated already by D. Anick

in mid 80’s while studying free and path algebras ([1]).

74 2. GRÖBNER BASES IN G–ALGEBRAS

Lemma 4.11. (Generalized Product Criterion) Let A be a G–algebra of

Lie type (that is, all cij = 1). Let f, g ∈ A. Suppose that lm(f) and

lm(g) have no common factors, then spoly(f, g) →{f,g} [g, f], where [g, f] =

gf − fg denotes the Lie bracket.

Proof. Assume that f, g are monic polynomials. Let us write f =

Lf + Tf , where Lf = lm(f), Tf = f − Lf and, analogously, g = Lg + Tg.

Then

spoly(f, g) = Lg(Lf + Tf) − Lf (Lg + Tg) = [Lg, Lf] + LgTf − LfTg.

Let us denote P1 = [Lg, Lf], P2 = LgTf , P3 = −LfTg.

If lm(P2) = lm(P3), we have lm(Tf) = lm(Lf), lm(Tg) = lm(Lg), a

contradiction to the assumption of the lemma. So, in fact lm(P2) 6= lm(P3).

We will examine the following cases and look for values of S →{f,g} for

S = P1 + P2 + P3.

1) lm(P1) 6= lm(P2) and lm(P1) 6= lm(P3);

Then we can perform two reductions and obtain

S = [Lg, Lf] + LgTf − LfTg − Tfg + Tgf = −[f, g]

2) lm(P1) = lm(P2) and lc(P1) = − lc(P2); we can reduce with g only:

S = [Lg, Lf]+LgTf−LfTg−Tfg = [Lg, Lf]−LfTg+[Lg, Tf]−TfTg = −[f, g]

3) lm(P1) = lm(P2) and lc(P1) = − lc(P2); we can reduce only with f :

S = [Lg, Lf]+LgTf−LfTg+Tgf = [Lg, Lf]+LgTf−[Lf , Tg]+TgTf = −[f, g]

4) lm(P1) = lm(P2) but lc(P1) 6= − lc(P2):

like case (1), since no real cancellation occur;

5) lm(P1) = lm(P3) but lc(P1) 6= − lc(P3):

like case (1), since no real cancellation occur.

Now suppose p = cf, q = dg, c, d ∈ K∗. Then spoly(p, q) = dLgcf −
cLfdg = cd(Lgf −Lfg) = cd · spoly(f, g) →{f,g} cd · gf − cd · fg = [q, p]. ¤

Remark 4.12. In contrast to the Chain Criterion, the Product Cri-

terion is only applicable for ideals and module elements with all module

components 0 except one. Of course, if A is commutative or if f and g com-

mute, one gets exactly the statement of the commutative Product Criterion:

spoly(f, g) →{f,g} 0. Moreover, the nature of the Product Criterion is too

commutative with respect to G–algebras, that is, we are profiting from its

use significantly only when computing in algebras of Lie type with many

commutative variables or dealing with modules, having central elements

among their generators.

4. SYZYGIES AND FREE RESOLUTIONS 75

Unlike the commutative case, when the corresponding pair will be just

deleted, we have to perform a reduction, even in the optimized form as

above. Here we can gain some speedup, since computing the Lie bracket

could be significantly faster than performing monomial-by-monomial reduc-

tion steps, especially for large polynomials.

In addition, the routine to compute the Lie bracket can be written more

efficient, using the properties of the non–associative bracket:

⋆ Skew symmetry: ∀a, b ∈ A [a, b] = −[b, a] and [a, a] = 0,

⋆ Leibnitz rule: ∀a, b, c ∈ A [ab, c] = a[b, c] + [a, c]b (that is the map

[·, c] : A → A is a derivation on A).

We are using both criteria and the bracket multiplication in the current

implementation ([53] and Chapter 4).

Remark 4.13. It is quite intriguing, that on one hand the Product

Criterion is too commutative with respect to G–algebras. But on the other

hand, it holds in the case of a free associative algebra:

Recall the overlap relation (Def. §1, 1.7), and suppose that for two free

polynomials f, g ∈ T their leading monomials have no common sub-word.

It means that there exist no such words p, q, that lm(f)q = p lm(g) and

lm(f) does not divide p, lm(g) does not divide q.

Then for such pair (f, g) there is no overlap and hence, if there are

no self-overlaps (that is overlaps in pairs (f, f) and (g, g)), it does already

constitute a Gröbner basis of the two–sided ideal T 〈f, g〉T . So, such pairs

(f, g) are not even taken into account by the Gröbner basis algorithm in a

free associative algebra.

4.5. Hilbert’s Syzygy Theorem and SchreyerResolution Algo-

rithm.

We are going to show that the weak Hilbert’s syzygy theorem holds

for any G–algebra in n variables A, stating that every A–module has a free

resolution of length at most n. Although this result is already known ([30]),

we want to prove it constructively, using Schreyer’s method.

Lemma 4.14. Let G = {g1, . . . , gs} be a minimal Gröbner basis of I ⊂ Ar

=
r
⊕
i=1

Aei such that lm(gi) ∈ {e1, . . . , er}. Let J denote the set of such indices

j, that ej 6∈ {lm(g1), . . . , lm(gs)}. Then

I =
s
⊕
i=1

Agi, Ar/I ∼= ⊕
j∈J

Aej.

Proof. The set G ∪ {ej | j ∈ J} is A–linearly independent, since the

leading terms of its elements are so. This indicates that both sums above

76 2. GRÖBNER BASES IN G–ALGEBRAS

are direct. For f ∈ Ar consider a standard representation

f =
s∑

i=1

aigi + h, lm(h) 6∈ L(G).

This implies h ∈ ⊕
j∈J

Aej, and hence the result. ¤

Lemma 4.15. Let G = {g1, . . . , gs} be a Gröbner basis of I ⊂ Ar,

sorted in such a way that the following holds: if i < j and lm(gi) = xαieν ,

lm(gj) = xαjeν for some ν, then αi ≥ αj lexicographically. Let sij denote

a generator of the module of syzygies of I as above and we have fixed

the Schreyer ordering >1 with respect to G on Ar. If lm(g1), . . . , lm(gs)

do not depend on the variables x1, . . . , xk, then lm(sij) do not depend on

x1, . . . , xk+1.

Proof. Given sij, then i < j and lm(gi) and lm(gj) involve the same

component, say eν . By assumption, lm(gi) = xαieν and lm(gj) = xαjeν .

The exponent vectors are of the form αi = (0, . . . , 0, αi,k+1, . . .) and αj =

(0, . . . , 0, αj,k+1, . . .) with αi,k+1 ≥ αj,k+1. Hence, the exponent vector of mji

has zero at (k + 1)-th place, since max(αi,k+1, αj,k+1) = αi,k+1. Therefore,

lm(sij) = mjiei does not involve xk+1. ¤

Applying the lemma to the higher syzygy modules, we obtain the con-

structive proof of the following theorem.

Theorem 4.16. Let < be a well–ordering on a G–algebra A in n vari-

ables. Then any finitely generated A–module M has a free resolution

0 −→ Fm −→ Fm−1 −→ . . . −→ F0 −→ M −→ 0,

where Fi are free A–modules, of length m ≤ n. In particular, gl. dim A ≤ n.

Proof. Since A is Noetherian, M has a presentation

0 −→ I −→ F0 −→ M −→ 0,

with F0 =
r0⊕

i=1

Aei. Let G = {g1, . . . , gs} be a Gröbner basis of I; assume

that the lm(gi) do not depend on the variables x1, . . . , xk, k ≥ 0. By the

Theorem 4.8, the syzygies s
(1)
ij := sij form a Gröbner basis of Syz(I). By the

Lemma 4.15 we have that lm(sij) do not depend on x1, . . . , xk+1. Hence, we

obtain an exact sequence

0 −→ Ker ϕ1 = Syz(I) −→ F1
ϕ1−→ F0 −→ M −→ 0

where F1 =
r1⊕

i=1

Aεi, ϕ1(εi) = gi, r1 = s. By induction, we construct an exact

sequence

0 −→ Ker ϕn−k −→ Fn−k
ϕn−k−−−→ Fn−k−1 −→ . . .

ϕ2−→ F1
ϕ1−→ F0 −→ M −→ 0

4. SYZYGIES AND FREE RESOLUTIONS 77

with Fi free of rank ri and Ker ϕn−k given by a Gröbner basis {s(n−k)
ij }

such that none of the variables appear in lm(s
(n−k)
ij). By the Lemma 4.14,

Fn−k/ Ker ϕn−k is free A–module, hence replacing Fn−k by it we obtain,

finally, the free resolution we are looking for. So, even if k = 0, that is the

set {lm(gi)} depend on all the variables, the length of the resolution is at

most n. ¤

Now we sketch the algorithm for computing a free resolution using

Schreyer’s method. We assume, that < is a well–ordering on Ar. In the

algorithm below, the following auxiliary procedures are used:

• Rearrange(set of vectors G, set of pairs L): rearranges vectors

from G in such a way, that if i < j and lm(gi) = xαieν and lm(gj) =

xαjeν , then αj <lp αi. The set L of pairs will be filled with all such

pairs (i, j) and returned, whereas the set G is changed;

• RefineWithChainCriterion(set of vectors G, set of pairs L):

refines a set G of vectors with the Chain Criterion 4.9, using the

set of pairs L. Returns nothing but changes the set G;

• Lift (vector p, set of vectors G): computes a left standard rep-

resentation of p with respect to set G = {g1, . . . , gk} (which is

assumed to be a Gröbner basis)

p =
k∑

s=1

vsgs;

and returns a corresponding vector v̄ = (v1, . . . , vk). A special case

of the more general procedure, see Remark 4.5 and the example

thereafter.

Note, that in a G–algebra in n variables, the algorithm will terminate

after at most n steps by the Theorem 4.16. But in a GR–algebra, one should

give a criterion for termination, what could be either a number of steps or,

for certain modules, a presence of a loop in the resolution.

We can build resolutions by other methods, for instance, using succes-

sive computation of syzygy modules and optional minimizations. Over G–

algebras with homogeneous relations, resolution of homogeneous modules

can be computed with the LaScala algorithm, although the generalization

of this method is currently under development.

78 2. GRÖBNER BASES IN G–ALGEBRAS

Algorithm 4.1 SchreyerResolution

Input : matrix G = (g1, . . . , gt), a Gröbner basis of I = A〈G〉;
Output: a set F of matrices Fi of size (ri−1, ri), i = 1, . . . , n such that

· · · −→ Ari
Fi−→ Ari−1 −→ · · · F1−→ Ar0 −→ Ar/I −→ 0

is a free left resolution.

J := Rearrange(G) ;

F1 := G = {g1, . . . , gt};
F2 := ∅;
for (i, j) ∈ J do

h := spoly(gi, gj);

ā(ij) := Lift(h, F1);

sij := mjiεi − ci

cj
mijεj −

t∑

v=1

a
(ij)
ν εν ;

F2 := F2 ∪ sij;

end for

RefineWithChainCriterion(F2, J);

F := {F1}∪ SchreyerResolution(F2);

return F ;

5. Gröbner basics II

5.1. Intersection of Submodules.

Although there exists a generalization of the method 2.13 for intersec-

tion of modules, there is another way to compute the intersection of two

submodules, which uses syzygies. Moreover, the new method leads us to

further advanced applications.

Lemma 5.1. Let M = A〈f1, . . . , fk〉 and N = A〈g1, . . . , gl〉 be two left

submodules of Ar. Let {c1, . . . , cr+k+l} ⊂ A2r be the columns of the 2r ×
(r + k + l)–matrix















1 0
. . . f1 . . . fk 0 . . . 0

0 1

1 0
. . . 0 . . . 0 g1 . . . gl

0 1















.

Let S = Syz({c1, . . . , cr+k+l}). Then M ∩ N = S ∩
r
⊕
i=1

Aei.

5. GRÖBNER BASICS II 79

Proof.

Let s =
r+k+l∑

i=1

siei ∈ S and s1 =
r∑

i=1

siei ∈ S ∩
r
⊕
i=1

Aei.

Since s is a syzygy,

r∑

i=1

siei +
k∑

j=1

sr+jfj = 0, hence s1 = −
k∑

j=1

sr+jfj ∈ M.

Using the isomorphism τ :
2r⊕

i=r+1

Aei

∼=−→
r⊕

i=1

Aei, we obtain

0 = τ(
r∑

i=1

sier+i +
l∑

j=1

sr+k+jcr+k+j) =
r∑

i=1

siei +
l∑

j=1

sr+k+jgj.

Hence s1 ∈ M ∩ N .

Conversely, let s = (s1, . . . , sr) ∈ M ∩N . Then there are three different

presentations of s,

s =
r∑

t=1

stet =
k∑

i=1

aifi =
l∑

j=1

bjgj, ai, bj ∈ A,

from which we construct the corresponding syzygies. ¤

Proceeding with the Lemma by induction, we obtain the following result

for the intersection of a finite number of modules.

Lemma 5.2. Let {Mi = A〈f i
1, . . . , f

i
Ni
〉 ⊂ Ar, 2 ≤ i ≤ m} be the finite

set of modules. Let t = r +
∑

i Ni and {c1, . . . , ct} ⊂ At =
t
⊕
i=1

Aei be the

columns of the (m · r) × t–matrix

C =









Ir×r M1 0 . . . 0

Ir×r 0 M2 . . . 0
...

...
...

. . .

Ir×r 0 0 . . . Mm









Let S = Syz({c1, . . . , ct}). Then
m∩

i=1
Mi = S ∩

r
⊕
i=1

Aei.

5.2. Kernel of a Module Homomorphism (Modulo).

Let A be a G–algebra, T be a proper two–sided ideal T ⊂ A, already

given in its two–sided Gröbner basis {t1, . . . , tp} ⊂ A and consider the GR–

algebra A = A/T .

Suppose there are left submodules U ⊂ Am =
m⊕

i=1

Aei,

V = A〈v1, . . . , vk〉 ⊂ An and left A–modules M = Am/U and N = An/V .

80 2. GRÖBNER BASES IN G–ALGEBRAS

Consider a left A–module homomorphism

φ : Am/U −→ An/V ei 7−→ Φi,

given by the matrix Φ ∈ An×m.

We are interested in the computation of the kernel of φ.

First of all, for a left ideal I = A〈g1, . . . , gp〉 we define the s–th moduliza-

tion to be the left submodule Ms(I) ⊂ As, given by the matrix

Ms(I) =









g1 · · · gp 0 · · · · · · · · · · · · · · ·
0 · · · 0 g1 · · · gp 0 · · · 0
...

. . .
. . .

...
. . .

...

0 · · · 0 0 · · · 0 g1 · · · gp









⊂ As×ps.

Then As = (A/T)s ∼= As/Ms(T) as A–modules. Defining U ′ := U +

Mm(T), V ′ := V + Mn(T), consider the homomorphism of A–modules

ψ : Am Φ−→ An/V ′. Then, Ker φ = NF(Ker ψ + U ′ | U ′) and hence it

suffices to compute Ker ψ.

As we have already seen in 4.2, the kernel of the homomorphism Am Φ−→
An is the submodule Syz(Φ) ⊂ Am.

Let g =
∑m

i=1 giei ∈ Am. It belongs to the Ker ψ if and only if ψ(g) ∈
V ′ = V + Mn(T), that is if there exist {hi}, {rj} ⊂ A, such that

m∑

i=1

gif̄i +
k∑

l=1

hlv̄l +

pn
∑

j=1

rjm̄j = 0.

Let S := Syz({Φ, V, Mn(T)}) ⊂ Am+k+pn. Then the previous equality

means that

(g1, . . . , gm, h1, . . . , hk, r1, . . . , rpn) ∈ S.

Then, by Lemma 2.2, Ker ψ = S ∩ ⊕m
i=1Aei.

Computational Remark 5.3. Computing with S as above, we get

much overhead. Indeed, we are not interested in syzygies, not relevant

to Φ. Therefore, using the Remark 4.4 we can combine two operations

(syzygy and Gröbner basis computations) into one. Namely, in order to

avoid the computation of irrelevant syzygies, we append the identity matrix

from below to Φ and zero matrices to V and Mn(T). In such a manner

we obtain a new matrix Y , and call the Gröbner basis routine with the

ordering, eliminating module components by the Lemma 2.2, getting the

generating set for Ker ψ. This idea appeared in the work of Schönemann

([70]). We formalize the described approach in the following Lemma.

5. GRÖBNER BASICS II 81

Lemma 5.4. Let φ : M → N be a left A–module homomorphism as

before. Define the matrix

Y =

(

Φ V Mn(T)

Im×m 0 0

)

⊂ A(n+m)×(m+k+pn).

Let Z = Y ∩
n+m
⊕

i=n+1
Aei and U ′ = U + Mm(T), then

Ker φ = NF(Z + U ′ | U ′) ⊆ M.

Note, that for K = Ker φ the inclusion Kt · Φt ⊆ (V ′)t holds.

The following Algorithm will be extensively used in this work. Suppose

that the procedure for building a matrix Y as in the Lemma is available as

MatModulo(matrix Φ, matrix V , ideal T).

Algorithm 5.1 Modulo

Assume : algebra A = A/T is given,

Input : matrix Ψ, matrix V , such that

(i) columns of V generate a submodule of An

(ii)Ψ defines a homomorphism ψ : Am Ψ−→ An/V ,

Output: matrix K. ⊲ K = ker ψ

Y := MatModulo(Ψ, V , T);

Z := ElimComponent(Y , {n + 1, . . . , n + m}); ⊲ cf. Remark 2.3

K := NF(Z, T);

return K;

In our implementation there is a command modulo with two arguments.

For A, Ψ, V as above, executing modulo(Ψ, V) returns the kernel of ψ.

Example 5.5 (kernel of a module homomorphism). Consider endomor-

phisms τ : A → A with A = U(sl2)/I with the two–sided ideal I, generated

by {e2, f 2, h2 − 1}. After computing the two–sided Gröbner basis of I, we

see that A is indeed finite–dimensional with the basis {1, e, f, h}.
LIB "ncalg.lib";

def A = makeUsl2(); setring A;

option(redSB); option(redTail);

ideal I = e2,f2,h2-1;

I = twostd(I);

print(matrix(I)); // ideal in a compact form

==> h2-1,fh-f,eh+e,f2,2ef-h-1,e2

qring AI = I; // we move to a GR--algebra

ideal Ke = modulo(e,0);

82 2. GRÖBNER BASES IN G–ALGEBRAS

Ke = std(Ke+std(0)); // normalize Ke wrt factor ideal

Ke;

==> Ke[1]=h-1

==> Ke[2]=e

ideal Kh = modulo(h-1,0);

Kh = std(Kh+std(0));

Kh;

==> Kh[1]=h+1

==> Kh[2]=f

Computing with more homomorphisms like in the example, we get the

following table of kernels.

For non–zero k ∈ K, ker(τ : 1 7→ e + k) = ker(τ : 1 7→ f + k) = 0.

For k2 6= 1, ker(τ : 1 7→ h + k) = 0.

ker(τ : 1 7→ e) = ker(τ : 1 7→ h + 1) = A〈e, h − 1〉.
ker(τ : 1 7→ f) = ker(τ : 1 7→ h − 1) = A〈f, h + 1〉.

Corollary 5.6. (2nd Isomorphism Theorem)

Let M1,M2 ∈ Aℓ be two left submodules. By the 2nd Isomorphism

Theorem, we have M1/(M1 ∩ M2) ∼= (M1 + M2)/M2.

Illustrating the situation with the diagram Ak M1−→ Aℓ M2←− Am, we see

that indeed, M1/(M1 ∩ M2) ∼= Aℓ/ Ker φ, where φ : Ak M1−→ Aℓ/M2.

The presentation matrix for M1/(M1∩M2) equals Ker φ and hence could

be computed as Modulo(M1,M2).

We can compute the intersection of a finite set of modules with the

algorithm Modulo in a more general setting, compared to Lemma 5.2.

Proposition 5.7. Let A be a GR–algebra and

{Mi = A〈f i
1, . . . , f

i
Ni
〉 ⊂ Ar, 2 ≤ i ≤ m} be a finite set of submodules.

Assume, that each Mi is actually a submodule of Ani , where ni ≤ ni+1 ≤ r.

Consider the left homomorphism of A–modules

φ : Am −→ (An1/M1) ⊕ · · · ⊕ (Anm/Mm), ei 7→ Ini×ni
.

Then
m∩

i=1
Mi can be computed as

Modulo(







In1×n1

...

Inm×nm







,







M1 . . . 0
...

. . .
...

0 . . . Mm







).

5. GRÖBNER BASICS II 83

Remark 5.8. (Preimage of a Submodule)

For any proper left submodule W ⊂ An/V , φ induces a homomorphism

φW : Am/U → An/(V + W) and φ−1(W) = Ker φW . So, the computation

of a kernel of a module homomorphism and a preimage of a submodule are

equivalent.

Left, Right Kernels and Formal Adjoint

Some applications (like from Algebraic System Theory, cf. [19]) require

computations of left and right kernels of a polynomial matrix M . Let us

adopt the classical definition to the non–commutative situation.

Definition 5.9. Let M be an n × m matrix with entries in some K–

algebra A. Such matrix is said to have full column (resp. row) rank, if its

columns (resp. rows) are A–linearly independent.

A left kernel of M is a full row rank matrix L ∈ Mat(ℓ × n,A) with a

biggest possible ℓ, such that L · M = 0.

A right kernel of M is a full row rank matrix R ∈ Mat(m × r, A) with

a biggest possible r, such that M · R = 0.

Since operations of transposition and taking the opposite object mutu-

ally commute, A. Quadrat proposed in [19] the notation of a formal adjoint.

Definition 5.10. Let A be a K–algebra and M ∈ Mat(n × m, A).

A formal adjoint of a left (resp. right) submodule M ⊂ An is the right

(resp. left) submodule Adj(M) = (Mopp)t ⊂ (Aopp)m.

One can immediately see, that Adj(Adj(M)) = M , so the formal adjoint

(like the transposition in the commutative case) has the property of an

involution.

Proposition 5.11. Let A be a GR–algebra and M ∈ Mat(n × m,A).

• A left kernel of M can be computed as Modulo(M t, 0)t.

• A right kernel of M can be computed as Adj(Modulo(Adj(M), 0)).

Proof. Since for S = Syz(M) holds St · M t = 0, a left kernel L of M

over a G–algebra A could be computed as L = Syz(M t)t. In a GR–algebra

A, for K =Modulo(M t, 0) a left kernel of M over A is just Kt.

Let R be a right kernel of M . Then, MR = 0. Passing to the opposite

algebra, we have RoppMopp = 0, hence Ropp is a left kernel for a left sub-

module Mopp and can be computed by taking R = (Syz(Mopp)t)t)opp) (cf.

§1, 5). The more general statement follows analogously. ¤

84 2. GRÖBNER BASES IN G–ALGEBRAS

5.3. Tensor Product and Intersection of Modules.

Let U ⊂ Am, V,W ⊂ An be submodules.

For L = An/W and N = An/V the intersection L ∩N is isomorphic to

An/A〈V, W 〉.
For any two left modules M = Am/U and N = An/V ,

M ⊗A N is a left A⊗A A–module.

Since Am⊗AAn ∼= (A⊗AA)nm as A⊗AA–modules, consider a submod-

ule L := U⊗In×n+Im×m⊗V ⊆ (A⊗AA)nm, where a tensor sign means just

a tensor multiplication of matrices. Then M ⊗A N as an A⊗A A–module

is isomorphic to (A⊗A A)nm/L (cf. [42]).

5.4. Quotient and Annihilator.

Quotient modules. Let A be a K–algebra. Let S, T be non–empty

subsets of A. We define the left quotient of S by T to be

S :A T := {a ∈ A | aT ⊆ S}.

Lemma 5.12. Let A be an integral K–algebra.

1) If S is a left module, then S :A T is a left ideal for any T .

2) If T is a left module, then S :A T is a right ideal for any S.

3) If S and T are left modules, S :A T is a two–sided ideal.

Proof.

1) For all a ∈ S : T , we have at ∈ S, ∀t ∈ T . Then ∀b ∈ A, b(at) =

(ba)t ∈ S. Hence, ∀b ∈ A, ba ∈ S :A T .

2) For all a ∈ S : T and any b ∈ A, (ab)t = a(bt) = at′ ∈ S. The last

statement follows from 1) and 2). ¤

Lemma 5.13. Let A be a GR–algebra.

1) If S is a left module and T is a finite set {t1, . . . , tm} ⊂ A, then

S :A T =
⋂m

i=1 S :A {ti}. This left ideal can be efficiently computed as

Modulo((t1, . . . , tm)t,Mm(I)).

2) If S and T are (A,A)–bimodules and the two–sided Gröbner basis of

T is {t1, . . . , tm} ⊂ Aℓ, then S :A T =
⋂m

i=1 S :A {ti}. This two–sided ideal

can be efficiently computed as

TwoSidedGröbnerBasis
(

Modulo((t1, . . . , tm)t,Mm(I)), NF
)
.

5. GRÖBNER BASICS II 85

Proof.

1) It is clear, that S : {t} = {a ∈ A | at ∈ S} is just the result of

Modulo(t, S). The rest will be done like in 5.7.

2) See Lemma 3.15 of [14]. Note, that we get the system of two–sided

generators, which requires the execution of the TwoSidedGröbnerBasis

algorithm. ¤

Annihilators. Now, let us turn our attention to annihilators.

Definition 5.14. Let M be an A–module and v ∈ M . Then

• the annihilator of the element v in M is a left ideal

AnnM
A (v) = {a ∈ A | av = 0} = 〈0〉 : {v},

• the annihilator of the module M is a two–sided ideal

AnnA M = {a ∈ A | aM = 0} = 〈0〉 : M,

• a primitive ideal is an annihilator of a simple left A-module.

The annihilator of an element of a module can be obtained by computing

syzygies with the following lemma.

Lemma 5.15. Let A be a GR–algebra and M = AN/IM be a left A–

module. Suppose that IM is generated by {m1, . . . , mk} ⊂ AN . For any

m ∈ M , AnnM
A (m) is the left ideal generated by the first components of

generators of the syzygy module Syz(m,m1, . . . , mk) ⊆ Ak+1 and hence,

can be computed by Modulo (m, IM).

Proof.

∀a = (a0, a1, . . . , ak) ∈ Syz(m, m1, . . . , mk), a0m +
k∑

i=1

aimi = 0,

hence a0m = 0 mod IM .

¤

Example 5.16. Let A = U(sl2) over the field K(α). Consider the ideal

IM = A〈e, h − α〉 ⊂ A. Then the Verma module M = A/IM is equal to

K[f] as a vector-space. Performing computations of annihilators of {fn},
we obtain that AnnM

A (f) = A〈e2, ef − 2α + 2, h − α + 2〉,
AnnM

A (f 3) = A〈e4, ef − 4α + 12, h − α + 6〉 and so on.

We conclude, that

∀ n ∈ N AnnM
A (fn) = A〈en+1, ef − (n + 1)(α − n), h − α + 2n〉.

86 2. GRÖBNER BASES IN G–ALGEBRAS

Lemma 5.17. (Annihilator of a Finite Dimensional Module)

Let A be a GR–algebra and there is a left A–module M with

GKdim(M) = 0 and dimK M = d ≥ 1. Suppose that the K–basis of M is

{v1, . . . , vd}. Then

AnnA M =
d⋂

i=1

AnnM
A vi,

where AnnM
A vi is computed by the previous Lemma (5.15) and the in-

tersection by Lemma 5.7.

Example 5.18. Suppose that char K = 0. For a positive integer N

consider the set

FN+1 = {eN+1, fN+1, (h − N) · (h − N + 2) · . . . · (h + N)} ⊂ U(sl2)

and a left ideal LN =U(sl2) 〈FN〉. Let MN be a left module U(sl2)/LN . Let

us denote by TN a two–sided ideal, generated by FN .

L1 and L2 are indeed two–sided ideals. For N ≥ 3, LN are left ideals

(see 3.4 for explicit generators of L3 and T3). Computing the annihilators,

we obtain

AnnU(sl2) MN = TN+2, ∀N ≥ 3.

5.5. Annihilator of a Finitely Generated Module.

Let A be a G–algebra in variables x1, . . . , xn and Z = Z(A) be its center.

Let P ⊂ As, consider the module M = As/P , generated by the canonical

vectors e1, . . . , es. If GKdim(M) = 0, Lemma 5.17 delivers an algorithm for

the annihilator. In what follows we assume GKdim(M) ≥ 1.

Define the pre-annihilator of M to be the left ideal

preAnnA M :=
s⋂

j=1

AnnM
A (ej) ⊆ A.

Lemma 5.19. The following hold:

1) AnnA M = AnnA(A/ preAnnA M),

2) for a left ideal L, AnnA A/L = {a ∈ L | a · r ∈ L ∀r ∈ A} is the

maximal two–sided ideal contained in L,

3) if the maximal ideal m = A〈x1, . . . , xn〉A is proper in A, for a left

ideal L we have AnnA A/L = L :A m,

4) for the center Z(A) of A, we have

Z(A) ∩ preAnnA M = Z(A) ∩ AnnA M .

Proof. 1) Let L := preAnnA M . It is clear, that L ⊃ Ann M =: S.

Since S is a two–sided ideal, ∀a ∈ A, we have Sa ⊆ S ⊂ L. Conversely, let

5. GRÖBNER BASICS II 87

T = Ann(A/L). Consider the normal form representation of m =
∑

i miei ∈
M . Then mi 6= 0 implies mi 6∈ L. Then, ∀t ∈ T and for every i, tmi ∈ L

and hence, tm = 0.

2) Indeed, Ann A/L is the maximal two–sided ideal of a left ideal L.

Let T = {a ∈ L | a · r ∈ L ∀r ∈ A}. For some t ∈ T , assume there

exists r0 ∈ A such that tr0 ∈ L r T . Then there exists such r1 ∈ A, that

tr0r1 6∈ L, what contradicts t ∈ T . Hence, ∀r ∈ A, ∀t ∈ T tr ∈ T and T is

the maximal two–sided ideal of L. So, T = Ann A/L.

3) Consider first L :A A = {a ∈ A | ∀ b ∈ A, ab ⊆ L}. For every

x ∈ L :A A, and b ∈ K ⊂ A we have xb ∈ L, so x ∈ L and L :A A ⊂ L.

Hence L :A A can be written as {a ∈ L | ∀ b ∈ A, ab ⊆ L}, what is equal to

Ann A/L as we have already shown. Moreover, we can pass to m instead of A

inside the formula and get Ann A/L = {a ∈ L | ∀ b ∈ m, ab ⊆ L} = L :A m.

4) Since preAnn(M) ⊃ AnnA M too, hence Z(A)∩preAnn(M) ⊃ Z(A)∩
AnnA M . Now, suppose z ∈ Z(A) ∩ preAnn(M).

∀v ∈ M, ∃{aj} ⊂ A such that v =
N∑

j=1

ajej. Then zv =
N∑

j=1

ajzej = 0,

and hence, z ∈ AnnA M .

¤

We see, that the computation of the annihilator Ann(A/L) reduces to

the computation of L :A m. Since both ideals L and m are left ideals, the

quotient is a two–sided ideal, hence the method we use in the commutative

case (cf. §3, 3.6 for a variation of it) is not suitable for this situation.

Nevertheless, we proceed with the investigation. Let L0 = L and for

i ≥ 0, define the i-th approximation ideal Li+1 := {a ∈ Li | a · xk ∈
Li ∀1 ≤ k ≤ n}. It is easy to see, that each Li is indeed a left ideal and

Li ⊃ Li+1.

Suppose there exists t ∈ L, such that this element is common to the com-

pletely reduced normalized Gröbner bases (say, obtained with the algorithm

RedMinGB, cf. 2.1) of Li and Li+1. It means, that {t, tx1, . . . , txn} ⊂ Li,

hence t is a two–sided generator inside Li and Li+k, ∀ k ≥ 1. Respectively,

all such t in Li form a two–sided ideal, which we denote by Ti+1 ⊂ Li+1 (we

set T0 = A〈0〉A). It is clear, that Ti ⊇ Ti+k,∀ k ≥ 1. There are the following

inclusions

L = L0 · · · ⊃ Li ⊃ Li+1 ⊃ · · · ⊃ Ls ⊃ Ls+1 ⊃ . . .

∪ ∪ ∪ ∪ ∪
T0 · · · ⊆ Ti ⊆ Ti+1 ⊆ · · · ⊆ Ts = Ts+1 =

88 2. GRÖBNER BASES IN G–ALGEBRAS

Since A is Noetherian, the ascending sequence of two–sided ideals Ti will

always terminate, although in general we cannot predict at which point the

sequence will mutually stabilize. But we are able to compute every Ti as

the subsequent use of the following algorithm AproxStep.

Having the Algorithm AproxStep, the search for the maximal two–

sided ideal in a given left ideal can be described as follows. Suppose we

have certain termination criterion, encoded as a boolean function Crite-

rion(X, Y) for two arguments, L and T as above. The computation will

stop as soon as this function returns TRUE.

Algorithm MaxTwosidedInLeft(L, T,Criterion):

We initialize L0 := L and T0 := 0. Further on, we compute

{L, T} := AproxStep({L, T}) in the While loop with the break condition

(Criterion(L, T) ==TRUE).

Algorithm 5.2 AproxStep

Input: {I, T}, where I = Li, a set of left generators;

T = Ti, a two–sided Gröbner basis;

Output: {J, T ′}, where J = Lk, a set of left generators;

T ′ = Tk ⊃ Ti, a two–sided Gröbner basis.

repeat

I := RedMinGB(I) = {f1, . . . , fm};
for i = 1 to m do

for j = 1 to n do

V [i, j] := NF
(
fi · xj | I

)
;

end for

end for

if V = 〈0〉 then

Print ”I is a two–sided ideal”; return (I); ⊲ quit the loop

end if

S := Modulo (Transpose(V) , I);

if S = 〈0〉 then

Print ”0 is the only maximal ideal”; return (0); ⊲ quit the loop

end if

J := RedMinGB(St · I t);

T ′ := GetCommonElements(I, J);

T ′ := TwosidedGröbnerBasis(T ′);

until (T ′ 6= T)

return ({J, T ′});

5. GRÖBNER BASICS II 89

Proof. (of 5.2) Correctness: starting from the set of left generators

I ⊂ A, we compute at first its its completely reduced normalized Gröbner

basis I = {f1, . . . , fm}. Then for every nonzero f ∈ I there exists a standard

left presentation

f =
m∑

i=1

aifi, ai ∈ A, such that lm(f) ≥ lm(aifi), aifi 6= 0 ∀ i = 1 . . .m.

Then for any 1 ≤ i ≤ m, 1 ≤ j ≤ n we compute the normal forms vij =

NF(fixj | I) and standard presentations

fixj =
m∑

k=1

bij
k fk + vij. Then fxj =

m∑

i=1

aifixj =
m∑

i=1

ai

m∑

k=1

bij
k fk +

m∑

i=1

aivij.

If all the vij are zero, the ideal I is indeed two–sided, hence the output

will be I itself. If there are some nonzero vij, we have

f · xj ∈ A〈I〉 ⇔
m∑

i=1

aivij ∈ A〈I〉 ⇔ ∃{bi} ⊂ A,

m∑

i=1

aivij +
m∑

i=1

bifi = 0.

Now we are looking for ai, satisfying the last equality ∀1 ≤ j ≤ n.

We compute the kernel S of the homomorphism of modules, given by the

matrix V (which is a transposed matrix to (vij))

S −→ An V−→ An/Mn(I),

where Mn(I) was defined in the Section 5.2.

If S = 0, the only two–sided ideal contained in I is the zero ideal.

Otherwise, we compute

J = St · I t, that is Ji =
m∑

j=1

Sijfj,

and, after all, a minimal left Gröbner basis of J . We repeat this procedure

until we get such J , that it has more common elements (as a set of genera-

tors) with I, than Ti and the image of a two–sided ideal, generated by these

elements T ′ in A/Ti is nonzero.

Termination: Unfortunately, the algorithm does not terminate in the

general case, but only when there is a two–sided ideal, bigger than T or in

two exceptional situations (V = 0 or S = 0), described above. In particular,

if T is already the annihilator, we cannot prove it with the algorithm.

Efficiency: The algorithm makes heavy use of Gröbner bases techniques

and therefore should be implemented carefully. During each step subrou-

tines LeftGröbnerBasis, TwosidedGröbnerBasis and Modulo are

called; such computations are quite nontrivial even for small examples. In

our experimental implementation, all subroutines like above are using the

90 2. GRÖBNER BASES IN G–ALGEBRAS

LeftGröbnerBasis algorithm. On the other side, we know no alternative

algorithm for computing the annihilator of a general module. ¤

Let us illustrate how AproxStep and MaxTwosidedInLeft work in

practice, first without a termination criterion.

Example 5.20. Consider A = U(sl2) over the field K(α). Then from

the parametric ideal L = A〈e, h − α〉 ⊂ A we build the Verma module

M = A/L.

At first, L is already given in its Gröbner basis and no generator of it

has the two–sided property. Hence, T0 = 0 and we describe in detail the

first call of the algorithm AproxStep(L, T0).

Computing vij, we obtain two nonzero elements v12 = α and v22 = −2f .

Then, the result of the Modulo computation is a module, generated by

the columns of the matrix
(

h − α 2f 0 e 2

0 α h − α + 2 0 e

)

.

Hence the generators of J are {(h−α)e, 2fe+α(h−α), (h−α+2)(h−
α), e2, 2e + e(h − α)}. After computing the Gröbner basis of J , we get

L(1) = J = { h2−2(α−1)h+α2−2α, eh−(α−2)e, 2ef+(α−2)h−α2, e2 }.

So, T(1) = T0. Performing the second iteration (that is, calling Aprox-

Step(L(1), T(1))), we obtain

L(2) = { 4ef + h2 − 2h − α2 − 2α, h3 − . . . , eh2 − . . . , e2h − . . . , e3 }.

Since there are no common elements between L(1), L(2), hence T(2) = 0

and we perform the iteration again:

L(3) = { 4ef +h2−2h−α2−2α, h4− . . . , eh3− . . . , e2h2− . . . , e3h− . . . , e4 }.

We arrive at the T(3) = A〈4ef + h2 − 2h − α(α + 2)〉A ⊂ L. Proceeding

with more iterations experimentally, we get no more elements, hence we

may conjecture that T(3) is the answer. (See the proof of it in example

5.21.)

Bounds for Gel’fand–Kirillov dimension.

Let M be an A–module. We know, that in general, due to [59],

GKdim(EndA M) ≤ GKdim(A/ AnnA M) ≤ GKdim(A).

The lower bound is not effective indeed. Consider a simple infinite–

dimensional module M , then EndA M = K, GKdim(EndA M) = 0 but

GKdim(A/ AnnA M) ≥ 1. However, if there are modules for which we

5. GRÖBNER BASICS II 91

know that GKdim(EndA M) = GKdim(A/ AnnA M), the bounds becomes

effective, if there would be an algorithm for computing EndA M , what seems

to be quite nontrivial.

For T = AnnA M we have, in particular, GKdim(M) = GKdim(A/L) ≤
GKdim(A/T) ≤ GKdim(A).

If the Gel’fand–Kirillov dimension of A/ AnnA M can be computed from

the given data, the algorithm will stop after finitely many steps. Then

the Criterion function will be just the check for the Gel’fand–Kirillov

dimensions of A/L and A/T .

For instance, the algorithm MaxTwosidedInLeft will terminate for

holonomic modules , for which GKdim(A/ AnnA M) = 2 ·GKdim(M) holds

(recall §1, 4.12).

Vogan showed in [76], that Harish–Chandra modules (hence, also mod-

ules in the category O) over universal enveloping algebras U(g) of finite

dimensional semisimple Lie algebras g are holonomic.

Having an algorithm for computing the intersection T of preAnn(M)

with the center of an algebra Z(A) (described as the Algorithm §3, 2.1),

we can compute the Gel’fand–Kirillov dimension of T and compare it with

GKdim(M). Quite often this will give us a hint to the answer, like the

following example illustrates.

Example 5.21. Let us continue with the example 5.20. We have ob-

tained the ideal T(3) = 〈4ef + h2 − 2h − α(α + 2)〉 ⊂ L with the

MaxTwosidedInLeft up to the third iteration.

Since A/L is a Verma module (hence, by Vogan it is holonomic),

GKdim(A/L) = 1 and GKdim(A/T(3)) = 2, we conclude that

AnnA A/L = T(3).

In this case we may not perform any iterations at all, since intersecting

L with the center of A, we obtain L ∩ Z(A) = T(3) and GKdim(T(3)) = 2 =

2 GKdim(L). The generator of T(3) is nothing else but the Casimir element

C of A minus the central character of L, χ(L) = α(α + 2) (see Chapter 3

for further details).

In order to complete the treatment, consider more interesting examples.

Example 5.22. Consider A = U(sl(3, K)) for char K = 0. We consider

two modules M and M ′, described in detail in the forthcoming Example §3,

2.6. The center of A is generated by the elements C2, C3, explicitly given in

the §5, 1.3.

The parametric Verma module M = A/I, I = A〈xα, xβ, xγ, hα−a, hβ−b〉
is holonomic with GKdim(M) = 3. The intersection of preAnn(M) = I

with the center Z(A) gives us T = A〈C2 − a2 − ab− b2 − 3a− 3b, C3 − 2a3 −

92 2. GRÖBNER BASES IN G–ALGEBRAS

3a2b+3ab2 +2b3−6a2 +3ab+12b2 +18b〉A (we present it, for simplicity, not

in two–sided Gröbner basis). We have GKdim(A/T) = 6 = 2 GKdim(M),

hence T = AnnA M .

The parametric module M ′ = A/I ′, I ′ = A〈xβ, xγ, hα − a, hβ − b〉, it

is not a Verma module. Its intersection with the center Z(A) is equal to

T ′ = A〈3(a+2b + 2)C2 −C3 − (a+2b)(a+2b+ 3)(a+ 2b + 6)〉A (T ′ is given

by its two–sided Gröbner basis). Computing both dimensions, we obtain

GKdim(M ′) = 4 and GKdim(A/T ′) = 7. If M ′ would be holonomic, its

annihilator would have dimension 8 = GKdim(A), what is clearly impos-

sible. As for ideals, we see that I ′ ⊂ I, hence AnnA M ′ ⊆ AnnA M and

8 > GKdim(A/ AnnA M ′) ≥ GKdim(A/T) = 6.

Using MaxTwosidedInLeft Algorithm, we get no more elements than

of T ′ with several iterations. Since GKdim(A/T ′) = 7, we conjecture that

AnnA M ′ = T ′.

6. Conclusion and Future Work

In the recent work [12], M. Brickenstein applied new interesting tech-

niques and tricks for improving the performance of the Buchberger’s algo-

rithm in the commutative case. It seems, that many improvements could be

generalized to the setting of G–algebras. In particular, some new Criteria

for S–pairs were developed and a good impact on the performance was re-

ported. Replacing the usual standard representation (1.8) with the so-called

”t–representation” together with a reformulation and use of the Chain Cri-

terion decreased further the number of useless reductions of S–pairs in the

algorithm. Also, ideas of Faugère [26] might have a generalization to the

non–commutative setting.

In contrast to [14] and [56], we pay much attention to the efficiency of

algorithms, where we make use of our experience from working with concrete

and sometimes hard examples in our implementation. We believe, that also

the secondary applications (like 5.11), which were described, will make the

spectrum of possible applications of Gröbner basics even bigger.

We propose to include the computation of different annihilators (5.4)

into non–commutative Gröbner basics, due to their exceptional importance.

However, the annihilator of a finitely generated module is available at the

moment only for holonomic modules; the algorithm we provide is very ex-

pensive. This must be investigated further, we hope there will be more

results, connecting dimensions of an annihilator of a module with dimen-

sions of module itself, its endomorphism ring et cetera.

6. CONCLUSION AND FUTURE WORK 93

As we have seen, many applications are done by following the guide-

lines, coming from the commutative case. However, we hope, that the

intuitive difference has also become clear to the reader. In particular, the

non–commutative anomalies, we have encountered in the elimination (Ex-

amples 2.10 and 2.11), the whole idea of two–sided Gröbner basis, different

role of Criteria (Subsection 4.4), explicitly more complicated syzygies et

cetera show, that despite many similarities with the commutative case, one

should develop a distinctly different intuition while working with the GR–

algebras.

CHAPTER 3

Morphisms of GR–algebras

He has drawn a scheme, which, as it

became clear later, had no remotest

connection to the discussion which

followed.

Nikolay Klyuev, Between two chairs

In this chapter we are going to investigate morphisms between GR–

algebras. In particular, we develop the algorithms for computing the preim-

age of an ideal under a morphism of two GR–algebras and use them for many

interesting applications.

This chapter is organized as follows. In the Section 1 we introduce subal-

gebras and morphisms. We describe several natural subalgebras, especially

the center and centralizers (1.1) and discuss their properties and computa-

tional methods, which will be continued in 2.6. In 1.2 we turn our attention

to maps and elaborate a criterion for a map to be a morphism.

In the Section 2 we investigate the case, where the source of morphism

is a commutative algebra (the target being non–commutative). Then the

Algorithm 2.1, computing a preimage of an ideal under such a morphism,

is presented. It is a building block for a whole family of algorithms, like

the algebraic dependency of pairwise commuting polynomials (2.3) and the

membership of a polynomial in a commutative subalgebra (2.4).

The whole Section 3 is devoted to the development of an important

central character decomposition algorithm, which is formalized in the Algo-

rithm 3.2.

In the Section 4, we generalize this by allowing also the source to be

non–commutative and propose two different approaches for computation of

kernels and preimages, showing both the merits and the limitations of them.

We provide many interesting examples, relevant to applications. All of

them are computed with the implementation of the methods in Plural.

1. Subalgebras and Morphisms

Two recent books, namely by H. Li ([56], 2002) and by J. Bueso et.al.

([14], 2003) feature many interesting applications of Gröbner bases, related

95

96 3. MORPHISMS OF GR–ALGEBRAS

in particular to Ring Theory and to Representation Theory of algebras.

However, the obviously important question such as the algorithmic treat-

ment of morphisms between GR–algebras and computations with subal-

gebras was not discussed in general before, to the best of our knowledge.

In the article [64] the authors presented an algorithm for computing the

preimage of a left ideal under a special map K[s] → K〈x, d | dx = xd + 1〉,
s 7→ xd and its generalization for the multivariate case

(
n⊗

i=1

)K K[si] −→ (
n⊗

i=1

)K K〈xi, di | dixi = xidi + 1〉, si 7→ xidi.

We must note, that the approach, proposed in [64], seems to be too

specific, since it originates from the theory of D–modules and it is indeed

based on this theory. Therefore, this approach cannot be transfered to the

more general situation. However, the methods we propose allow to compute

such preimages using a general framework. The corresponding implementa-

tion will be a part of the forthcoming Singular:Plural library dmod.lib,

which contains procedures for algorithms in the theory of D–modules.

Our algorithms are of relevance, since there are many applications in

Representation Theory, Theoretical Physics and other fields, requiring the

algorithmic treatment of morphisms.

We are going to present the algorithms and applications together with

the efficient implementation.

1.1. Subalgebras.

For a G–algebra A, there are several natural commutative subalgebras.

• Z(A) := {z ∈ A | za = az ∀ a ∈ A} ⊇ K is called the center of A

([23]); indeed, it is defined for any K–algebra;

• if there exists a Cartan subalgebra H(A) ([23]), it is commutative;

• if H(A) exists, we can construct a bigger subalgebra

CZ(A) := H(A) ⊗K Z(A), which is commutative;

• Gel’fand–Zetlin subalgebra GZ(A) ([25]), if it exists.

Note, that if both CZ(A) and GZ(A) exist, then GZ(A) ⊇ CZ(A) ⊃
Z(A) holds. Ovsienko ([65]) proved, that if GZ(A) exists, it is the biggest

commutative subalgebra of A.

Note, that the computation of Z(A) (up to given degree) is implemented

while the construction of Gel’fand–Zetlin subalgebra has not been yet com-

pletely algorithmized. A Cartan subalgebra H(A) can be trivially computed

for universal enveloping algebras of semi–simple Lie algebras and their quan-

tized counterparts; it is not clear whether this notion makes sense in general.

1. SUBALGEBRAS AND MORPHISMS 97

The center and the Gel’fand–Zetlin subalgebra play a specially impor-

tant role among the commutative subalgebras.

In Representation Theory there are many constructions involving them

and there is a need for, in particular, intersection of modules with such

subalgebras. Algebraic dependency of pairwise commuting elements is of

big importance, for example, in Mathematical Physics.

Notation: Recall, that [f, a] := fa − af for a ∈ A and f an element

from some (A, A)–bimodule.

Lemma 1.1. Let A be a G–algebra and S = {z1, . . . , zm},m ≥ 2 a

minimal set of generators of Z = Z(A). Consider the two–sided ideal T ,

generated by S. Then

1) For any pair (zi, zj), i 6= j, the syzygy module of the set {zi, zj} is

generated by (−zj, zi)
t ∈ A2.

2) If there exists at least one pair (zi, zj), such that lm(zi) | lm(zj), then

{z1, . . . , zm} is strictly contained in a Gröbner basis of T .

Proof. 1) It is clear, that (−zj, zi)
t is a syzygy of {zi, zj}. We have to

show that all syzygies of {zi, zj} are generated by the (−zj, zi)
t.

Let a1, a2 ∈ A be such, that a1z1 +a2z2 = 0. If lm z1 ∤ lm z2, then we see

immediately that lm(z1)| lm(a2) and lm(z2)| lm(a1) and hence, the syzygy

(a1, a2)
t must be a multiple of (−z2, z1)

t.

If lm z1| lm z2, then there exist b1, b2 ∈ A, such that z2 = b1z1 + b2,

with b2 6= 0 and lm(z1) ∤ lm(b2). Then (a1 + a2b1)z1 + a2b2 = 0 and

lm(lm(z1) lm(a1 + a2b1)) = lm(a2b2). Since lm(z1) ∤ lm(b2), lm(z1) must

divide lm(a2), and, consequently, lm(z2) divides lm(a1). Hence (−z2, z1)
t is

a minimal generator of a syzygy module.

2) Take a pair (z1, z2) from S with lm(z1) | lm(z2). Then z2 = b1z1 + b2

with either b2 = 0 or b2 6= 0 and lm(z1) ∤ lm(b2). Suppose b2 = 0, then

b1 ∈ Z by the following argument. Assume that b1 6∈ Z, then ∃b ∈ A, such

that [b1, b] 6= 0. Now 0 = [z2 − b1z1, b] = [b, b1z1] = [b, b1]z1, what is true

only if [b1, b] = 0.

Now, let b2 6= 0, hence lm(z1) ∤ lm(b2). If b2 ∈ Z, z2 − b1z1 ∈ Z, what

is true if and only if b1 ∈ Z, what contradicts the minimality of the set S.

Hence, b2 6∈ Z and a Gröbner basis of S will get additional elements. ¤

Lemma 1.2. Let A be a G–algebra over a field K and S = {z1, . . . , zm} ⊂
A be a set of polynomials, such that ∀i 6= j, lm(zi) ∤ lm(zj). Suppose that,

in addition, there are ζij ∈ K∗, such that ∀i < j, zjzi = ζijzizj. Consider a

left ideal I, generated by S. Then S is a left Gröbner basis of I.

98 3. MORPHISMS OF GR–ALGEBRAS

Proof. Let ∀i, zi = Li + Ti, Li = lm(zi) ∈ Mon(A) and qij =
lc(Ljzi)

lc(Lizj)
.

Then spoly(zi, zj) = Ljzi − qijLizj = (zj − Tj)zi − qij(zi − Ti)zj = (ζij −
qij)zizj − Tjzi + qijTizj. By the same argumentation, as in the proof of the

Product Criterion §2, 4.11 we see, that lm(Tjzi) 6= lm(Tizj) and both of

these monomials are strictly smaller than lm(zizj). Hence, spoly(zi, zj) is

reduced to zero with respect to the set {zi, zj}, ∀1 ≤ i < j ≤ m. Hence, by

the Buchberger’s Criterion §2, 1.16, S is a left Gröbner basis of I. ¤

The situation, where leading monomials of {z1, . . . , zm} do not divide

each other at all is quite rare, but important. In the following example, both

sets of generators of centers S and T consist only of powers of variables.

Example 1.3. Taking a Weyl algebra Wn(Fp) over a field Fp of prime

characteristic p, we can show that Z(Wn(Fp)) = K[{xp
i , d

p
i }]. Denote the

set of the generators of the center by S = {xp
i , d

p
i | 1 ≤ i ≤ n}.

In a similar way, it can be proved that in quasi-commutative algebras

Kq[x1, . . . , xn], where q in a primitive, say, p–th root of unity, holds

Z(Kq[x1, . . . , xn]) = K[{xp
i }]. Denote the set of the generators of the center

by T = {xp
i | 1 ≤ i ≤ n}.

Applying the Lemma 1.2 to the sets of central elements, we conclude

that both S and T are two–sided Gröbner bases of corresponding two–sided

ideals. Hence, in particular, the modules Wn(Fp)/〈S〉 and

Kq[x1, . . . , xn]/〈T 〉 are finite dimensional.

Definition 1.4. For a non–empty subset F ⊆ Ar and a subalgebra

S ⊆ A, the subalgebra CA(F, S) = {a ∈ S | [f, a] = 0 ∀f ∈ F} is called

the centralizer of F with respect to S. If A is fixed, we often write just

C(F, S).

It is obvious, that ∀f ∈ A we have K ⊆ Z(A) ⊆ CA({f}, A) ⊆ A, but

in general, CA(A〈f〉, A) $ CA({f}, A).

Lemma 1.5. Let A be an integral domain over K. Then, for any finitely

generated sub–(A,A)–bimodule M , CA(M, A) = Z(A).

Proof. Let M ⊆ Ak be generated by {f1, . . . , fn}. Since Z(A) ⊆
CA(M,A), we have to prove CA(M, A) ⊆ Z(A). ∀{b1, . . . , bn} ⊂ A and for

any a ∈ CA(M, A),

0 =
n∑

i=1

[bifi, a] =
n∑

i=1

bi [fi, a]
︸ ︷︷ ︸

0

+
n∑

i=1

[bi, a]fi

Suppose there exists such a ∈ CA(M, A), that a 6∈ Z(A). Then the

inclusion CA({a}, A) ⊂ A is strict and hence, there exists such b1 ∈ A, that

1. SUBALGEBRAS AND MORPHISMS 99

[b1, a] 6= 0. Choosing all other bi to be centralizing with respect to a, we

obtain [b1, a]f1 = 0 and, hence, [b1, a] = 0, what is a contradiction. This

shows that CA(M,A) ⊆ Z(A) and indeed CA(M, A) = Z(A). ¤

The Lemma shows us that proper (and hence, interesting) subalgebras

of integral domains appear as centralizers of finite subsets and not of sub-

modules. In particular, Lemma holds true for one–sided ideals of A.

Remark 1.6. Very often CA(f,A) is generated by pairwise commutative

elements, although this is not true in general. Indeed, since CA(f, A) is a

subalgebra, for any a1, a2 ∈ CA(f,A), [ai, f] = 0 and hence, [[a1, a2], f] = 0.

Of course, it does not imply [a1, a2] = 0.

Consider the second Weyl algebra W2 = K〈x1, x2, ∂1, ∂2 | [∂1, x1] =

1, [∂2, x2] = 1〉 over K = C. Then, C(x1∂1 − x2∂2,W2) is generated by the

set of monomials {x1x2, x1∂1, x2∂2, ∂1∂2} and, for instance, [∂1∂2, x1∂1] =

∂1∂2 6= 0.

Another interesting subalgebra is the centralizer of the polynomial x1∂2−
x2∂1: it is generated by {∂2

1 + ∂2
2 , x2∂1 − x1∂2, x1∂1 + x2∂2, x

2
1 + x2

2}. Again,

these generators do not commute pairwise, e.g. [∂2
1 + ∂2

2 , x1∂1 + x2∂2] =

2(∂2
1 + ∂2

2).

Lemma 1.7. Let A be an associative K–algebra, generated by {x1, . . . xn}.
If ∀1 ≤ i ≤ n C(xi, A) is a finitely generated subalgebra of A, then the

following holds:

1) Z(A) =
⋂n

k=1 C(xk, A),

2) Z(A) = C(x1, C(x2, . . . , C(xn, A)) . . .).

Proof. 1) Suppose a ∈ ⋂n
k=1 C(xk, A). Then ∀k [a, xk] = 0. Since ∀i,

[a, xixk] = xi[a, xk]+ [a, xi]xk = 0, we conclude that [a, f] = 0 for all f ∈ A.

2) Since

C(xn−1, C(xn, A)) = {a ∈ A | [a, xn] = 0 = [a, xn−1]} = C({xn−1, xn}, A),

it follows that C(x1, C(x2, . . . , C(xn, A)) . . .) = C({x1, . . . , xn}, A) = Z(A).

¤

Unless A is finite dimensional, the algorithm for computing the cen-

tralizer C(xn, A) (without any extra information) will not terminate. We

therefore consider some finite dimensional filtration {Ad | d ≥ 0} on A

(usually one takes a (weighted) degree filtration, cf. §1, 4.2) and compute

the centers Z(Ad) of the corresponding finite dimensional vector spaces via

centralizers, according to the Lemma.

In algebras, where the center is finitely generated, for the maximal degree

of generators of the center d, we obtain Z(Ad) = Z(A).

100 3. MORPHISMS OF GR–ALGEBRAS

The computational idea with 1.7, 1) is the following: let d ≥ 1 be the

maximal degree. Then Ad = {f ∈ A | deg(f) ≤ d}. Suppose Md to be

a K–basis of Ad, and Md = {m1, . . . , mp} such that m1 > · · · > mp with

respect to the fixed ordering on A. In order to compute C(xt, Ad) for some

1 ≤ t ≤ n we do the following.

Assume that z =

p
∑

i=1

aimi, and [mi, xt] =
s∑

j=1

bt
ijmj, ai, b

t
ij ∈ K. Then,

[z, xt] =
s∑

j=1

(

p
∑

i=1

aib
t
ij)mj and [z, xt] = 0 ⇔

p
∑

i=1

aib
t
ij = 0 ∀1 ≤ j ≤ s.

For fixed t, 1 ≤ i ≤ p, 1 ≤ j ≤ s, form a matrix Bt = (bt
ij) and a vector

a = (a1, . . . , ap)
t. Then

z ∈ C(xt, Ad) = 0 ⇔ a ∈ Ker Bt and z ∈ Z(Ad) ⇔ a ∈
n⋂

t=1

Ker Bt.

Thus such an algorithm reduces to the linear algebra. However, a good

implementation is sophisticated and has to use many tricks and heuristics

(the standard linear algebra approaches have to be applied for very big

matrices; moreover, we need the exact arithmetics in the field K).

This algorithm for computing the center works in particular for a GR–

algebra up to a given degree respectively up to a given number of reduced

generators. Recently it has been implemented in Singular:Plural as the

center.lib ([62]); we used it for computations of the examples below.

For certain algebras there are explicit theoretical results on generators

of the center. In universal enveloping algebras of semi–simple Lie algebras

U(g), there is a notion of Casimir elements and even a formula for a direct

computation of them together with the theorem, saying that the center

(over a field of characteristic zero) is generated by Casimir elements ([37],

[23]). There is a generalization of this approach to Drinfeld–Jimbo algebras

Uq(g) ([43]).

In the framework of G–algebras, it is impossible to provide analogous

general results on centers. Hence, we need a general algorithm (though

requiring extra input like the degree up to which the algorithm should go)

for computing central elements of any GR–algebra. Our experience with

the implementation in center.lib confirms that these principles are right.

See Appendix §5, 1 and §5, 2 for generators of centers of many algebras

explicitly.

1. SUBALGEBRAS AND MORPHISMS 101

1.2. Morphisms.

Definition 1.8. Let A and B be associative K–algebras and there is a

map ψ : A → B. It is called K–linear, if ψ(1) = 1 and ∀x, y ∈ A, ∀λ, µ ∈ K
we have ψ(λx + µy) = λψ(x) + µψ(y).

A K–linear map ψ is called a homomorphism of K–algebras,

if ∀x, y ∈ A ψ(xy) = ψ(x) · ψ(y) holds.

A K–linear map ψ is called an antihomomorphism of K–algebras,

if ∀x, y ∈ A ψ(xy) = ψ(y) · ψ(x) holds.

A K–algebra homomorphism of free associative K–algebras

ψ : A = K〈x1, . . . , xn〉 −→ B = K〈y1, . . . , ym〉 is completely defined by

its values on free generators {xi} of A, that is ψ : xi 7→ pi(y1, . . . , ym) for

{p1, . . . , pn} ⊂ B.

Since every finitely generated associative K–algebra can be presented

as a factor–algebra of a free associative K–algebra modulo certain two–

sided ideal, a homomorphism ψ : K〈x1, . . . , xn〉 −→ K〈y1, . . . , ym〉 induces

a homomorphism Ψ : K〈x1, . . . , xn〉/I → K〈y1, . . . , ym〉/J , if and only if

ψ(I) ⊆ J .

Moreover, it can be easily seen that every homomorphism of associa-

tive K–algebras is induced by some homomorphism of free associative K–

algebras. Namely, assume that both I and J as above have finite Gröbner

bases for some orderings <I on K〈x〉 and <J on K〈y〉. Then, Ψ(x̄) =

ψ(x + I) := NF(ψ(NF(x, I)), J) is well–defined, since ψ(I) ⊆ J holds.

Let A and B be G–algebras. Suppose there are proper two–sided ideals

TA ⊂ A, TB ⊂ B, already given by their two–sided Gröbner bases and there

are GR–algebras A = A/TA and B = B/TB.

We call a map Φ : A → B a morphism of GR–algebras, if Φ is a

homomorphism of K–algebras and, moreover, Φ(TA) ⊆ TB holds.

Starting with the map ψ : A → B, we define the induced map Ψ : A → B
by setting Ψ(ā) := ψ(a), where we can choose a = NF(ā | TA) as a repre-

sentative for ā ∈ A.

Notation: The set of all morphisms Φ : A → B between GR–algebras

A,B is denoted by Mor(A,B). Respectively, we denote by Mor(A,B) the

set of morphisms between G–algebras A, B.

In the sequel, we will deal mostly with morphisms.

Definition 1.9. Let A, B ∈ GR and Ψ : A → B be a map.

Define the (i, j) obstruction polynomial related to Ψ to be

oij := Ψ(x̄jx̄i) − Ψ(x̄j)Ψ(x̄i) and the ideal of obstructions of Ψ to be

OΨ := B〈{oij | 1 ≤ i < j ≤ n}〉.

102 3. MORPHISMS OF GR–ALGEBRAS

Remark 1.10. In contrast to the commutative case, not every K–linear

map of GR–algebras Ψ : A → B, satisfying Ψ(TA) ⊆ TB, is a morphism.

From the definition above, we conclude that Ψ ∈ Mor(A,B) ⇔ OΨ = 〈0〉 ⊂
B ⇔ NF(Oψ | TB) = 0. Respectively, ψ ∈ Mor(A,B) ⇔ Oψ = 〈0〉 ⊂ B.

To every φ ∈ Mor(A,B) and factor–algebras A,B, which are GR–

algebras in the sense of Def. §1, 3.7, we can associate a map Φ : xi 7→ φ(xi).

Then OΦ = Oφ + TB = TB and hence, Φ ∈ Mor(A,B) if and only if

φ(TA) ⊆ TB.

The converse is of course not true: to a morphism Ψ ∈ Mor(A,B) we

can not, in general, associate a morphism ψ ∈ Mor(A,B) by just setting

ψ(xi) to be the canonical representative of Ψ(xi), see the following example.

Example 1.11. Let K be a field of characteristic zero, A = K[a, b]/〈ab〉,
B = Kq[x, y] = K(q)〈x, y | yx = q · xy〉 and B = Kq[x, y]/〈xy〉. Consider

the map Φn : A → B, given by a 7→ xn, b 7→ yn. Since (xy)n = q
n(n−1)

2 xnyn,

〈Φ(ab)〉 = 〈(xy)n〉 ⊆ 〈xy〉. Then the obstruction polynomial o12 equals

ynxn − xnyn = (qn2 − 1)xnyn and we see, that NF(o12 | 〈xy〉) = 0. Hence,

Φn is a morphism of GR–algebras ∀n ≥ 1.

A map φn : K[a, b] → Kq[x, y], sending a 7→ xn, b 7→ yn, however, is not

a morphism unless q is specified at some primitive root of unity, since by

the computation above, o12 = (qn2 − 1)xnyn.

Remark 1.12. In order to illustrate an approach via free algebras, con-

sider the free K–algebras A = K〈a, b〉 and X = K(q)〈x, y〉 together with the

ideals RA = A〈ba−ab, ab〉A ⊂ A and RX = X〈yx− qxy, xy〉X ⊂ X. Assume

that both algebras are equipped with the well–orderings, such that ba > ab

in A and yx > xy in X. Then, the reduced Gröbner basis of RA is {ba, ab}
and the one of RX is {yx, xy}. Let R′

A = A〈ba, ab〉A and R′
X = X〈yx, xy〉X .

A map of free K–algebras ϕn : A → X which sends a 7→ xn and b 7→ yn is

a morphism. Moreover, ϕ(R′
A) ⊂ R′

X , since ϕ(ba) = ynxn = yn−1 ·yx·xn−1 ∈
R′

X and ϕ(ab) ∈ R′
X too. Hence, the induced map Φ : A/R′

A → X/R′
X is

a morphism of K–algebras. Note, that there are the following K–algebra

(not GR–algebra!) isomorphisms: A/RA
∼= A/R′

A
∼= A = K[a, b]/〈ab〉

and X/RX
∼= X/R′

X
∼= B, for A,B from the previous example. Indeed,

this shows that we can not in general ”lift” morphisms of GR–algebras to

morphisms of G–algebras, but to morphisms of free K–algebras instead.

2. Morphisms from Commutative Algebras to GR–algebras

Let A = K[y1, . . . , ym], TA ⊂ A be an ideal and A = A/TA be a commu-

tative GR–algebra. Let B = K〈x1, . . . , xn | xjxi = cijxixj +dij,∀j > i〉 be a

G–algebra, TB ⊂ B be a two–sided ideal and B = B/TB be a GR–algebra.

2. MORPHISMS FROM COMMUTATIVE ALGEBRAS TO GR–ALGEBRAS103

Let F = {f1, . . . , fm} ⊂ B be the set of pairwise commuting polynomials.

Consider a map of K–algebras A φ−→ B, φ : yi 7→ fi ∈ B. We assume that

φ(TA) ⊆ TB.

Then, according to the Remark 1.10, such φ is always a morphism.

Suppose there is an ideal J ⊂ B. In this section we present an algorithm

for computation of the preimage of J under such map.

2.1. Algorithm for Computing the Preimage.

Recall shortly the structure of E = A⊗KB, described already in §2, 3.9.

Let E = A ⊗K B be the algebra in variables {xi ⊗ 1 | 1 ≤ i ≤ n} and

{1 ⊗ yj | 1 ≤ j ≤ m}, which we identify with {xi} and {yj} respectively.

Then E is a G–algebra with respect to the block ordering (<A, <B)

E = K〈y1, . . . , ym, x1, . . . , xn | [yk, yℓ] = [yk, xi] = 0, xjxi = cijxixj + dij〉,

with indices ∀ 1 ≤ k, ℓ ≤ m, ∀ 1 ≤ i < j ≤ n.

If TA and TB were given as two–sided Gröbner bases, their images in E

under canonical inclusions keep this property. Hence, the ideal TE = TA+TB

is a two–sided ideal, given by a two–sided Gröbner basis. Then E ∼= E/TE

is a GR–algebra. We denote this construction as E = E(A,B) in the sequel

and identify A and B with the corresponding admissible subalgebras of E .

Theorem 2.1. Let A = K[y1, . . . , ym]/TA be commutative and B be

arbitrary GR–algebra, Φ ∈ Mor(A,B) and J ⊂ B be the left ideal.

Let IΦ be a left ideal 〈{yi − φ(yi) | 1 ≤ i ≤ m}〉 ⊂ E(A,B). Then

Φ−1(J) = (Iφ + J) ∩ A.

Proof. 1. Consider some polynomial p =
∑

α∈N

cαyα ∈ A with all but a

finite number of cα are zero. For 0 ≤ k ≤ n we define polynomials

qk =
∑

α∈N

cα

(
k∏

i=1

yαi

i

)(
n∏

i=k+1

φ(yi)
αi

)

∈ E .

One has q0 = Φ(p), qn = p and qk − qk+1 ∈ IΦ for 0 ≤ k ≤ n − 1. Then

p = qn +
n−1∑

k=0

(qk − qk+1) ∈ IΦ

and hence ∀p ∈ A, p − Φ(p) ∈ IΦ.

2. Since Φ(yi) commute pairwise, we have IΦ ∩J ⊆ IΦ ∩B = 0. Hence,

the sum of ideals is a direct sum and (IΦ + J) ∩ B = J .

104 3. MORPHISMS OF GR–ALGEBRAS

3. For any q ∈ (IΦ +J)∩A we can present Φ(q) as a sum q + Φ(q)− q.

Hence, Φ(q) ∈ (IΦ +J)∩B = J and the inclusion Φ−1(J) ⊃ (IΦ +J)∩A
follows.

Let p ∈ Φ−1(J). Again one has p = p − Φ(p) + Φ(p) ∈ (IΦ + J) ∩ A.

This completes the proof. ¤

The computational part of the theorem is formulated in the following

algorithm. We need two sub–algorithms:

TwoSidedGröbnerBasis(ideal I) (§2, 3.1)) and

Eliminate(module M, subalgebra S) (§2, 2.8).

Note, that the last procedure requires most of the computing time in

the algorithm which follows.

We may take J ⊂ B as input instead of its reduced form J = NF(J +

TB | TB), since only the summand J + TB is used within the algorithm.

Recall, that for an ideal I and a two–sided ideal TA, we denote NF(I +

TA | TA) simply by ”I mod TA”.

Algorithm 2.1 PreimageInCommutativeAlgebra

Input 1: A = K[y1, . . . , ym], TA ⊂ A an ideal; ⊲ A
Input 2: B (G–algebra), TB ⊂ B (two–sided ideal); ⊲ B
Input 3: J ⊂ B (left ideal); ⊲ J
Input 4: {Φ(yi)} ⊂ B (pairwise commuting polynomials); ⊲ Φ

Output: Φ−1(J).

TB = TwoSidedGröbnerBasis(TB);

E = A ⊗K B; TE = TA + TB; E = E/TE; ⊲ E = E(A,B)

IΦ = {yi − Φ(yi) | 1 ≤ i ≤ m};
P = TB + IΦ + J ; ⊲ P ⊂ E

P = Eliminate(P,B); ⊲ P = P ∩ A

P = NF(TA + P | TA);

return P ; ⊲ Φ−1(J) = (TA + (TB + IΦ + J) ∩ A) mod TA;

2.2. Kernel of a map.

Since ker(Φ) = Φ−1(〈0〉), with this theorem one can compute the kernel

of a map between a commutative and a non–commutative G–algebra using

the formula

ker(Φ) = (TA + (TB + IΦ) ∩ A) mod TA.

For the rest of this section, let A be a G–algebra and a set of pairwise

commuting polynomials f1, . . . , fk ∈ A be given.

2. MORPHISMS FROM COMMUTATIVE ALGEBRAS TO GR–ALGEBRAS105

2.3. Algebraic Dependency of Elements.

Speaking on the algebraic dependency of non–commuting polynomials,

one usually thinks on polynomials in the free algebra. However, if {fi}
commute pairwise, the dependency can be expressed by a polynomial from

the commutative ring. We say that {f1, . . . , fk} are algebraically dependent,

if they are pairwise commutative and there exists a non–zero polynomial

g ∈ K[y1, . . . , yk] such that g(f1, . . . , fk) = 0.

Define a morphism ϕ : K[y1, . . . , yk] → A, ϕ(yi) = fi.

Then any g ∈ ker(ϕ) \ {0} defines an algebraic relation between the

f1, . . . , fk. In particular, f1, . . . , fk are algebraically independent if and only

if ker(ϕ) = 0. Hence, the check for dependency is computable, since ker(ϕ)

can be computed with the formula of 2.2.

Example 2.2. The Fairlie–Odesskii algebra U ′
q(so3) ([36]) is an associa-

tive unital algebra with generating elements I1, I2, I3 and relations, enlisted

in §5, 2.2. The relations involve a complex number q 6= 0,±1, called a de-

formation parameter. In the limit q → 1, the algebra U ′
q(so3) reduces to the

enveloping algebra U(so3). Both algebras are, of course, G–algebras.

Recall, that the p–th Chebyshev polynomial of the first kind is defined

to be

Tp(x) =
p

2

[p/2]
∑

k=0

(−1)k(p − k − 1)!

k!(p − 2k)!
(2x)p−2k,

where [p/2] is the integral part of p/2. For example, T1(x) = x, T2(x) =

2x2 − 1, T3(x) = 4x3 − 3x, T4(x) = 8x4 − 8x2 + 1.

Consider the algebra U ′
q(so3). For arbitrary q, the algebra U ′

q(so3) has

the central element C = −q1/2(q − q−1)I1I2I3 + qI2
1 + q−1I2

2 + qI2
3 , which

generates the center of U ′
q(so3) when q is not a root of unity.

Let q be a p–th primitive root of unity (p > 2), that is qp = 1, qp′ 6= 1,

1 ≤ p′ < p. Then elements Ck = 2 Tp

(

Ik(q − q−1)/2
)

, k = 1, 2, 3, where

Tp(x) is Chebyshev polynomial, are also central in U ′
q(so3).

Using the algorithm from 2.3, we compute a polynomial, describing the

algebraic dependency between C, C1, C2 and C3. Let fn ∈ K[C, C1, C2, C3]

be such that fn(C,C1, C2, C3) = 0 for q a n–th primitive root of unity. We

use Q = q1/2 below to simplify the presentation.

Then, using Algorithms 2.1 and 2.2, we compute

f3 = (1− 2Q)C3 + (Q + 1)C2 − 243C1C2C3 + 9(1− 2Q)(C2
1 + C2

2 + C2
3),

f4 = C4 −C2 − 8C2(C1 + C2 + C3)− 1024C1C2C3 + 16(C1 −C2 −C3)
2,

f5 = C5 +Q(3Q2 − 4Q+3)C4 +(3Q3 − 8Q2 +8Q− 3)C3 − (3Q2 − 5Q+

3)C2 − 625(3Q3 + Q2 + 2Q − 1)C1C2C3 − 25(C2
1 + C2

2 + C2
3).

106 3. MORPHISMS OF GR–ALGEBRAS

We should note that despite the simplicity of formulation of the algo-

rithm, revealing an algebraic dependency with the method above is one

of the hardest computational problems we have ever encountered. In the

example above it took us a lot of time and memory to obtain needed ele-

ments. We use examples like above further as a very good benchmark test

for computer algebra systems.

We believe there might exist other methods for finding dependencies

which have lower complexity than the Gröbner basis algorithm we use. The

approach via Perron polynomials, presented in [66] has its preliminary im-

plementation as the Plural library perron.lib by O. Motsak and shows

much better performance than the approach via elimination (the polynomi-

als in the Example 2.4 were computed using both methods).

Universal enveloping algebras in prime characteristic

Consider a classical simple Lie algebra g over a field K = Fp of positive

characteristic p , which is big enough (in most cases p > 3 is enough).

Here “classical” means that it corresponds to a simple complex Lie algebra,

or, equivalently, that its Killing form is non-degenerate. It is known, that

the center Z(U(g)) of the universal enveloping U(g) is generated by the

“Casimir” elements c1, . . . , cr, (which coincide with the generators of the

center in the case when char K = 0) and the elements g[p] − g , where g[p]

denotes the symbolic p-th power (in the case g = sln , they coincide with

gp) and g runs through a basis of g . These elements are not algebraically

independent: it is known that Kr.dim Z(U(g)) = dimK g . Moreover, the

variety Spec Z(U(g)) is not smooth. The natural question arises what

kind of singularities can occur in Spec Z(U(g)) . It was investigated in the

work [69] by Rudakov and Shafarevich. The following formulation of the

conjecture is due to Y. Drozd.

Conjecture 2.3. The singularities of Spec Z(U(g)) are always simple.

Moreover, their types are just deformations of the type of the Lie algebra

g . (Recall that both of them correspond to Dynkin diagrams A, D, E .)

The Conjecture above is still open, after nearly 40 years of its first

appearance (in a different form).

To check it, one can start with simple Lie algebras of rank 2, that is

{A2 (= sl3), B2 = C2 (= so5), G2 (= g2) and A1 × A1 = D2 (= sl2 × sl2)}.
Especially interesting is the case of the algebra g2, since it does not belong

to the ADE serie.

2. MORPHISMS FROM COMMUTATIVE ALGEBRAS TO GR–ALGEBRAS107

The similar phenomenon with the algebraic dependency happens, as we

have seen in 2.2 in quantum algebras too. So, we formulate the common

computational problem as follows.

Problem: Let A be a G–algebra over a field k, such that the center of

A over the field of char 0 is strictly bigger than the constants only. For a

given prime number p, the field K will be either an algebraic extension k(q)

with a minimal polynomial for the p–th primitive root of unity (if A is a

quantum algebra with the quantum parameter q) or K = Fp otherwise.

1. Compute the center Z(A) of A over K (say, with the center.lib).

2. Compute algebraic dependencies between the generators of Z(A) (as de-

scribed above).

3. Study obtained singularities

3a. factorize polynomials over K,

3b. if we are dealing with the isolated hypersurface singularity, determine

the type of a singularity (say, with the Singular library classify.lib).

Computationally, the hardest part of the whole procedure is the point

2 and the computing time increases with increasing of p. Moreover, we

need procedures for the classification of singularities in small characteristics

(3,5,7,11), what has to be done by methods which differ from those used

inside the library classify.lib.

In order to check the conjecture above, we proceed with the simplest

case g = sl2 .

Example 2.4. The authors of [69] showed, that Spec Z(U(sl2)) has

singularity of type A1 for all prime p. We are going to reproduce their

results via direct computation.

Let p be a prime number and Fp be a finite field of char p. Let c be the

Casimir element of sl2 and z1, z2, z3 be the p–adic generators (see §5, 1.1

for concrete expressions of these elements). In what follows, c, z1, z2, z3 are

treated as commutative variables.

For every p, the dependency polynomial is the sum Fp(c, z1, z2, z3) =

F p(c) + (−1 · (4z1z2 + z2
3) mod p). The polynomials F p(c) in one variable

are given below for primes p, 3 ≤ p ≤ 29 in factorized form.

F3 = (c + 1) · c2, F5 = (c + 1) · c2 · (c + 2)2,

F7 = (c+1)·c2·(c−3)2·(c−1)2, F11 = (c+1)·(c−2)2·c2·(c+3)2·(c−4)2·(c−3)2,

F13 = (c + 1)(c + 5)2(c + 2)2(c − 2)2c2(c + 4)2(c − 3)2,

F17 = (c + 1)(c + 5)2(c − 7)2(c + 3)2(c − 8)2(c + 2)2c2(c − 3)2(c − 1)2,

F19 = (c + 1)(c− 5)2(c− 8)2(c + 4)2c2(c− 4)2(c + 3)2(c− 6)2(c + 9)2(c− 3)2,

108 3. MORPHISMS OF GR–ALGEBRAS

F23 = (c + 1)(c − 2)2(c − 5)2(c + 11)2(c + 6)2(c + 8)2c2(c − 1)2(c − 8)2(c −
11)2(c − 3)2(c − 7)2,

F29 = (c + 1)(c − 6)2(c + 8)2(c − 4)2(c + 14)2(c − 8)2c2(c − 3)2(c − 12)2(c −
5)2(c + 6)2(c + 5)2(c + 2)2(c + 10)2(c + 7)2.

For polynomials over Fp, p ≥ 13, a Singular library classify.lib

performs the classification of a singularity and, in particular, computes a

normal form and a type.

However, for small characteristics (3, 5, 7, 11) one has no implementation

at the moment. We are grateful to Yousra Lakhal (Kaiserslautern) for

computing these cases for us per hand.

Indeed, all the dependencies above have a singularity of type A1, what

coincides with the type A1 of a simple Lie algebra sl2.

2.4. Subalgebra Membership.

Suppose A is a G–algebra, generated by {x1, . . . , xn} and we are given

some f ∈ A. Let S ⊆ A be a subalgebra , generated by pairwise commuting

f1, . . . , fk.

How can we check whether f belongs to S?

If f does not commute with all fi, it can not belong to S. Hence, the

first property to check would be to ensure, that f commutes with every fi.

Then, we have the two following possibilities to compute the polynomial

describing the dependency of f on {f1, . . . , fk}, cf. [35].

1. We define a map ψ : K[y0, . . . , yk] → A, y0 7→ f , yi 7→ fi and

compute ker(ψ) with the Algorithm 2.1. Then we take an ordering <0

with y0 greater than everything containing y1, . . . , yk on K[y0, . . . , yk] and

compute the Gröbner basis G of ker(ψ) ⊂ K[y0, . . . , yk] with respect to <0.

G contains an element g with the leading monomial lm(g) = y0 if and only

if f ∈ K[f1, . . . , fk]. The polynomial f , written in terms of f1, . . . , fk, is

then g − lc(g) lm(g).

2. We define a map φ : K[y1, . . . , yk] → A, yi 7→ fi, an algebra B :=

K[y1, . . . , yk] ⊗K A and a left ideal Iφ = B〈y1 − f1, . . . , yk − fk〉 like in

the algorithm. We compute a Gröbner basis G of Iφ with respect to the

elimination ordering for x1, . . . , xn. Then we check whether NF(f | G)

does not involve any variable from A. This happens if and only if f ∈
K[f1, . . . , fk]. The formula for f as a polynomial in f1, . . . , fk is just the

normal form polynomial.

Example 2.5. Let us continue with the example 2.2. There arises a very

natural question: since there is an algebraic dependency, could one of the

2. MORPHISMS FROM COMMUTATIVE ALGEBRAS TO GR–ALGEBRAS109

known generators of the center C, C1, C2 and C3 belong to the subalgebra,

generated by the other three?

We have checked it with both methods (the second method is more

helpful in the concrete situation) and obtained a negative answer. Note,

that in comparison to finding the dependency explicitly, this procedure is

much easier and requires less resources.

Our implementation of the algorithms above in Singular:Plural was

useful for treating the general situation, exploring several conjectures, posed

in [36]. In the work [38] Iorgov used the explicit form of dependency polyno-

mials and finally showed, that there is a general formula for the dependency,

which is moreover expressed in terms of Chebyshev polynomials.

Klimyk and Iorgov posed a conjecture that {C, C1, C2, C3} is a minimal

generating set of the center in the case where q is a primitive root of unity.

2.5. Intersection of Modules with Commutative Subalgebras.

Suppose we have an ideal I ⊂ A. In order to compute the intersection

of I with a subalgebra S, we set up the map K[y1, . . . , yk]
ϕ−→ A, ϕ(yi) = fi

and compute its kernel K = ker(ϕ) with Algorithm 2.1. Then ϕ induces a

monomorphism K[y1, . . . , yk]/K
ϕ−→ A. Let K[y1, . . . , yk]/K ⊃ J = ϕ−1(I)

be the preimage of I. Since the algorithm guarantees that J is given in

Gröbner basis {g1, . . . , gs}, we finish with the computation of the Gröbner

basis of I ∩ S = 〈ϕ(g1), . . . , ϕ(gs)〉 ⊂ A.

Example 2.6 (Weight vectors with respect to Gel’fand–Zetlin subalge-

bra). Consider A = U(sl(3, K)) for char K = 0. Both the algebra and its

central elements C2, C3 are given explicitly in §5, 1.3.

By p4 := C2 and p5 := C3 we denote the central elements of U(sl3).

Let p3 = h2
α + 4xαyα − 2hα be the central element of the subalgebra

of A, generated by xα, yα, hα (it is isomorphic to U(sl2)). Let, moreover,

p1 = hα and p2 = hβ be the generators of the Cartan subalgebra of A.

Then B1 = Z(A) is generated by the {p4, p5} and B2, the Gel’fand–Zetlin

subalgebra GZ(A), is generated by {p1, p2, p3, p4, p5}.
Consider the natural maps φi : Bi → A. We want to compute Ii :=

φ−1
i (I) for certain left ideals I, which will give us the central (i = 1) and

the Gel’fand–Zetlin (i = 2) characters of cyclic modules, for which I is the

annihilator of a generator. In fact, one of the nice properties of Gel’fand–

Zetlin subalgebra implies that it suffices to compute the Gel’fand–Zetlin

character of a module, since the central character will be obtained from it.

110 3. MORPHISMS OF GR–ALGEBRAS

1. First of all we perform the computations of kernels and obtain

ker φ1 = ker φ2 = 0. (This is no longer true if char K > 0 since then

there appear additional generators in the center, cf. Subsection 2.3).

2. Consider the parametric ideal I = A〈xα, xβ, hα−a, hβ−b〉, correspond-

ing to the Verma module. Its left Gröbner basis is A〈xα, xβ, xγ, hα−a, hβ−b〉.
Then

I2 =
〈

p1 − a, p2 − b, p3 − a2 − 2a,

p4 − a2 − ab − b2 − 3a − 3b,

p5 − 2a3 − 3a2b + 3ab2 + 2b3 − 6a2 + 3ab + 12b2 + 18b
〉
.

Moreover, the fourth and the fifth polynomials of I2 generate I1. Note

that both ideals I1, I2 are maximal in the corresponding algebras and the

parametric parts of p4, p5 are indecomposable polynomials in a, b.

3. Now, let us take another ideal I = A〈xβ, xγ, hα −a, hβ − b〉 (note that

it is already a left Gröbner basis). Then

I2 =
〈

p1 − a, p2 − b,

3p3 − 4p4 + (a + 2b)(a + 2b + 6),

3(a + 2b + 2)p4 − p5 − (a + 2b)(a + 2b + 3)(a + 2b + 6)
〉
.

The fourth polynomial of I2 generates I1. Let c = a+2b. Then the paramet-

ric parts of p = (p1, p2, p3, p4, p5) form a one–parameter family, depending

on t (we choose t = p3 here):
(
a, b, 4

3
t − 1

3
c(c + 6), t, 3(c + 2)t + c(c + 3)(c + 6)

)
.

2.6. Centers of Certain Factor–algebras.

For universal enveloping algebras of semi–simple Lie algebras U(g) over

a field of char 0, there is a result ([23]), saying that for any proper two–sided

ideal I ∈ U(g),

(⋆) Z(U(g)/I) = Z(U(g))/I ∩ Z(U(g)).

Although looking very natural, the result fails to be true for non–semi–

simple algebras: consider the Heisenberg algebra H = K〈x, y, h | [x, y] =

h, [h, x] = [h, y] = 0〉, which is a universal enveloping algebra of a solvable

Lie algebra. For the ideal I = H〈h〉H = H〈h〉, we have Z(H) = K[h],

I ∩ Z(H) = K[h]〈h〉 and Z(H)/I ∩ Z(H) = K. On the other hand, H/I ∼=
K[x, y], hence Z(H/I) = H/I = K[x, y].

Example 2.7. Let us continue with the example §2, 3.5.

Let char K = 0 and A = U(g2). Let I = A〈x3
1〉A, its two–sided Gröbner

basis consists of 106 elements. The center of A is generated by two elements,

z2 and z6 of degrees 2 and 6 respectively (they are explicitly given in §5,

1.4), denote it by Z(A) = K[z2, z6].

3. CENTRAL CHARACTER DECOMPOSITION OF THE MODULE 111

Proceeding with the formula (⋆), we obtain that

I ∩ Z(A) = K[z2,z6]〈z2
2 − 6z2, z6〉. In particular, z6 ∈ I and

Z(A/I) = K[z2]/〈z2
2 − 6z2〉 ∼= K ⊕ K · NF(z2, I). The center of the factor

algebra of K–dimension 50 is generated by the element

NF(z2, I) = 2x4y4 + 2h2
α + 6hαhβ + 7h2

β − 2hα − 3hβ.

It would be interesting to know, which conditions on an algebra would

imply that the formula (⋆) above holds true.

3. Central Character Decomposition of the Module

Decompositions of modules are of special interest for many branches of

algebra. In the non–commutative case, especially in Representation Theory,

a particularly important role is played by the decomposition into central

characters. The algorithmic treatment of this problem goes back to the

diploma thesis [42], which we follow.

For the whole section we assume K to be algebraically closed.

Let A be a G–algebra and C ⊂ A be a finitely generated commutative

subalgebra. Denote by C∗ = Hom(C, K) the set of characters of C which

can be identified with the set of maximal ideals of C by taking kernels.

Definition 3.1. Let M be a finite generated A-module and χ ∈ C∗.

• Define the χ–weight subspace of M with respect to C to be

Mχ = {v ∈ M | ∀c ∈ C, (c − χ(c))v = 0} .

• Let the generalized χ–weight subspace of M with respect to C be

Mχ =
{
v ∈ M | ∃n(v) ∈ N,∀c ∈ C, (c − χ(c))n(v)v = 0

}
.

• We say that M possesses a weight decomposition (resp. generalized

weight decomposition) if

M =
⊕

χ∈C∗

Mχ (resp. M =
⊕

χ∈C∗

Mχ).

• SuppC M = {χ ∈ C∗|Mχ 6= 0} is called a support of M with

respect to C.

• We say that M possesses a finite (generalized) weight decomposition

with respect to C if M possesses a (generalized) weight decomposition and

its support is finite.

One can determine, whether a given element m ∈ M belongs to Mχ

(resp. Mχ) for some χ ∈ C by analyzing the ideal AnnM
A m ∩ C ⊂ C. The

last ideal can be computed by the Theorem 2.1.

112 3. MORPHISMS OF GR–ALGEBRAS

Let us now concentrate on computation of a generalized weight decom-

position and the Zariski closure of the support with respect to the center

Z = Z(A) of A. In this case the subspaces Mχ and Mχ are submodules for

any χ ∈ Z∗, what is not true, for example, for Gel’fand–Zetlin subalgebras.

The generalized weight decomposition with respect to the center will be

called the central character decomposition.

Notation: By V (I) ⊂ An
K

we denote the set of zeros of an ideal

I ⊂ K[x1, . . . , xn].

Recall the result from the Lemma §2, 5.19: for a left A–module M , we

have Z(A) ∩ preAnn(M) = Z(A) ∩ AnnA M .

Using the Nullstellensatz we obtain the following description of the set

SuppZ M in terms of ideal preAnn(M) ∩ Z(A), where preAnn(M) can be

computed with the Algorithm §2, 5.7, and the intersection with the Algo-

rithm 2.1.

Corollary 3.2. Let A be a G–algebra and M be an A–module. Then

the Zariski closure of SuppZ M equals V (preAnn(M) ∩ Z(A)).

To proceed with the discussion of an algorithm for the computation of

Mχ, the notions of central quotient ideal and central quotient module are

needed. These notions are quite different from the usual non–commutative

quotient ideals (see Subsection §2, 5.4 and [14, 35]). We denote the central

quotient by (I : J) instead of (I :Z J), since classical quotients will not

appear in this section.

Definition 3.3. Let I ⊂ AN be a left submodule and Z = Z(A) be

the center of A.

• For z ∈ Z we define the left submodule (I : z) := {v ∈ AN | zv ∈ I}.
• For an ideal I ⊂ Z the submodule I : I is defined to be

(I : I) := {v ∈ AN | zv ∈ I for all z ∈ I}.
• The submodule I : z∞ is defined to be lim−→

n∈N

I : zn.

• The submodule I : I∞ is called a central saturation of I by I and

is defined to be lim−→
n∈N

I : In.

The usefulness of central quotient modules in our context is indicated

by the following proposition.

3. CENTRAL CHARACTER DECOMPOSITION OF THE MODULE 113

Proposition 3.4. Let A be a G–algebra and M be an A–module. Sup-

pose M possesses a finite central character decomposition and SuppZ M is

finite of cardinality s. If s = 1, we have M ∼= Mχ. Otherwise,

Mχ ∼= AN/(IM : I∞
χ), where Iχ =

⋂

ψ∈SuppZ Mr{χ}

ker ψ.

Proof. By assumption, M =
⊕

ψ∈Z∗

Mψ. Define a left submodule

Iχ =
∑

ψ∈Z∗\{χ}

Mψ + IM ⊂ AN .

Obviously Mχ ∼= AN/Iχ. One has to show that IM : I∞
χ = Iχ.

Since SuppZ M is finite, there exists such n ∈ N, that for all ψ ∈
SuppZ M holds (ker ψ)nMψ = 0. For all x ∈ Iχ one has In

χx ∈ I. Thus

Iχ ⊂ IM : I∞
χ .

Taking x ∈ AN \ Iχ, we see that the image v of x in Mχ ∼= AN/Iχ

is non–zero. Suppose x ∈ IM : I∞
χ , then there exists such m ∈ N, that

Im
χ x ∈ IM . Hence we have also Im

χ v = 0, which contradicts the definition

of Iχ. ¤

The computation of a central quotient is much easier than the compu-

tation of a classical quotient module (see, for example, [14] and the Section

§2, 5.4).

Lemma 3.5. Let A be a GR–algebra, z ∈ Z(A) be a central element in

A and let F ⊂ AN be a left submodule, generated by {f1, . . . , fm}. Then

the central quotient (F : z) ⊆ AN is generated by the first N components

of the generators of the syzygy module Syz(ze1, . . . , zeN , f1, . . . , fm) and

hence, can be computed by Modulo(z · 1N , F).

Proof. Let (a1, . . . , aN+m) ∈ Syz(ze1, . . . , zeN , f1, . . . , fm) ⊂ AN+m.

Then,
N∑

i=1

zaiei = −
m∑

i=1

ai+Nfi.

Hence, the tuple (a1, . . . , aN) is an element of (F : z) if and only if

ā = (a1, . . . , aN+m) ∈ Syz(ze1, . . . , zeN , f1, . . . , fm).

¤

The advantage of this situation is indicated by the lemma, which follows

from the fact that I is an ideal in the center of A.

114 3. MORPHISMS OF GR–ALGEBRAS

Lemma 3.6. Let {c1, . . . , cn} be the Gröbner basis of I ⊂ Z.

Then, (I : I) =
n⋂

i=1

(I : ci).

In the algorithms we shall use the following auxiliary procedures:

• Setring(ring A): sets the ring A active;

• Ann(module M , vector v): annihilator of v in M (Lemma 5.15);

• IntersectManyModules(P1, . . . , Pm) (Prop. §2, 5.2);

• MinAssPrimes(ideal I): minimal associated prime ideals for the

zero–dimensional ideal I ⊂ K[z]; (primdec.lib, see [21]).

In the following algorithms we formalize the described approach.

Algorithm 3.1 CentralSaturation

Input : M , a left AN–submodule, T , an ideal in Z(A);

Output: S, a left AN–submodule; ⊲ S = M : T∞

function CentralQuotient(M, T)

Int s := size(T);

Matrix E := IdentityMatrix(s);

for i=1 to s do

N [i] := Modulo(T [i] · E, M);

end for

S := IntersectManyModules(N [1], . . . , N [s]);

return S;

end function

Module Q := 0;

Ideal T := GröbnerBasis(T);

S := M ;

repeat

Q := CentralQuotient(S, T);

S := CentralQuotient(Q, T);

until (S == Q)

return S;

Proof. (of Algorithm 3.1).

Termination: The algorithm CentralQuotient clearly terminates. For

the CentralSaturation, we see that due to the obvious property

(I : I) : I = I : I2, one has an increasing sequence I : I ⊂ I : I2 ⊂ . . .

of submodules in AN . It stabilizes by the Noetherian property of A, so the

3. CENTRAL CHARACTER DECOMPOSITION OF THE MODULE 115

computation of the I : I∞ will be finished after a finite number of steps.

Correctness: Lemmata 3.5, 3.6 imply the correctness of CentralQuo-

tient. ¤

Both algorithms 3.1 and 3.2 have been implemented by the author in

the Singular:Plural library ncdecomp.lib ([50]); all the examples from

the article have been computed with this implementation.

Algorithm 3.2 CentralCharDecomposition

Input 1: A, a G–algebra;

Input 2: Z = {Z1, . . . , Zm} ⊂ A, generators of Z(A);

Input 3: IM , a left AN–submodule; ⊲ M ∼= AN/IM

Output: R, a list of pairs {(χ, Iχ)}.

Initring K[z] := K[z1, . . . , zm];

Initmap φ : K[z] → A; φ(zi) = Zi;

Setring A;

for i=1 to N do

P [i] := Ann(M, ei); ⊲ ei is the i–th basis vector of AN

end for

JM := preAnn(M) := IntersectManyModules(P [1], . . . , P [N]);

Setring K[z];

Jz := PreimageInCommutativeAlgebra(K[z], A, JM , φ);

if (Dim (Jz) > 0) then

ErrorMessage = ”There is no finite decomposition”;

return ERROR;

else

List L0 := MinAssPrimes(Jz);

end if

Setring A;

List L := φ(L0); Int s = Size(L); List S;

for i=1 to s do

P := IntersectManyModules(L[1], . . . , L[̂i], . . . , L[s]);

S[i] := TwoSidedGröbnerBasis(P);

end for

List R;

for i=1 to s do

R[i][1] := S[i];

R[i][2] := CentralSaturation(IM , S[i]);

end for

return R;

116 3. MORPHISMS OF GR–ALGEBRAS

Example 3.7. Let us continue with the example 2.6.

The central support of the parametric Verma module M = A/I, I =

A〈xα, xβ, hα−a, hβ −b〉 = A〈xα, xβ, xγ, hα−a, hβ −b〉 equals χ1 = 〈p4−a2−
ab−b2−3a−3b, p5−2a3−3a2b+3ab2+2b3−6a2+3ab+12b2+18b〉, a maximal

ideal in K[p4, p5] for any value of parameters a, b. Hence, M ∼= Mχ1 .

For the parametric module M ′ = A/I ′, I ′ = A〈xβ, xγ, hα − a, hβ − b〉, we

have SuppZ M ′ = 〈3(a + 2b + 2)p4 − p5 − (a + 2b)(a + 2b + 3)(a + 2b + 6)〉 ⊂
K[p4, p5], an ideal of dimension 1 for any value of parameters a, b. Hence,

there exists no finite central decomposition.

Example 3.8. Let A = U(sl2) (cf. §5, 1.1). Consider a set of generators

S = {e3, f 3, h3 − 4h} ⊂ A and two ideals therein: IL, a left ideal and IT ,

a two–sided ideal, both generated by S. Gröbner basis computations show

IL ⊂ IT ; both bases are listed explicitly in the Example §2, 3.4.

We draw our attention at two finite–dimensional modules:

ML = U(sl2)/IL (of dimension 15) and

MT = U(sl2)/IT (of dimension 10).

Intersection with the center of A, generated by the polynomial 4ef +

h2 − 2h, gives us the following supports:

SuppZ ML = {z, z − 8, z − 24} and SuppZ MT = {z, z − 8}.
Then, MT = M

(z)
T ⊕ M

(z−8)
T = U(sl2)/m ⊕ U(sl2)/I9 and

ML = M
(z)
L ⊕ M

(z−8)
L ⊕ M

(z−24)
L = U(sl2)/m ⊕ U(sl2)/I9 ⊕ U(sl2)/I5.

Here, we used the ideals m = 〈e, f, h〉, I5 = 〈e3, f 3, ef − 6, h〉 and

I9 = 〈4ef+h2−2h−8, h3−4h, e3, f 3, fh2−2fh, eh2+2eh, f 2h−2f2, e2h+

2e2〉. The K–dimensions of corresponding modules are 1, 5, 9 respectively.

Note, that modules U(sl2)/m and U(sl2)/I5 are simple modules, whereas

U(sl2)/I9 is a sum of the three following 3–dimensional simple modules

U(sl2)/〈e2, f 2, ef − 2, h〉 ⊕ U(sl2)/〈e, f 3, h − 2〉 ⊕ U(sl2)/〈e3, f, h + 2〉.

4. Morphisms between GR–algebras

In comparison to the previous sections, computing preimages of ideals

under a general morphism between two GR–algebras is more complicated

and therefore it is treated separately.

Through the whole section, we will consider two following examples.

Let W1 be the Weyl algebra K〈x, d | [d, x] = 1〉. For p ∈ N , let Ip =

W1〈xp, xd + p〉 and Jp = W1〈dp, xd − p + 1〉 be left ideals.

We are interested in preimages of left ideals Ip, Jp for some p ∈ N under

maps from certain algebras to W1.

4. MORPHISMS BETWEEN GR–ALGEBRAS 117

Example 4.1.

For t ∈ N let St = K〈a, b | [b, a] = t ·a〉 be a universal enveloping algebra

of a two–dimensional Lie algebra.

For a fixed t ≥ 2, we consider the map

ψt : Bt −→ W1, ψt(a) = xt, ψt(b) = xd + t.

Example 4.2. Let U(sl2) be given in its standard presentation, namely

as K〈e, f, h | [f, e] = −h, [h, e] = 2e, [h, f] = −2f〉. Moreover, let Se =

K〈e, h | [h, e] = 2e〉 and Sf = K〈f, h | [h, f] = −2f〉 be two subalgebras of

U(sl2). We consider the map

τ : U(sl2) → W1, τ(e) = x, τ(f) = −xd2, τ(h) = 2xd.

Our general setup will be as follows. Let A = A/TA and B = B/TB

be two GR–algebras and Φ : A −→ B be a map (respectively, a map

φ : A −→ B). Define fi := NF(Φ(xi), TB) resp. fi := φ(xi).

4.1. Kernels via Opposite Algebras.

Consider the set X := {f − φ(f) | f ∈ A} ⊆ A ⊗K B. It is naturally

K–spanned by {xα − φ(xα) | α ∈ Nn}. Let S = {xi − φ(xi) | 1 ≤ i ≤ n} be

another subset of A ⊗K B.

Lemma 4.3. There are the following inclusions of K–vector-spaces:

X ⊂ A〈S〉φ(A) ⊆ A〈S〉B.

Proof. For any k ∈ N, we have xk+1
i −fk+1

i = xi ·(xk
i −fk

i)+(xi−fi)·fk
i

and at the same time it equals to xi(x
k
i −fk

i)+fk
i (xi−fi). As one can easily

see, there are several presentations of xk+1
i − fk+1

i in terms of {xi − fi}. We

are particularly interested in two of them, namely

xn+1
i − fn+1

i =
n∑

k=0

xk
i (xi − fi)f

n−k
i =

n∑

k=0

fk
i (xi − fi)x

n−k
i .

The first presentation contains xi on the left side and fi on the right;

the second presentation is the other way around. We write forthcoming

presentations in these two ways.

For xα1
1 xα2

2 − fα1
1 fα2

2 we write two following presentations:

(xα1
1 − fα1

1)fα2
2 + xα1

1 (xα2
2 − fα2

2) = (xα1
1 − fα1

1)xα2
2 + fα1

1 (xα2
2 − fα2

2).

Hence, for every α ∈ Nn holds xα − φ(xα) =

=
n∑

i=1

(
i−1∏

j=1

x
αj

j

)

(xαi

i − fαi

i)

(
n∏

k=i+1

fαk

k

)

=

118 3. MORPHISMS OF GR–ALGEBRAS

=
n∑

i=1

(
i−1∏

j=1

f
αj

j

)

(xαi

i − fαi

i)

(
n∏

k=i+1

xαk

k

)

.

Plugging in last formulae corresponding presentations of (xαi

i − fαi

i), we

see, that the first presentation belongs to the (A, φ(A))–bimodule A〈S〉φ(A),

the second one — the (φ(A), A)–bimodule φ(A)〈S〉A.

Since φ(A) ⊆ B, we get inclusions of vector-spaces X ⊂ A〈S〉φ(A) ⊆
A〈S〉B and, by swapping sides, also an inclusion X ⊂ φ(A)〈S〉A ⊆ B〈S〉A.

Hence, we can move to the left (resp. right) A ⊗K φ(A)opp–module,

generated by the set Sopp := {xi − φ(xi)
opp}. Let us denote the left

A ⊗K φ(A)opp–module by M and the left A ⊗K Bopp–module by MB. Then

M ⊆ MB and the equality takes place if and only if φ(A) = B.

Clearly, X itself has no A–module structure in this context and is strictly

contained in M as a vector-space. ¤

Let Eo := A ⊗K Bopp be another G–algebra, T o
E := TA + T opp

B a two–

sided ideal (given as a Gröbner basis) and Eo := A ⊗K Bopp = Eo/〈T o
E〉 a

GR–algebra.

Define the set So := {xi − φ(xi)
opp | 1 ≤ i ≤ n} ⊂ Eo. We view the

(A,B)–bimodule A〈S〉B as the left ideal Io
φ := A⊗KBopp〈So〉.

Respectively, Io
Φ = A⊗KBopp〈So〉, what is nothing else but NF(Io

φ, T
o
E).

Proposition 4.4. For φ, Φ and Io
φ as above, the following holds:

(i) φ ∈ Mor(A,B) if and only if Io
φ ∩ Bopp = 〈0〉,

(ii) Φ ∈ Mor(A,B) if and only if NF(Io
φ ∩ Bopp | Iopp

B) = 〈0〉.

Proof. Consider the ordering <A on Eo, which is an elimination or-

dering for x1, . . . , xn. Let us explicitly compute Io
φ∩Bopp, by computing the

left Gröbner basis of Io
φ with respect to <A, according to Lemma §2, 2.7.

Denote gi = xi − fi and compute every s–polynomial (cf. §2, 1.12)

spoly(gi, gj) = cijxi(xj − fj) − xj(xi − fi) = −dij − cijfjxi + fixj.

This expression can be reduced with respect to the generators of Io
φ to

fifj − cijfjfi − φ(dij) = φ(xjxi) − φ(xi)φ(xj),

which is nothing else but the obstruction polynomial oij for φ by Defin-

ition 1.9. So, we have obtained the ideal of obstructions Oφ = 〈{oij|1 ≤ i <

j ≤ n}〉 ⊆ Bopp and hence, the non–reduced Gröbner basis of Io
φ with respect

to <A equals Io
φ + Oφ. Then Io

φ ∩ Bopp = Oφ. Following the Remark 1.10,

we come to the final conclusions:

(i) φ is a morphism ⇔ Oφ = 〈0〉 ⇔ Io
φ ∩ Bopp = 〈0〉,

(ii) Φ is a morphism ⇔ Oφ ⊆ T opp
B ⇔ NF(Io

φ ∩ Bopp | T opp
B) = 〈0〉.

¤

4. MORPHISMS BETWEEN GR–ALGEBRAS 119

One can check vanishing of obstructions also without using Gröbner

bases, just by checking, that {fi} satisfy the same relations in B as {xi} do

in A, namely ∀i < j, fjfi = cijfifj + dij({f1, . . . , fn}).
On the other hand, the Proposition delivers a nice characterization for

morphisms, which will be used further.

Proposition 4.5. Let A,B ∈ GR, respectively A,B are G–algebras.

Then the following assertions hold:

(i) for any φ ∈ Mor(A,B), ker φ = Io
φ ∩ A,

(ii) for any Φ ∈ Mor(A,B),

ker Φ = Io
Φ ∩ A = NF(TA + (T opp

B + Io
φ) ∩ A | TA).

Proof. Let us prove the general statement. Since Φ is a morphism, by

4.4 we have T opp
B ⊇ Oφ = Io

φ ∩ Bopp, hence Io
Φ ∩ Bopp = 〈0〉.

For any q ∈ IΦ ∩ A its image Φ(q) = (Φ(q) − q) + q ∈ Io
Φ ∩ Bopp = 〈0〉,

hence ker Φ ⊇ Io
Φ ∩ A holds.

Conversely, let p ∈ ker Φ ⊂ A. Then p = p−Φ(p) + Φ(p) ∈ Io
Φ ∩A. ¤

Let J ⊂ B be a two–sided ideal. Then we can compute its preimage

Φ−1(J) = ker(A φJ−→ BJ := B/B〈TB + J 〉B), φJ (xi) := NF(φ(xi),J).

Example 4.6. Let us continue with the example 4.1.

Let us fix some t ∈ N, t ≥ 2 and recall that St = K〈a, b | [b, a] = t · a〉
and there is a map ψt : Bt → W1, defined by ψt(a) = xt, ψt(b) = xd + t.

The command opposite, applied to W1, produces the opposite algebra

of W1, build with the ”Reversed PBW basis” method, described in the §1,

5.1, that is W opp
1 = K〈D, X | XD = DX + 1〉. Let Ct = Bt ⊗K W opp

1 and

f1 := X t and f2 := DX + t will be the opposed images of a and b in Ct.

Now, the ideal Io
ψ ⊂ Ct is generated by {g1 = a−X t, g2 = b−(DX+t)}.

Choose an elimination ordering with a, b ≫ D, X and check the correctness

by computing the Io
ψt

∩ W opp
1 .

The s–polynomial of (g1, g2) is reduced to [a − X t, b − (DX + t)] by

the Product Criterion §2, 4.11. Further on, [a − X t, b − (DX + t)] =

[a, b]+[X t, DX] = −ta+tX t = −t(a−X t) = −tg1 and hence, spoly(g1, g2) =

g2g1 − g1g2 + tg1 = 0 So, {g1, g2} is a Gröbner basis and Io
ψt

∩ W opp
1 = 0,

hence ψt is a morphism for all t ∈ N.

In order to compute the kernel of ψt, take an elimination ordering with

D,X ≫ a, b and compute the Gröbner basis of {g1 = X t − a, g2 = DX −
b + t}. It is not so easy to compute as the previous one. If t = 7, for

instance, it will be {DX−b+7, D4a−X3b4+46X3b3−791X3b2+6026X3b−
17160X3, X4b3−36X4b2+431X4b−1716X4−D3a,X5b2−25X5b+156X5−

120 3. MORPHISMS OF GR–ALGEBRAS

D2a,X6b − 13X6 − Da, X7 − a}. But nevertheless, there are no elements

with leading monomials in a, b only. We have checked it for different t and

conjecture, that for any t ∈ N, ker ψt = 〈0〉.
This example is computed by the following code in Plural:

int t = 7;

ring B = 0,(a,b),dp;

ncalgebra(1,t*a);

ring W1 = 0,(x,d),dp;

ncalgebra(1,1);

poly pa = x^t;

poly pb = x*d+t;

def W1op = opposite(W1);

setring W1op;

poly pa = oppose(W1,pa);

poly pb = oppose(W1,pb);

def C = B+W1op;

setring C;

poly pa = imap(W1op,pa);

poly pb = imap(W1op,pb);

ideal I = a - pa, b - pb;

I;

==>

I[1]=a-X7

I[2]=b-DX-7

eliminate(I,a*b); // is map a morphism?

==>

_[1]=0

eliminate(I,D*X); // kernel

==>

_[1]=0

Example 4.7. Here, we continue with the example 4.2. We are investi-

gating the map τ : U(sl2) → W1, defined by τ(e) = x, τ(f) = −xd2, τ(h) =

2xd. Let W opp
1 be the opposite algebra of W1 which is defined as in the

previous example.

Let E = U(sl2) ⊗K W opp
1 and Io

τ be generated by {g1 = e − X, g2 =

f + D2X, g3 = h − 2DX}.
Computing Io

τ ∩W opp
1 gives zero: applying the Product Criterion, we see

that spoly(g1, g3) = −2g1, spoly(g2, g3) = 2g2 and spoly(g1, g2) = g3. Hence,

4. MORPHISMS BETWEEN GR–ALGEBRAS 121

{g1, g2, g3} is a Gröbner basis with respect to an elimination ordering with

e, f, h ≫ D, X and indeed τ ∈ Mor(U(sl2),W1).

Let us compute the kernel of τ . We set an elimination ordering with

D,X ≫ e, f, h and compute the Gröbner basis of Io
τ with respect to it. We

obtain {4ef + h2 − 2h,Dh + 2f, 2De − h,X − e} ⊂ E and see, that the

polynomial 4ef + h2 − 2h generates the kernel. Note, that this element is

the generator of the center of U(sl2), hence the two–sided Gröbner basis of

ker τ = U(sl2)〈4ef + h2 − 2h〉.
In particular, τ induces an injective morphism of GR–algebras

0 −→ U(sl2)/U(sl2)〈4ef + h2 + 2h〉 τ−→ W1.

Remark 4.8. However, with this technique we are not able to compute

preimages of left ideals from B. We transfer the following trivial (A,A)–

bimodule structure on A to A ⊗K Bopp: ∀a, a′ ∈ A, b ∈ Bopp,

a′ ◦ (a⊗ b) = a′ ◦ ((a⊗ 1) · (1⊗ b)) = (a′a⊗ 1) · (1⊗ b) and (a⊗ b) ◦ a′ =

(1 ⊗ b) · (aa′ ⊗ 1). In particular, a′ ◦ (a ⊗ b) = (a′a ⊗ b) = (a′ ⊗ b) ◦ a.

Then, for a right ideal L ⊂ B, generated by {g1, . . . , gs}, a left ideal

Lo ⊂ A⊗KBopp gets a left A–module structure and becomes a left A⊗KBopp–

module, generated by {1 ⊗ gopp
i }. But then, (Lo + Io

φ) ∩ A is a left ideal

instead of a right one as a preimage must be. So, this approach works only

for two–sided ideals of B. In order to find preimages of one–sided ideals,

we will utilize another module structure.

4.2. Preimages via Induced Module Structure.

Let A and B be two G–algebras, generated by {x1, . . . , xn} and, respec-

tively, {y1, . . . , ym}. Moreover, let φ : A → B be a map. Consider the set

G = {g − φ(g) | g ∈ A} ⊂ A ⊗K B (which is clearly closed with respect to

addition). There are the following natural actions of A on B, induced by φ:

a ◦L b := φ(a)b and b · a := b ◦R a := bφ(a).

These actions provide a well–defined left and right A–module structures

on B, if ∀a1,2 ∈ A, b ∈ B a1 ◦L a2 ◦L b = (a1 · a2) ◦L b and, respectively,

b◦Ra1◦Ra2 = b◦R(a1·a2). Computing with the first formula (the second gives

analogous result), we get a1◦La2◦Lb−(a1 ·a2)◦Lb = (φ(a1)φ(a2)−φ(a1a2))b,

that is the action is well–defined if and only if φ is a morphism.

Hence, B is an (A,A)–bimodule. Extending both actions naturally to

A by a1 ◦L a2 := a1 · a2, we turn A ⊗K B into an (A, A)–bimodule.

Since we have the constructive criterion (Proposition 4.4) for checking,

whether a map φ is a morphism, from now on we deal with morphisms only.

We will use the notation fi := φ(xi) ∈ B.

122 3. MORPHISMS OF GR–ALGEBRAS

Lemma 4.9. G = A〈{xi − φ(xi) | 1 ≤ i ≤ n}〉A ⊂ A ⊗K B.

Proof. Let f ∈ G and ∃g ∈ A such that f = g − φ(g). For any a ∈ A,

a ◦L f = ag − φ(a)φ(g) = ag − φ(ag) ∈ G and the same holds for the

multiplication from the right: f ◦R a = ga − φ(g)φ(a) ∈ G. Hence, G is a

sub-(A,A)–bimodule of A ⊗K B.

Now we show, that as an (A, A)–bimodule, G is generated by the set

{xi − φ(xi) | 1 ≤ i ≤ n}.
Indeed, ∀i and ∀k ≥ 1 we have xk+1

i − fk+1
i = xk

i ◦L (xi − fi) = (xi −
fi) ◦R xk

i . Now, let xα′

be a monomial. Assume its last positive exponent

is the n–th one. Then we can present xα′

as xαxn and conclude, that

xα′ − φ(xα′

) = xαxn − fαfn = xα ◦L (xn − fn) = (xn − fn) ◦R xα. Since G

is additive, we conclude that G is generated by the same set both from the

right and from the left. ¤

In order to represent the action of A on A⊗K B, we deform A⊗K B into

another algebra, which we denote by A⊗φ
K

B, by introducing the additional

non–commutative relations between elements of A and B.

The action, written in terms of relations, gives xiyj = fiyj, yjxi = yjfi.

Since B is a G–algebra, lm(fiyj) = lm(yjfi).

For 1 ≤ i ≤ n, 1 ≤ j ≤ m, define qij ∈ K to be qij :=
lc(yjfi)

lc(fiyj)
and

rij ∈ B ⊂ A ⊗K B to be rij := yjfi − qijfiyj. Then, for all indices in the

same range as above

yjxi = qij · xiyj + rij (or [yj, xi]qij
= [yj, fi]qij

).

If qij = 1 (e.g. when B is an algebra of Lie type), we have rij = yjfi −
fiyj = [yj, fi] and relation becomes just [yj, xi] = [yj, fi] for all 1 ≤ i ≤ n,

1 ≤ j ≤ m.

It remains to incorporate the relations (xi − fi)yj = 0 = yj(xi − fi),

∀1 ≤ i ≤ n and ∀1 ≤ j ≤ m. Since in A ⊗φ
K

B, yj(xi − fi) = (xi − fi)yj, it

suffices to consider a two–sided ideal Rφ ⊂ A⊗φ
K
B, generated by {(xi−fi)yj |

∀1 ≤ i ≤ n, ∀1 ≤ j ≤ m}. One possibility for treating the situation

correctly would be to pass to factor–algebra A ⊗φ
K

B/Rφ. On the other

hand, Rφ ⊆ G and hence, in the computations below we do not need it,

since we need not IΦ := G alone, but rather the sum IΦ + J . According

to the Lemma §2, 3.8, the computation of a Gröbner basis of an ideal J in

the factor–algebra modulo RΦ is done by computing a Gröbner basis of the

ideal J + RΦ. Hence, the Gröbner basis of IΦ + J in the factor–algebra is

the Gröbner basis of IΦ + J + RΦ = IΦ + J , since Rφ ⊆ G. Thus RΦ can

be ignored and the action it represents will still be correct.

4. MORPHISMS BETWEEN GR–ALGEBRAS 123

If we are given A,B ∈ GR, we construct A⊗Φ
K
B as a factor–algebra of

A ⊗φ
K

B by the two–sided ideal T = TA + TB.

Theorem 4.10. Let A,B ∈ GR, Φ ∈ Mor(A,B).

Let IΦ be the (A,A)–bimodule A〈{xi − Φ(xi) | 1 ≤ i ≤ n}〉A ⊂ A⊗K B
and fi := Φ(xi). Suppose there exists an elimination ordering for B on

A ⊗K B, such that 1 ≤ i ≤ n, 1 ≤ j ≤ m, lm(lc(fiyj)yjfi − lc(yjfi)fiyj) <

xiyj. Then

1) A ⊗φ
K

B is a G–algebra (resp. A⊗Φ
K
B is a GR–algebra).

2) Let J ⊂ B be a left ideal. Then

Φ−1(J) = (IΦ + J) ∩ A.

Proof. 1) A quite lengthy technical computation (omitted here) en-

sures, that the non–degeneracy conditions on the A ⊗φ
K

B indeed vanish.

We give the proof for the case when both A and B are algebras of Lie type,

other cases will follow analogously though more complicated coefficients will

be involved. In this case the non–degeneracy condition for xi < xj < yk

is (ykxj)xi − yk(xjxi) = [xi, [yk, fj]] + [[yk, fi], xj] + [yk, dij] = [xi, [yk, xj]] +

[[yk, xi], xj]+ [yk, dij] = xiykxj −xixjyk −ykxjxi +xjykxi +ykxixj −xiykxj −
xjykxi+xjxiyk+ykdij−dijyk = (−xixj+xjxi−dij)yk+yk(dij+xixj−xjxi) =

0. The non–degeneracy condition for another triple xi < yj < yk holds anal-

ogously.

Note, that any elimination ordering for A is admissible on A⊗φ
K

B, since

any such ordering has the property xi ≫ yj, rij depends only on {yk} and

hence, xiyj > lm(rij).

However, this will not always be the case for an elimination ordering for

B with its property yj ≫ xi, thus the condition of the theorem is essential.

2) By Lemma 4.9, ∀g ∈ A, g − Φ(g) ∈ IΦ. Since Φ is a morphism and

an elimination ordering for A is admissible on A⊗Φ
K
B, we have IΦ ∩Bopp =

OΦ ⊆ T opp
B and hence, IΦ ∩ J ⊆ IΦ ∩ Bopp = 0. Then (IΦ + J) ∩ B = J .

Since there exists an admissible elimination ordering for B, the intersec-

tion with A is computable for an ideal in A⊗φ
K

B. For any q ∈ (IΦ +J)∩A
we see, that Φ(q) = (Φ(q) − q) + q ∈ (IΦ + J) ∩ B = J and the inclusion

Φ−1(J) ⊃ (IΦ + J) ∩ A holds.

Conversely, let p ∈ Φ−1(J) ⊂ A. Then p = p − Φ(p) + Φ(p) ∈ (IΦ +

J) ∩ A. ¤

Remark 4.11. For our purposes, we need two different orderings on

A⊗φ
K

B, namely an elimination orderings for A and, respectively, for B. In

the proof we show, that an elimination ordering for A is always admissible

and, furthermore, we imposed a condition on an elimination ordering for B.

124 3. MORPHISMS OF GR–ALGEBRAS

Indeed, we have to test whether

lm(rij) = lm(yjfi −
lc(yjfi)

lc(fiyj)
fiyj) < xiyj.

Sometimes, it might be a problem to find such an ordering, as the two

following examples show. One of possible solutions is to look for extra

weights on variables. It could also happen, that for some morphism there

exists no elimination ordering for B on A ⊗φ
K

B (see 4.13 and §2, 2.11).

Example 4.12. We proceed with the examples 4.1 and 4.6.

For t ∈ N, t ≥ 2 we have a morphism St = K〈a, b | [b, a] = t · a〉 ψt→ W1,

ψt(a) = xt, ψt(b) = xd + t.

On St ⊗ψt

K
W1, there will be the following new relations: [x, b] = [x, xd +

t] = −x, [d, a] = [d, xt] = txt−1, [d, b] = [d, xd + t] = d. Hence, the condition

of the theorem is satisfied as soon as xt−1 < ad and {x, d} ≫ a at the same

time. As in the Example §2, 2.10 (where the situation with t = 3 is indeed

described), assigning the weight t to the variable d, we come to admissi-

ble orderings of the type (a(0,0,1,t),<) on St ⊗ψt

K
W1 or, equivalently,

(a(1,t),<) on the W1 ⊗ψt

K
St.

Let us compute some preimages for t = 7. Recall, that we are interested

in preimages of left ideals Ip = W1〈xp, xd+p〉 and Jp = W1〈dp, xd−p+1〉 for

p ∈ N. Consider, in addition, a family of ideals Kij = Ii ∩ Jj. Computing

with Plural, we obtain the following.

ψ−1
7 (I3) = 〈a, b − 4〉, ψ−1

7 (I8) = 〈a2, b + 1〉, ψ−1
7 (I33) = 〈a5, b + 26〉.

From this data we conjecture, that ψ−1
t (Ip) = 〈a[p

t
]+1, b + p − t〉. If it

holds, we conclude that ψt(ψ
−1
t (Ip)) = 〈xp+p′ , xd + p〉 = 〈xp, xd + p〉 = Ip,

where p′ > 0.

ψ−1
7 (J3) = 〈b − 9〉, ψ−1

7 (J8) = 〈b − 14〉, ψ−1
7 (J33) = 〈b − 39〉.

We may conjecture, that ψ−1
t (Jp) = 〈b + 1 − (p + t)〉. If it holds, we

conclude that ψt(ψ
−1
t (Jp)) = 〈xd + 1− p〉, which is strictly contained in Jp.

Now, let us compute preimages of intersections:

K3,3 = 〈x4d − 2x3, x2d2 + 2xd − 6, xd4 + 6d3〉 and ψ−1
7 (K3,3) = 〈ab −

9a, b2−13b+36〉 = 〈a(b−9), (b−4)(b−9)〉 = ψ−1
7 (I3)∩ψ−1

7 (J3). Further on,

ψ−1
7 (K8,3) = 〈a2(b−9), (b+1)(b−9)〉 = ψ−1

7 (I8)∩ψ−1
7 (J3), and ψ−1

7 (K3,8) =

〈a(b − 14), (b − 4)(b − 14)〉 = ψ−1
7 (I3) ∩ ψ−1

7 (J8).

Example 4.13. Here, we continue with the examples 4.2 and 4.7.

For the map τ : U(sl2) → W1, τ(e) = x, τ(f) = −xd2, τ(h) = 2xd, we

build the algebra E ′ = U(sl2) ⊗τ
K

W1, introducing new relations {[d, e] =

1, [x, f] = 2xd, [d, f] = −d2, [x, h] = −2x, [d, h] = 2d}. As wee see, only two

relations impose real restrictions: fx > xd and fd > d2, both being true if

and only if f > d. But this is incompatible with the elimination ordering

4. MORPHISMS BETWEEN GR–ALGEBRAS 125

condition for W1 (compare with §2, 2.11). Hence, the conditions of the

theorem are not fulfilled and there is no way to compute preimages of left

ideals under τ using this approach.

4.3. One–dimensional representations of G–algebras.

Recall, that an algebra of n × n matrices over K is denoted by Mn(K).

For an associative K–algebra A, a K–algebra homomorphism A −→ Mn(K)

is called a n–dimensional representation of A in K.

Assume that A is generated by the variables {x1, . . . , xn} and there

is a representation ρ : A −→ Mn(K), xi 7→ ρ(xi). Then the n–tuple

(ρ(x1), . . . , ρ(xn)) is also called a representation of A.

Let B be a G–algebra, generated by x1, . . . , xn over a field K. Let

ā := (a1, . . . , an) ∈ Kn and mā = B〈x1 − a1, . . . , xn − an〉 ⊆ B be an ideal.

If mā is proper, it is a two–sided ideal and we have the following exact

sequence:

0 −→ mā −→ B −→ B/mā
∼= K −→ 0,

and there is a residue map

B
ϕ−→ K ∼= B/mā, xi 7→ ai.

In the following lemma we establish some properties of ideals mā.

Lemma 4.14. Let B be a G–algebra in x1, . . . , xn over K. Consider a

map ϕ : B 7→ K, xi 7→ ai. Then the following are equivalent:

(1) ϕ is a morphism with ker ϕ = mā,

(2) ϕ : B −→ K = M1(K) is a one–dimensional representation of B,

(3) mā is a proper maximal ideal in B.

Proof. (1) ⇒ (2) : At first, we compute the obstructions

oij = (cij − 1)aiaj + dij(a). Since ϕ is a morphism, by Proposition 4.4,

Oϕ has to be zero in K. But then ai satisfy the relations between xi and

hence, ϕ : B → K is a one–dimensional representation of B.

(2) ⇒ (3) : Since ∀i < j, (cij − 1)aiaj + dij(a) = 0, generators of mā

constitute a Gröbner basis, which does not contain a constant. Hence mā

is proper.

(3) ⇒ (1) : Taking into account its simple structure, the fact that mā

is proper ideal implies that it is given in Gröbner basis. But, computing it

explicitly, we see it is equal to

{x1 − a1, . . . , xn − an} ∪ {dij(a) + (cij − 1)aiaj | 1 ≤ i < j ≤ n}.

126 3. MORPHISMS OF GR–ALGEBRAS

The latter part, which has to be zero, is exactly the ideal of obstructions

Oϕ. Hence, ϕ is a morphism. Moreover, each xi − ai is mapped to zero,

hence ker ϕ = mā. ¤

Remark 4.15. In fact, as we have seen, there is a 1–to–1 correspondence

between the one–dimensional representations and proper maximal ideals of

the form mā. On the contrary to the commutative case, these are not all of

the maximal ideals of B; inspecting the first Weyl algebra, we see it may

happen that an algebra has no maximal ideals of this form at all.

We show that there is an algorithm to compute all one–dimensional

representations. We declare (a1, . . . , an) as new variables commuting with

A and build the algebra Ã := A⊗KK[a1, . . . , an] with an elimination ordering

with respect to {x1, . . . , xn}. Ã is obviously a G–algebra, so we compute a

Gröbner basis Ĩ ⊂ Ã of I = mā, and then we set Î := Ĩ ∩ K[a1, . . . , an]. In

the commutative ring K[a1, . . . , an] we compute minimal associated primes

(with the procedure MinAssPrimes) of Î (they will be maximal ideals, if K
is algebraically closed) and read the representations from it (with the help of

a procedure GetRepresentation). Then we have to test the obtained set

for the indecomposability with the procedure FindIndecomposables. We

are not going to describe both auxiliary procedures due to their simplicity,

but we’ll show how they work on a particular example.

Algorithm 4.1 OneDimRepresentations

Input: B (G–algebra in variables x1, . . . , xn);

Output: a list of vectors in Kn, corresponding to indecomposable one–

dimensional representations;

A = K[a1, . . . , an]; E = B ⊗K A;

I = {xi − ai, 1 ≤ i ≤ n} ⊂ E;

J = Eliminate(I, B); ⊲ J = I ∩ A

MinAssPrimes(J) =: {P1, . . . , Ps};
Ri = GetRepresentation(Pi);

FindIndecomposables(R) =: {R1, . . . , Rt};
return R;

Example 4.16. Consider the algebra U ′
q(so3) (see §5, 2.2 and the Ex-

ample 2.2) over a field of char 0. At first, from the relations of this algebra

it follows, that for any q there is a trivial one–dimensional indecomposable

representation ρ0 = (0, 0, 0), which is not interesting for us.

4. MORPHISMS BETWEEN GR–ALGEBRAS 127

Let t =
q1/2

q − 1
. Then there are four nontrivial representations of Aq:

{rij =
(
(−1)it, (−1)jt, (−1)i+jt

)
| 1 ≤ i, j ≤ 2},

although r11 + r12 + r21 + r22 = ρ0. Since every rij can be expressed as

a direct sum of other four representations, we can exclude one of them as

decomposable, in this case we throw r21 away. In such a way we obtain three

indecomposable one–dimensional representations of U ′
q(so3) in the following

nice form:

Rep1(U
′
q(so3)) = {

(
(−1)it, (−1)jt, (−1)i+jt

)
| 1 ≤ i < j ≤ 3}.

If we specify q at the n–th primitive root of unity, the algebra U ′
q(so3) |qn=1

has properties, quite different from the properties of U ′
q(so3) — compare for

example their centers, enlisted in §5, 2.2. In this case, we get again four

representations of U ′
q(so3) |qn=1:

{rij =
(
(−1)it′, (−1)jt′, (−1)i+jt′

)
| 1 ≤ i, j ≤ 2},

where t′ = 1
3
(2q1/2 + 1) for n = 3, t′ = 1

2
q1/2(q + 1) for n = 4,

t′ = 1
5
(q1/2(3q + 4) − (q + 2)) for n = 5 and so on.

We see, that as in the general case, r11 + r12 + r21 + r22 = ρ0, so indeed

there are only three non-trivial indecomposables. Hence, we come to the

answer

Rep1(A
′
q) = {

(
(−1)it′, (−1)jt′, (−1)i+jt′

)
| 1 ≤ i < j ≤ 3},

comprising three indecomposable one–dimensional representations. Real-

izing that t′ =
q1/2

q − 1
|q3=1= t |q3=1, we see that we obtain all the one–

dimensional representations of A′
q for q a root of unity from the represen-

tations for generic q. Note, that these representations are non–classical

in the sense that there exists no limit when q → 1. Indeed, the algebra

U(so3) = limq→1 U ′
q(so3) has only the trivial one–dimensional representa-

tion (0, 0, 0). See [39] for the discussion on non–classical representations,

including finite–dimensional ones.

4.4. Exact values of global dimension of G–algebras.

Proposition 4.17. Let A be a G–algebra in n variables over K, such

that A has finite–dimensional representations. Then gl. dim A = n.

Proof. The Gel’fand–Kirillov dimension of a finite–dimensional A–

module M is zero. By §2, 4.16 (or by §1, 4.14), gl. dim A ≤ n, hence

Extn+k
A (M,A) = 0 ∀k ≥ 1. Since, by §1, 4.14, A is a Cohen–Macaulay

algebra, it follows that j(M) = GKdim(A)−GKdim(M) = n, that is ∀1 ≤
k ≤ n− 1, Extk

A(M, A) = 0 and Extn
A(M,A) 6= 0. Hence, gl. dim A = n. ¤

128 3. MORPHISMS OF GR–ALGEBRAS

Remark 4.18. It would be interesting to know, whether the existence of

finite–dimensional representations is equivalent to the fact that the global

dimension is exactly the number of variables of a G–algebra. We conjecture

that this is true, since our experiments with Plural did not lead us to a

counterexample yet.

Example 4.19. Consider a n–th Weyl algebra over a field K
Wn(K) = K〈x1, . . . , xn, d1, . . . , dn | yixi = xiyi + 1〉. One can show, that

if K is a field of characteristic 0, there are no representations of finite dimen-

sion. The well–known result (e.g. [59]) states that the global dimension of

Wn(K) (in 2n variables!) is just n.

Let F be a field of characteristic p. Then, one can prove that the center

of Wn over F is Z(Wn) = F[S] for the set S = {xp
i , d

p
i | 1 ≤ i ≤ n} (we have

mentioned this result already at the beginning of this Chapter).

Since S consists of central elements, which leading monomials have no

common factors, by applying a Product Criterion §2, 4.11 we see that S

is a left Gröbner basis of a left ideal I := Wn(F)〈S〉. From the centrality of

generators and the Algorithm §2, 3.1 it follows, that the ideal I is indeed

two–sided and S is its two–sided Gröbner basis.

Consider a module M = Wn(F)/I. The special form of elements of

the set S and a Gröbner basis property of S imply dimK M = pn. Hence,

M is a finite dimensional module, so, we can build a finite dimensional

representation from it and then, by the Proposition 4.17, we obtain that

gl. dim Wn(F) = 2n.

Let us give a new short proof of the following known result.

Corollary 4.20. Let K be a field and g be a finite dimensional Lie

algebra. Then, gl. dim U(g) = dimK g.

Proof. Let {x1, . . . , xn} be a K–basis of g and cij
k ∈ K for 1 ≤ i, j, k ≤

n are the structural constants of g. Thus, the relations on the universal

enveloping algebra U(g) are ∀j > i xjxi = xixj +
∑

k cij
k xk. It is easy to see

that the trivial representation (0, . . . , 0) always exists, hence gl. dim U(g) =

n = dimK g. ¤

Corollary 4.21. Let K be a field and A be a G–algebra in n variables.

If for every structural polynomial dij(x̄) of A dij(0̄) = 0 holds, then

gl. dim A = n.

Proof. Indeed, dij(0̄) = 0 implies that the polynomial dij has no con-

stant term and hence, the relation xjxi − cijxixj − dij = 0 holds true when

substituting xi with zero. Hence, A has the trivial representation (0, . . . , 0)

over K and, by 4.17, gl. dim A = n. ¤

5. CONCLUSION AND FUTURE WORK 129

Among these algebras are G–algebras with quasi–homogeneous relations

(like quadratic algebras in §1, 7.2), quadric solvable polynomial algebras

with cji = 0, ∀i < j of [56], Witten’s deformation of U(sl2) in §1, 7.3,

diffusion algebras in §1, 7.4, nonstandard quantum deformations U ′
q(son) of

[36] and many more.

As we see in the following Example, the Proposition 4.17, using the lan-

guage of representations, is more general and more suitable for our purposes

in comparison with the Corollary 4.21, since it allowed us to prove a more

general and more intrinsic statement.

Example 4.22. Consider the G–algebra XK = K〈x, y | yx = xy+y2+1〉.
We know already, that 1 ≤ gl. dim XK ≤ 2. There is a proper ideal I =

XK
〈x, y2 + 1〉 with Syz(I) = XK

〈(−(y2 + 1), x + 2y)t〉. Note, that the left

module M = XK/I is of K–dimension 2.

We say, that a field K satisfies the property (∗), if equation i2 + 1 = 0

has solutions in K.

Using the Proposition 4.17, we conclude, that for any field K, satisfy-

ing (∗) (it might be K = F2 with i = 1 or K ⊇ C with i =
√
−1), we

have gl. dim XK = 2, since then there are one–dimensional representations

{(0,±i)}.
For a field F, not satisfying (∗) (like Q or R), there are no one–dimen–

sional representations. But there are finite–dimensional representations! In

particular, there is a family of representations, parametrized by a ∈ F∗,

given by

ρa : XF → M2(F), x 7→
(

0 0

0 0

)

, y 7→
(

0 −a

1/a 0

)

.

Hence, the G–algebra XK has global dimension 2 over any field K.

In particular, we can compute a global dimension of a difference algebra

D = K〈x, ∆ | ∆ · x = x ·∆ + ∆ + 1〉, mentioned already in the Section §1,

6. As we see from the relations, for any field K there is a one–dimensional

representation x 7→ 0, ∆ 7→ −1. Hence, gl. dim D = 2.

5. Conclusion and Future Work

We hope that the nontrivial examples, computed and described in de-

tail, help to understand both usefulness and computational complexity of

treated problems. More applications like the investigation of singularities

of polynomials, describing algebraic dependency of generators of the center

(which we discussed in the Example 2.4) can be supported by the proposed

methods.

130 3. MORPHISMS OF GR–ALGEBRAS

For checking the Conjecture 2.3, the method of Perron polynomials

([66]), originated from the commutative case, should be revised and effi-

ciently implemented. Alternatively, an advanced algorithm for elimination

can be a big help for us.

An implementation of classification of isolated hypersurface singulari-

ties over fields of small characteristics is needed. Once available, such im-

plementations will help to check whether the conjecture holds for universal

enveloping algebras of simple Lie algebras of rank 2.

It is quite interesting to find out, in which G–algebra A the center of

a factor–algebra modulo a two–sided ideal Q is equal to the center Z(A)

modulo the ideal Z(A) ∩ Q (cf. Subsection 2.6).

For a map Φ : A → B of GR–algebras we obtained the following results.

• The Proposition 4.4 allows to check algorithmically whether a given

map is a morphism

• For A being commutative

◦ the preimage of a left and a two–sided ideal can be computed with

the Algorithm 2.1, which generalizes the preimage algorithm for

the morphism between two commutative algebras ([35]).

• For arbitrary GR–algebra A
◦ for a two–sided ideal T ⊂ B, the algorithmic computation of the

preimage of Φ−1(T) follows from the Theorem 4.5,

◦ for a left ideal L ⊂ B, the preimage of L can be computed (along

the lines of the Algorithm 2.1), if Φ satisfies the condition of the

Theorem 4.10.

So far it is unknown whether an algorithm for the computation of the

preimage of an arbitrary left ideal under an arbitrary morphism of GR–

algebras exists. We conjecture, that it does not exist in general.

An algorithm for computing the global homological dimension of a given

GR–algebra is of special interest. As we have shown in the Proposition 4.17,

the existence of finite dimensional representations of a G–algebra A over the

field K implies, that the global dimension of A is equal to the number of

variables of A. It would be very interesting to know whether it is possible

to determine the global dimension of arbitrary G–algebra in an algorithmic

way.

CHAPTER 4

Implementation in the system Singular:Plural

When he awoke again, he was walking.

He was walking up the twisted wall-trail of Hellwell.

As he walked, he passed the imprisoned flames.

Again, each cried out to him as he went by:

”Free us, masters!”

And slowly, about the edges of the ice that was his

mind, there was a thawing. Masters.

Plural. Not singular.

Masters, they had said.

He knew then that he did not walk alone.

Roger Zelazny, Lord of Light

1. Singular and Plural: history and development

Singular is a specialized computer algebra system for polynomial com-

putations. The kernel implements among others a variety of Gröbner basis-

type algorithms (generalized Buchberger’s algorithm, standard basis in local

rings, in rings with mixed order, syzygy computations, algorithms to com-

pute free resolutions of ideals, combinatorial algorithms for computations of

invariants from standard bases (vector space dimensions and -bases, Hilbert

function etc)) and algorithms for numerical solving of polynomial systems.

The development of Singular started in 1984 by G. Pfister,

K.-P. Neuendorf and H. Schönemann, in order to be able to compute stan-

dard bases in local rings or, more precisely, in the localization of the poly-

nomial ring at the origin. The main algorithm for doing this was Mora’s

modification of Buchberger’s algorithm to compute Gröbner bases in poly-

nomial rings. To explain the difference between these two algorithms, let

us think about a system of polynomial equations in many variables having

only finitely many solutions. Using Buchberger’s algorithms it is possible

to compute the total number of all solutions counted with multiplicities,

while Mora’s algorithm allows us to compute the multiplicity of a single,

specified solution. The need for this local version of Buchberger’s algorithm

arose from research problems in pure mathematics by G.-M. Greuel and

G. Pfister, while trying to find a counterexample for complete intersections

131

132 4. IMPLEMENTATION IN THE SYSTEM SINGULAR:PLURAL

of a theorem of K. Saito about the exactness of the Poincare complex of

hypersurfaces.

None of the existing systems offered the possibility for such local compu-

tations. This was the starting point of (a forerunner of) Singular. Indeed,

using this implementation, a counterexample was found. This early version

was mainly able to compute certain special invariants of singularities. In

September 1991 the Singular project became a joint venture of the Hum-

boldt University of Berlin and the University of Kaiserslautern. Since 1994

the development of Singular has been continued exclusively at the Uni-

versity of Kaiserslautern.

The main stimulus for enlarging the system by including new algorithms

comes from research problems, arising from algebraic geometry, commuta-

tive algebra, singularity theory and non–mathematical applications.

In order to be able to compute nontrivial examples we needed an efficient

implementation of the Gröbner basis-type algorithms, as well as efficient

communication links between independent packages.

Many systems offer a possibility to compute Gröbner bases in polyno-

mial rings. The general purpose Computer Algebra systems (like Axiom,

Maple, Mathematica, Maxyma, Reduce) are usually not very fast

and are limited in the choice of orderings, offering a little more than just

the possibility to compute a Gröbner basis and, most seriously, having no

method to compute efficiently in local rings. Singular provides, among

other things, the following features:

(1) Computations in very general rings, including polynomial rings, lo-

calizations hereof at a prime ideal and tensor products of such rings.

This includes, in particular, Buchberger’s and Mora’s algorithm as

special cases.

(2) Many ground fields for the above rings, such as the rational num-

bers; finite fields Z/p, p a prime, p ≤ 2147483629; finite fields with

q = pn elements, transcendental and algebraic extensions, floating

point real numbers with arbitrary precision.

(3) The combination of Gröbner basis techniques with multivariate fac-

torization and characteristic set methods is the basis for an efficient

implementation of several algorithms for primary decomposition.

(4) Many ideal– and module–theoretic operations, such as intersection,

ideal quotient, elimination and saturation, and more advanced al-

gorithms, based on free resolutions of finitely generated modules,

including normalizations of rings and resolution of singularities.

1. SINGULAR AND PLURAL: HISTORY AND DEVELOPMENT 133

Several combinatorial algorithms for computing dimensions, multi-

plicities, Hilbert series etc.

(5) Last, but not least, Singular is designed for speed. Although

it has a very general standard basis algorithm, it belongs to the

fastest for computations of Gröbner bases for, say, homogeneous

ideals in polynomial rings over fields of small characteristic, and it

is also quite fast in computations over the rationals.

Since 2000, Singular:Plural is a kernel extension of Singular, de-

signed to fill the present gap in considerably fast computations within the

certain class of non–commutative polynomial algebras (algebras of solvable

type ([41]) a.k.a. G-algebras ([53]) a.k.a. PBW-algebras ([14])).

Careful design of the Singular:Plural included theoretical inspec-

tion, which led to several papers ([48], [49], [53]), as well as many investi-

gations of similarity and difference of commutative and non–commutative

approaches to algorithms and basic operations.

The extension Singular:Plural allows us to handle many problems,

coming from representation theory (including Lie and quantum algebras),

algebraic geometry, theoretical physics and differential equations (includ-

ing more linear operators like shift, difference, their q–analogs and so on,

see Section §1, 6 and [18]). The major tools we use are the generaliza-

tion of Buchberger’s algorithm for computing Gröbner basis and Gröbner–

driven algorithm for computing syzygies and free resolutions. There are

only few systems, which can handle the non–commutative structures, simi-

lar to Plural’s (see Subsection 1.1); the modern systems which can operate

with non–commutative algebras are Mgfun (on Maple) and OpenXM,

the more general systems like Felix and MAS are no more supported.

The long lifecycle of Singular, as well as its success in the mathemat-

ical community, is a consequence of the continuous application of software

engineering methods. Complicated mathematical structures often need very

special approach, which lies between mathematics and computer science.

Singular offers a powerful C–like programming language. The growing

number of libraries (nearly 60 up to now), written in this language by the

Singular team and various contributors, shows that both the interactive

interface and the programming language were designed and implemented

successfully not only from the developer’s point of view but were also ac-

cepted by users. Many algorithms could be programmed using the language,

supported by the fast implementation of basic functions in the kernel.

Singular offers probably the biggest choice of ground fields among the

contemporary specialized computer algebra systems — we have described

134 4. IMPLEMENTATION IN THE SYSTEM SINGULAR:PLURAL

them above. Since the coefficients of every computation lie in the ground

field, it is therefore of extreme importance to have flexible, general and fast

implementation.

The designing of a generally efficient code of course goes back to the

implementation of each special case, but all the operations are united under

the common ideology and internally homogeneous top–level architecture.

These pseudo–calls are unified, of course, not only in the case of fields,

but also in general. This makes the development of kernel additions much

easier and, on the other side, fully accessible for the analysis of each special

sub-case.

Monomials, their presentation and operations with them comprise the

heart of the ”polynomial” part of Singular, therefore the whole ideol-

ogy and, of course, the implementation of Singular and, consequently,

Plural, are heavily influenced by them. We are using quite sophisticated

structures and algorithms, partially borrowed from the literature (like sev-

eral flavours of geobuckets [77] for the addition etc.) and partially developed

by ourselves. As a result, we have one of the fastest polynomial arithmetics

among the specialized computer algebra systems.

The generalized Buchberger’s algorithm, one of the key points of Sin-

gular, evolved with the time to the ”Gröbner engine”, providing several

algorithms in one framework - Buchberger’s, Mora’s etc for the commuta-

tive case and generalized Buchberger’s algorithm for the non–commutative

case. It has a complicated structure, and our aim is to make it as flexible

and as fast as possible.

With the development of Singular:Plural we have enhanced and

generalized our internal framework. It turned out, that its design enabled

us to change only a relatively small part of the code and to gain most of

the functionality (for algorithms, similar in both commutative and non–

commutative settings) in such extension as Singular:Plural. The de-

velopment of such functionality from scratch would have taken enormous

human resources. Thus,Plural inhabits the highly developed Singular’s

framework, that gives us the opportunity to concentrate on other aspects.

As a system which comply with the GPL license, we provide both bina-

ries and the source code of Singular. Moreover, we add or even replace

some parts of Singular with specialized packages, for instance GNU MP

for rational and floating-point arithmetics, NTL for univariate factoriza-

tion and MP for communication links between Singular and itself or a

different Computer Algebra System. On the other side, according to the

1. SINGULAR AND PLURAL: HISTORY AND DEVELOPMENT 135

design, our sub-packages (algorithms and/or code) can be used in other sys-

tem: for example, Macaulay2 uses Factory and Libfac sub-packages

of Singular.

The design and implementation of Singular:Plural were distinguished

by the Richard D. Jenks award for for Excellence in Software Engineering

for Computer Algebra at the International Symposium on Symbolic and

Algebraic Computation (ISSAC) 2004 in Santander (Spain). ISSAC is the

yearly premier international symposium in Symbolic and Algebraic Compu-

tation and it is of big importance for the Singular team, that it became

the first nominee of the prize.

1.1. Existing computer algebra systems. Among the existing com-

puter algebra systems and packages we can see two different groups: to

the first one belong specialized systems, which deal with some very special

classes of algebras, while the systems from the second group provide the

user with an unified environment for computation in quite general families

of algebras.

We give a short account of the most known systems, starting with the

first group.

Gröbner basis algorithms for Ore algebras, including elimination are

implemented in the Maple package Mgfun by F. Chyzak also for the

case where the coefficients may be non–commutative with respect to the

variables. Indeed, the package is restricted to several cases of operators

only, but the implementation of algorithms is reliable.

(http://algo.inria.fr/chyzak/mgfun.html, [18]).

The system Macaulay2 by D. Grayson and M. Stillman is a software

system devoted to supporting research in algebraic geometry and commu-

tative algebra, but it also includes Gröbner basis algorithms for exterior

and Weyl algebras. There is a package for sophisticated computations with

D–modules, providing a rich functionality for the D–module specialists.

(http://www.math.uiuc.edu/Macaulay2, [20]).

The system Kan/sm1 (distributed as a part of the system OpenXM)

by N. Takayama et. al. provides Gröbner basis computations in polynomial

rings, rings of differential operators, rings of difference and q-difference op-

erators. OpenXM is said to be able to compute with algebras, where the

coefficients may be non–commutative with respect to the variables.

(http://www.math.kobe-u.ac.jp/KAN/index.html).

The more general systems, where our system Plural belongs to, include

also the computer algebra systems Felix and MAS, whose development has

unfortunately ceased by now.

136 4. IMPLEMENTATION IN THE SYSTEM SINGULAR:PLURAL

Felix by J. Apel and U. Klaus was released last time in August 1998

(http://felix.hgb-leipzig.de, [2]). It provides Buchberger’s algorithm

and its generalizations to (non–) commutative rings, in particular to free

K–algebras, polynomial rings and G–algebras. Among the implemented

applications there are syzygy computations and basic ideal operations. Fe-

lix provides a complete programming language which in standard mode is

interpreted but also an on-line compiler and a linker are included.

MAS by H. Kredel and M. Pesch ([45]) was last time released as Ver-

sion 1.01 in March 1998. It contains a large library of implemented Gröbner

basis algorithms for computing in (non–) commutative polynomial rings.

MAS combines imperative programming facilities with algebraic specifica-

tion capabilities for design and study of algebraic algorithms. It includes

algorithms for real quantifier elimination and parametric real root counting.

(http://krum.rz.uni-mannheim.de/mas.html).

For free K–algebras, there are the systems Opal and its obsolete prede-

cessor Grb, which are specialized standalone systems for Gröbner bases in

free and path algebras. Consequently, computations in free algebras with

Opal are much faster than with Felix. Unfortunately, the development of

Opal has been ceased. The last working link was located at

http://people.cs.vt.edu/∼keller/opal.

There is a Mathematica package NCAlgebra, created for comput-

ing Gröbner bases in free algebras and further manipulations with non–

commutative expressions. (http://www.math.ucsd.edu/∼ncalg/).

A system Bergman is a powerful tool to calculate Gröbner bases in

commutative and non–commutative algebras, and in modules over them. It

may also be used to calculate some invariants of algebras and modules: the

Hilbert series, and (in the non-commutative case) the Poincaré–Betti series,

the Anick resolution, and the Betti numbers.

Bergman offers the user a high level of flexibiliy. Among the alter-

natives for ring set-ups are: various strategies of Grb̈ner basis compu-

tation; a few different monomial orderings; and various coefficient fields,

most calculations can be done both for ideals and modules. Bergman

is written in Standard Lisp, the Lisp dialect underlying Reduce imple-

mentations, an experimentative Common Lisp version is also available.

(http://servus.math.su.se/bergman/)

The only contemporary system for computation with free and path al-

gebras, being developed further, is the Grobner Package for Gap 4 by

A. M. Cohen and D. A. H. Gijsbers.

(See http://www.win.tue.nl/∼amc/pub/grobner/). With Grobner, its

2. ASPECTS OF IMPLEMENTATION 137

authors provide algorithms for computing Gröbner bases of sets of non–

commutative polynomials with coefficients from a field implemented in Gap

and with respect to the degree lexicographical ordering. Further on, some

variations, such as a weighted and truncated version and a tracing facility

are provided. At the moment the system features an interface, which is not

convenient for the end–user, but we hope that this will be enhanced soon.

1.2. Aims of Plural. The development of non–commutative algo-

rithms in Singular started in 1993, when the experimental version Sin-

gularD 0-9-3 appeared. It contained Gröbner basis algorithms for exterior

and Weyl algebras (see the technical details in the article [63]) — although

based on the Singular sources, it never became an integral part of Sin-

gular.

Based on this version, we created Singular:Plural 0-9-9 (1999-2000,

[48]), which was able to compute left and two–sided Gröbner bases for a

wide class of non–commutative algebras (G–algebras). With Plural 0-9-9

we computed numerous concrete important examples (see [48] for details),

which were also used by others (like [38], [17]).

Although the name Plural originated from the wordplay (the opposite of

Singular), we keep the name Plural for the modern specialized computer

algebra system for non–commutative polynomial algebras. It is a part of

Singular, providing the Gröbner basis family of algorithms, which are to

be used within the large class of non–commutative algebras important in

applications. It is not only important nowadays to have a non–commutative

Gröbner basis engine on its own, but also a connection to the fast and effi-

cient ”commutative” system is needed. This is motivated by many applica-

tions, like in algebraic geometry ([20]), D–modules, differential equations,

theoretical physics. Many problems, arising within non–commutative al-

gebras, contain sub-problems which are purely commutative (like primary

decomposition, see e.g. §1, 7.1). That’s why Plural is designed to be

not a standalone package only, but a part of Singular — in particular,

it inherits the programming language, a help system, portability and many

other capabilities of Singular.

2. Aspects of Implementation

2.1. Singular Framework. Plural is implemented in the framework

of Singular, a system for commutative polynomial computations. This

system provides memory management, an interpreter, basic types, etc. Ex-

periences showed that Gröbner base computations tend to tremendously

138 4. IMPLEMENTATION IN THE SYSTEM SINGULAR:PLURAL

long running times and consumption of huge amounts of memory even in

the case of commutative polynomials.

Experience with the implementation of a commutative standard basis

([35]) algorithm led to highly tuned data structures, routines for polynomial

operations and knowledge, how to optimize such kinds of algorithms.

Some lessons to learn from are the data representation ([6]) and fast

additions ([71], [77]). Furthermore, the memory management of Singular

is optimized to handle many very small blocks of the same size (monomials)

efficiently with a high locality of reference.

2.2. Basic Operations with Polynomials. In the non–commutative

case, the importance of efficient basic polynomial operations is even more

evident. For an efficient data representation, fast monomial comparisons

and addition of polynomial routines from the commutative rings can be

copied.

Multiplication of monomials is much more difficult: instead of multiply-

ing several variables at once, we have to do it step by step for every pair of

non–commuting variables.

In general, polynomial multiplication is broken down to the multiplica-

tion of monomials, where the variables with smaller indices are sorted to the

left, the variables with larger indices are sorted to the right. Subexpressions

of the form xa
jx

b
i are transformed to its normal form via the definition of the

G–algebra (for a = b = 1), via a formula (if one is available, like in the case

of Weyl algebras) or via a table lookup (previously computed products xs
jx

t
i

are cached to speed up the computation) or, as a last resort, recursively.

Furthermore, different types of G–algebras allow different multiplication

routines (i.e. more efficient than the general case) for multiplying mono-

mials, handling commuting variables or formulas to compute xa
jx

b
i . Let A

be a G–algebra with the relations ∀ i < j xjxi = cij · xixj + dij(x), where

cij ∈ K∗ and dij ∈ A. We decided to implement routines for three following

types:

skew : quasi–commutative algebras (all the dij = 0, cf. §1, 3.2),

lie : Lie–type algebras (all the coefficients cij = 1, cf. §1, 3.2),

general : all the algebras that do not belong to the previous types (for

example, quantum algebras).

However, further experiments led us to the following refinement. For

the multiplication of two monomials we need subroutines for multiplying

a monomial with a univariate monomial from the left and from the right,

and a subroutine for multiplying two univariate monomials, say, xa
j and xb

i

(j > i). So, one should concentrate on the efficient implementation of all

2. ASPECTS OF IMPLEMENTATION 139

these three levels of multiplication. In the last one we analyze the relation

between the xj and xi and conclude what kind of multiplication will be

used. If xj and xi (quasi–) commutes we just return xa
jx

b
i = cab

ij xb
ix

a
j . If

there is a formula implemented, we compute the product according to it

and return the corresponding result. In the most general case, we should

store the values of xa
jx

b
i in the table. Of course, cashing all the values

which were called from the multiplication routines, we gain higher speed of

computation, but quite often the multiplication tables will become huge in

size. The opposite way (not to cache any products at all) could be very slow

but it uses no extra memory. So, there are several strategies of handling

the tables.

We implemented at first the ”cache-all” multiplication, whose principles

become clear from the Figure 1. In some sense it has been the common

approach to multiplication before, since ”cache-all” multiplication has been

implemented in MAS and Felix ([5]). However, it seems to us that an-

other type of strategy should be better, namely, the ”arrow” multiplication

(Figure 2). We store only the values of products xa
jxi, xjx

b
i and xc

jx
c
i , com-

puting them on demand and use them in computations of other requested

elements.

Multiplication of polynomials require many intermediate additions of

large polynomials. The technique of geobucket addition ([77]) is used inside

the polynomial multiplication routines. It avoids the O(n2)-complexity in

additions (repeated merge of sorted lists) by postponing them: the terms

Figure 1. Cache-all multiplication

140 4. IMPLEMENTATION IN THE SYSTEM SINGULAR:PLURAL

Figure 2. Arrow multiplication

will be accommodated in buckets of geometrically increasing length. Unlike

the variant of geobuckets used in the reduction step we do not separate

the leading term here. At the end of the multiplication all the buckets are

added up to the result.

2.3. Connection to the commutative kernel of Singular. In Sin-

gular the properties of polynomials are described by defining a base ring

they belong to. In order to define such a ring one has to describe the vari-

ables, the monomial ordering and the coefficient field. Internally, the ring

definition includes all basic monomial operations, corresponding to the size

of the monomials, the ordering, the coefficient field, etc. We extended Sin-

gular in the following way: one can define a non–commutative base ring,

which borrows addition etc. from its corresponding commutative ring, but

substitute all the multiplication routines.

Implementing our algorithms this way, we can use many routines from

the Singular kernel. Although it might have been possible also to reuse

the main loop of the existing standard basis code, we decided not do this:

this code can handle many special cases we are not interested in (like local

standard bases) and contains too many implicit ”commutative” optimiza-

tions.

The Singular framework provides many means to process the results

of Gröbner bases: computing dimensions, syzygies, free resolutions etc. On

the other hand, the most general form of the internal call is implemented for

3. TIMINGS, PERFORMANCE AND EXPERIENCE 141

submodules, and is called from the elimination, intersection, modulo and

other routines.

2.4. Plural libraries. Below we enlist libraries from the actual Sin-

gular:Plural distribution accompanied with short descriptions. I would

like to thank all the colleges, contributed to the libraries: Javier Lobillo and

Carlos Rabelo (Granada, Spain), Oleksander Motsak, Oleksander Yena and

Markus Becker (Kaiserslautern).

• center.lib, [62]. Computation of centers and centralizers in GR-

algebras.

• involut.lib, [7]. Procedures for computations and operations

with involutions.

• gkdim.lib, [57]. Procedures for calculating the Gel’fand–Kirillov

dimension of modules.

• ncalg.lib, [51]. Definitions of important GR-algebras.

• ncdecomp.lib, [50]. Computation of the central character decom-

position of a module.

• nctools.lib, [54]. General tools for non–commutative algebras.

• qmatrix.lib, [58]. Computations with quantum matrices, quan-

tum minors and symmetric groups.

Even more libraries for Plural are being developed by ourself and

other contributors, like dmod.lib for the theory of D–modules ([17], [64]),

perron.lib for the computation of Perron polynomial ([66]), delta.lib

for Delta–Gröbner bases of Castro ([16]), nchomolog.lib for homolog-

ical computations including Hochschild cohomology of bimodules ([52]),

ncontrol.lib for the non–commutative Control Theory ([19]) and more.

3. Timings, Performance and Experience

Until now there is no agreement on benchmarks for non–commutative

Gröbner bases, although there were some suggestions and examples. A

collection of test problems for D–modules was presented by N. Takayama

in [75]. Many of them involve computations in rational Weyl algebras and

therefore cannot be tested with Plural.

We use mainly the examples, originating from some concrete problems

in representation theory, D–modules theory and quantum algebra.

For universal enveloping algebras of finite dimensional Lie algebras and

their quantized analogues we propose the following tests to be performed.

Consider a family of modules, having finite K–dimension. For a member of

such a family (say, indexed by a natural number n), presented by a set of

142 4. IMPLEMENTATION IN THE SYSTEM SINGULAR:PLURAL

polynomial generators Sn from an algebra A, the following operations can

be performed:

1. For a module LSn
= A/A〈Sn〉:

a) left Gröbner basis of Sn (§2, 1.3),

b) a K–dimension of a module LSn
,

c) annihilator of a finite–dimensional module LSn
(§2, 5.17),

d) intersection of a finite set of left ideals {LSi
| i ∈ Λ ⊂ N}.

2. For a module TSn
= A/A〈Sn〉A:

a) two–sided Gröbner basis of Sn (§2, 3.1),

b) a K–dimension of a module TSn
,

c) annihilator of a finite–dimensional module TSn
,

d) intersection of a finite set of ideals {TSi
| i ∈ Λ ⊂ N}.

3. Intersection of a left ideal LSn
with a two–sided ideal TSm

.

4. The image of LSn
in the algebra A/A〈TSm

〉A (§2, 1.2).

Various intersections of finite sets of ideals can be computed as described

in §2, 2.13, §2, 5.1 or §2, 5.7.

Example 3.1. We use a family of examples for computing Gröbner bases

for the annihilators of certain modules over U(sl2). Consider the standard

presentation of U(sl2) (see §5, 1.1).

For a positive integer N consider the set F (N) = {eN+1, fN+1, (h−N) ·
(h − N + 2) · . . . · (h + N)}, and compute the left Gröbner basis of the left

ideal FL(N) = U(sl2)〈F (N)〉 and the two–sided Gröbner basis of the two–

sided ideal FT (N) = U(sl2)〈F (N)〉U(sl2). We denote the computation of both

bases as AnnFD-sl2-{N}. More details on this family of examples can be

found in §2, 3.4 and §2, 5.18.

If we take the algebra U(g2), generated by 14 variables, then we are

interested in computing the two–sided Gröbner basis of the ideal, generated

by the third power of the variable, representing the shortest positive root

of g2. This problem is denoted by TwoGB-g2-3. Its detailed description can

be found in §2, 3.5.

Another interesting family of examples originating from the D–modules

theory were provided by J. M. Ucha (Sevilla).

Example 3.2. Consider the algebra B = K〈x, y, t, ∂x, ∂y, ∂t, u, v〉 sub-

ject to the relations ∂x · x = x∂x + 1, ∂y · y = y∂y + 1, ∂t · t = t∂t + 1; all

other pairs of variables commute. Now let I ⊂ B be a left ideal, generated

by the set {tu− x4 − y5 − xy4, 4x3v∂t + y4v∂t + ∂x, 5y
4v∂t + 4xy3v∂t + ∂y}.

One is interested in eliminating the variables u, v from I, what requires in

fact a lot of computing resources. We denote this problem as ucha2.

3. TIMINGS, PERFORMANCE AND EXPERIENCE 143

Much easier problem of a similar nature appears in the algebra C =

K〈x, y, ∂x, ∂y, t, s〉 with the relations ∂x · x = x∂x + 1, ∂y · y = y∂y + 1, s · t =

ts + t; all other pairs of variables commute. Here one wish to eliminate t, s

from the left ideal J ⊂ C, generated by the set {s + tx4 + ty5 + txy4, ∂x +

4tx3 + ty4, ∂y + 5ty4 + 4txy3}. We denote this problem as ucha4.

Both problems ucha2 and ucha4 comprise parts of a general algorithm

for computing the so-called Bernstein–Sato ideal ([64], [17]), what is

a generalization of a well–known notion of Bernstein polynomial ([64]).

The algorithm for computing a D–module structure of a ring K[x̄, f−1] for

f ∈ K[x̄] is usually called AnnFs; it is presented e.g. in [64]. Construc-

tively it is a sequence of eliminations, which may be quite complicated even

for polynomials f of moderate total degree. It is a future task to compare

the performance of Plural (and its forthcoming library dmod.lib) with

the one of Kan/sm1 and Macaulay2 (both systems feature libraries for D–

modules); in particular, the cusps f = xn − ym for m,n ∈ N being coprime

and the Reiffen curves f = xp + yq + xyq−1, q ≥ p + 1 ≥ 5 ([17]) are good

test examples.

There exists a SymbolicData project [74], created for unifying con-

cepts and tools for Computer Algebra Benchmarks and for collecting rel-

evant data from different areas of Computer Algebra. With the time it

evolved into an unofficial standard source of examples for, in particular,

commutative polynomial computations, see the review [32].

Together with Prof. H.-G. Gräbe (Leipzig) and O. Motsak (Kaiser-

slautern) we have extended SymbolicData mechanisms to handle the

non–commutative algebras (G–algebras) and produced several routines for

writing examples in languages of systems Singular:Plural, Felix and

MAS. We encoded several interesting examples in the internal data stan-

dard of SymbolicData and used them in comparisons below. We intend

to continue this work by enlarging the set of predefined algebras and ideals

in these algebras.

Now, we present comparisons of performance.

Firstly, we compare the two implementations of Plural, namely ver-

sions 0-9-9 (an older experimental version) and 3-0-0 (indeed, the last beta-

version of the big official release 3-0-0). We test them on HP 160 workstation

with 512 MB RAM running HP-UX 10.20, time is measured in seconds.

144 4. IMPLEMENTATION IN THE SYSTEM SINGULAR:PLURAL

Test Plural 0-9-9 Plural 3-0-0 speedup

AnnFD-sl2-4 3.34 0.81 4.1

AnnFD-sl2-7 22.7 16.3 1.4

TwoGB-g2-3 245771 1422 170

ucha4 12.9 7.2 1.8

ucha2 44.3 hours 5 hours 8.9

1: with the algorithm §2, 3.1, implemented as a Plural library
2: with the algorithm §2, 3.1, implemented in the kernel.

We use the described series to compare the systems Felix, MAS and

Plural. The computations were performed on a Linux workstation (Pen-

tium III 866 MHz, 1GB RAM), time is measured in seconds.

Test Felix MAS Plural 3-0-0

AnnFD-sl2-4 0.40 0.63 0.11

AnnFD-sl2-7 1.82 10.05 2.90

AnnFD-sl2-10 6.57 × 21.44

TwoGB-g2-3 6.821 × 22.60

ucha4 0.62 4.43 0.78

ucha2 × × 2974.06

1: instead of 106 elements in the minimal basis, Felix returns only 105.

×: indicates that the example failed (there were either ”out of memory” or

other system messages).

As we see Plural shows good performance compared to its old imple-

mentation and MAS, while sometimes Felix is faster, having its merits in

enveloping algebras. We excluded examples, related to quantum algebras,

since such algebras are not fully supported by both Felix and MAS.

4. Download ans Support

Singular 3-0-0 was released in June of 2005. Starting from this ver-

sion, Plural is an integral part of a Singular distribution. In particular,

the documentation and the help system of Plural together with test and

example files are integrated in corresponding parts of a Singular distrib-

ution.

One can freely download Singular 3-0-0 from the official web–site

http://www.singular.uni-kl.de. There are precompiled binaries for var-

ious platforms (including Unix/Linux, MacOS and Windows) and detailed

documentation in several formats (including texinfo, html, ps and pdf).

5. CONCLUSION AND FUTURE WORK 145

At the official web–site, there is a Forum, where the requests of users are an-

swered and commented both by members of a Singular Team and various

contributors. In addition, support via e–mail is proposed.

There is a semi–official web–site, devoted to Plural. It is located at

http://www.singular.uni-kl.de/plural and contains more information

on Plural, its libraries as well as applications and details of use.

The readers, having questions, requests and suggestions concerning

Plural are welcome to contact the author via e–mail address

levandov@mathematik.uni-kl.de.

5. Conclusion and Future Work

We have presented prerequisites and the implementation of Plural as

of part of Singular and compared it with earlier implementations and

other systems.

In its current state, Plural has proven, through the examples, papers,

presentations and contributions, its diversity and usefulness and strong in-

tegration in the Singular framework. Moreover, the overall performance

of Plural is quite reasonable and we are working on further improving it:

better treatment of special cases will give a lot of possibilities for this.

Directions of further work include an optimized polynomial multiplica-

tion, more distinct separation into special cases and better possibilities to

pre– and post-process the computed non–commutative Gröbner bases: all

the algorithms should recognize the non–commutative base ring and switch

to a corresponding implementation.

It turned out, that recognizing the structure of a complicated algebra

(say, as a tensor product of several algebras over the ground field) together

with corresponding product of orderings can bring much more than one can

think at first. However, correct design of such contexts (or building blocks

of such tensor products) must be done in order to reveal all the potential

strengths and dangers. It is also of big importance for the pure commutative

case, as Prof. G.-M. Greuel recently noted.

CHAPTER 5

Small Atlas of Important Algebras

Let K be a field. The structural coefficients of algebras are written in

the field of characteristic 0. If we consider an algebra over a field of posi-

tive characteristic, we replace the coefficients by their images in case they

are given over the integers. We enlist only the non–commutative relations

and omitt commutative ones. The central polynomials are written in their

reduced form and with fraction–free coefficients.

1. Universal Enveloping Algebras of Lie Algebras

1.1. U(sl2).

Reference(s): [23];

Variables: {e, f, h};
Relations: [e, f] = h, [h, e] = 2e, [h, f] = −2f ;

Casimir element: C2 = 4ef + h2 − 2h;

char K = 0 : Z(U(sl2)) = K[C2];

char K = p : Z(U(sl2)) = K[C2, e
p, fp, hp − h];

Realization as Ore algebra: see §1, 3.14;

Plural (ncalg.lib) function: makeUsl2(p) or makeUsl(2,p).

1.2. U(so3).

Reference(s): [23], [27];

Variables: {x, y, z};
Relations: [x, y] = z, [z, x] = y, [y, z] = x;

Central element: C2 = x2 + y2 + z2;

char K = 0 : Z(U(so3)) = K[C2];

char K = p : Z(U(so3)) = K[C2, x
p + x, yp + y, zp + z];

Plural (ncalg.lib) function: makeUso3(p).

1.3. U(sl3).

Reference(s): [37];

Variables: {xα, xβ, xγ, yα, yβ, yγ, hα, hβ};
Relations: [xα, xβ] = xγ, [xα, yα] = hα, [xα, yγ] = −yβ,

[xα, hα] = −2xα, [xα, hβ] = xα, [xβ, yβ] = hβ,

[xβ, yγ] = yα, [xβ, hα] = xβ, [xβ, hβ] = −2xβ, [xγ, yα] = −xβ,

147

148 5. SMALL ATLAS OF IMPORTANT ALGEBRAS

[xγ, yβ] = xα, [xγ, yγ] = hα + hβ, [xγ, hα] = −xγ, [xγ, hβ] = −xγ,

[yα, yβ] = −yγ, [yα, hα] = 2yα, [yα, hβ] = −yα, [yβ, hα] = −yβ,

[yβ, hβ] = 2yβ, [yγ, hα] = yγ, [yγ, hβ] = yγ;

Casimir elements:

C2 = 3xαyα + 3xβyβ + 3xγyγ + h2
α + hαhβ + h2

β − 3hα − 3hβ,

C3 = 27xγyαyβ +27xαxβyγ +9xαyαhα−18xβyβhα+9xγyγhα+2h3
α+

18xαyαhβ − 9xβyβhβ − 9xγyγhβ + 3h2
αhβ − 3hαh2

β − 2h3
β − 36xαyα +

18xβyβ − 9xγyγ − 12h2
α − 3hαhβ + 6h2

β + 18hα;

char K = 0 : Z(U(sl3)) = K[C2, C3];

char K = p : Z(U(sl3)) = K[C2, C3, x
p
α,β,γ , y

p
α,β,γ , h

p
α − hα, hp

β − hβ];

Plural (ncalg.lib) function: makeUsl(3,p).

1.4. U(g2).

Reference(s): [27];

Variables: {x1, . . . , x6, y1, . . . , y6, hα, hβ};
Relations: [x1, x2] = x3, [x1, x3] = 2x4, [x1, x4] = −3x5,

[x1, y1] = hα, [x1, y3] = −3y2, [x1, y4] = −2y3,

[x1, y5] = y4, [x1, hα] = −2x1, [x1, hβ] = x1,

[x2, x5] = −x6, [x2, y2] = hβ, [x2, y3] = y1, [x2, y6] = y5,

[x2, hα] = 3x2, [x2, hβ] = −2x2, [x3, x4] = −3x6, [x3, y1] = −3x2,

[x3, y2] = x1, [x3, y3] = hα + 3hβ, [x3, y4] = 2y1, [x3, y6] = y4,

[x3, hα] = x3, [x3, hβ] = −x3, [x4, y1] = −2x3, [x4, y3] = 2x1,

[x4, y4] = 2hα + 3hβ, [x4, y5] = −y1, [x4, y6] = −y3, [x4, hα] = −x4,

[x5, y1] = x4, [x5, y4] = −x1, [x5, y5] = hα + hβ, [x5, y6] = −y2,

[x5, hα] = −3x5, [x5, hβ] = x5, [x6, y2] = x5, [x6, y3] = x4,

[x6, y4] = −x3, [x6, y5] = −x2, [x6, y6] = hα + 2hβ, [x6, hβ] = −x6,

[y1, y2] = −y3, [y1, y3] = −2y4, [y1, y4] = 3y5, [y1, hα] = 2y1,

[y1, hβ] = −y1, [y2, y5] = y6, [y2, hα] = −3y2, [y2, hβ] = 2y2,

[y3, y4] = 3y6, [y3, hα] = −y3, [y3, hβ] = y3, [y4, hα] = y4,

[y5, hα] = 3y5, [y5, hβ] = −y5, [y6, hβ] = y6;

Casimir elements:

C2 = x1y1 + 3x2y2 + x3y3 + x4y4 + 3x5y5 + 3x6y6 + h2
α + 3hαhβ +

3h2
β − 5hα − 9hβ;

C6 = 4x1x
2
2y1y

2
2 + . . . (totally 754 monomials);

char K = 0 : Z(U(g2)) = K[C2, C6];

char K = p : Z(U(g2)) = K[C2, C6, {xp
i }, {yp

i }, hp
α − hα, hp

β − hβ];

Plural (ncalg.lib) function: makeUg2(p).

2. QUANTUM ALGEBRAS 149

2. Quantum Algebras

2.1. Uq(sl2).

Reference(s): [14], [43];

Variables: {E, F, Ke, Kf};
Relations: FE = EF − q

q2−1
Ke + q

q2−1
Kf ,

KeE = q2EKe, KfF = q2FKf , KfE = 1
q2 EKf , KeF = 1

q2 FKe,

KfKe = KeKf ;

Uq(sl2) is a factor-algebra modulo the two–sided ideal 〈KeKf − 1〉;
Casimir element: C2 = (q2 − 1)2EF + qKe + q3Kf ;

q generic: Z(Uq(sl2)) = K[C2];

∃n, qn = 1 : Z(Uq(sl2)) = K[C2, E
n, F n, Kn

e , Kn
f];

Plural (ncalg.lib) function: makeQsl2(n).

2.2. U ′
q(so3).

Reference(s): [36], [38];

Variables: {I1, I2, I3};
Relations: I2I1 = qI1I2 − q1/2I3, I3I1 = q−1I1I3 + q−1/2I2,

I3I2 = qI2I3 − q1/2I1;

Casimir elements: C3 = −q1/2(q2 − 1)I1I2I3 + q2I2
1 + I2

2 + q2I2
3 ;

q generic: Z(U ′
q(so3)) = K[C3];

∃n, qn = 1 : Z(U ′
q(so3)) = K[C3, C

(1)
n , C

(2)
n , C

(3)
n], where C

(k)
n =

2Tp(Ik(q − q−1)/2), k = 1, 2, 3, where Tp(x) is a Chebyshev poly-

nomial of the first kind (see §3, 2.2 for detailed description);

Plural (ncalg.lib) function: makeQso3(n).

Chapter 6: Singular:Plural Manual 151

6 Singular:Plural Manual

6.1 Getting started with PLURAL

What is and what does Plural?

Plural is a kernel extension of Singular, providing many algorithms

for computations within certain noncommutative algebras (see see Sec-

tion 6.4.33 [G-algebras], page 195 and Section 6.4 [Mathematical back-

ground (plural)], page 195 for detailed information on algebras and al-

gorithms).

Plural is compatible with Singular, since it uses the same data struc-

tures, sometimes interpreting them in a different way and/or modifying

them for its own purposes. In spite of such a difference, one can always

transfer objects from commutative rings of Singular to noncommuta-

tive rings Plural and back.

With Plural, one can set up a noncommutative G -algebra with a

Poincaré-Birkhoff-Witt (PBW) basis, say, A (see Section 6.4.33 [G-

algebras], page 195 for step-by-step building instructions and also Sec-

tion 6.5 [PLURAL libraries], page 201 for procedures for setting many

important algebras easily).

Functionalities of Plural (enlisted in Section 6.3 [Functions (plural)],

page 170) are accessible as soon as the basering becomes noncommuta-

tive (see Section 6.3.21 [ncalgebra], page 182).

One can perform various computations with polynomials and ideals in

A and with vectors and submodules of a free module An.

One can work also within factor-algebras of G -algebras (see Section 6.2.5

[qring (plural)], page 165 type) by two-sided ideals (see Section 6.3.31

[twostd], page 193).

What Plural does not:

Plural does not perform computations in free algebra or in its

general factor algebras.

One can only work with G -algebras and with their factor-algebras

by two-sided ideals.

Plural requires a monomial ordering but it does not work with

local and mixed orderings.

Right now, one can use only global orderings in Plural (see Sec-

tion B.2.2 [General definitions for orderings], page 255).

This will be enhaced in the future by providing the possibility of

computations in a tensor product of a noncommutative algebra

(with a global ordering)

with a commutative algebra (with any ordering).

152 Singular:Plural Manual

Plural does not handle noncommutative parameters.

Defining parameters, one cannot impose noncommutative relations

on them. Moreover, it is impossible to introduce

parameters which do not commute with variables.

Plural conventions

*-multiplication (plural)

in the noncommutative case, the correct multiplication of y by x

must be written as y*x.

Both expressions yx and xy are equal, since they are interpreted

as commutative expressions. See example in Section 6.2.4.2 [poly

expressions (plural)], page 163.

Note, that Plural output consists only of monomials, hence the

signs * are omitted.

ideal (plural)

Under an ideal Plural understands a list of generators of a

left ideal. For more information see Section 6.2.1 [ideal (plural)],

page 152.

For a two-sided ideal T, use command Section 6.3.31 [twostd],

page 193 in order to compute the two-sided Groebner basis of T.

module (plural)

Under a module Plural understands either a fininitely generated

left submodule of a free module (of finite rank)

or a factor module of a free module (of finite rank) by its left sub-

module (see Section 6.2.3 [module (plural)], page 159 for details).

qring (plural)

In Plural it is only possible to build factor-algebras modulo two-

sided ideals (see Section 6.2.5 [qring (plural)], page 165).

6.2 Data types (plural)

This chapter explains all data types of Plural in alphabetical order. For every

type, there is a description of the declaration syntax

as well as information about how to build expressions of certain types.

The term "expression list" in Plural refers to any comma separated list of expres-

sions.

For the general syntax of a declaration see Section 2.5.1 [General command syntax],

page 44.

6.2.1 ideal (plural)

For Plural ideals are left ideals.

Ideals are represented as lists of polynomials which are interpreted as left generators

Chapter 6: Singular:Plural Manual 153

of the ideal.

For the operations with two-sided ideals see Section 6.3.31 [twostd], page 193.

Like polynomials, ideals can only be defined or accessed with respect to a basering.

Note: size counts only the non-zero generators of an ideal whereas ncols counts

all generators.

6.2.1.1 ideal declarations (plural)

Syntax: ideal name = list of poly and ideal expressions ;

ideal name = ideal expression ;

Purpose: defines a left ideal.

Default: 0

Example:

ring r=0,(x,y,z),dp;

ncalgebra(-1,0); // an anticommutative algebra

poly s1 = x2;

poly s2 = y3;

poly s3 = z;

ideal i = s1, s2-s1, 0,s2*s3, s3^4;

i;

7→ i[1]=x2

7→ i[2]=y3-x2

7→ i[3]=0

7→ i[4]=y3z

7→ i[5]=z4

size(i);

7→ 4

ncols(i);

7→ 5

6.2.1.2 ideal expressions (plural)

An ideal expression is:

1. an identifier of type ideal

2. a function returning an ideal

3. a combination of ideal expressions by the arithmetic operations + or *

4. a power of an ideal expression (operator ^ or **)

Note that the computation of the product i*i involves all products of generators

of i while i^2 involves only the different ones, and is therefore faster.

5. a type cast to ideal

Example:

ring r=0,(x,y,z),dp;

ncalgebra(-1,0); // an anticommutative algebra

154 Singular:Plural Manual

ideal m = maxideal(1);

m;

7→ m[1]=x

7→ m[2]=y

7→ m[3]=z

poly f = x2;

poly g = y3;

ideal i = x*y*z , f-g, g*(x-y) + f^4 ,0, 2x-z2y;

ideal M = i + maxideal(10);

i = M*M;

ncols(i);

7→ 598

i = M^2;

ncols(i);

7→ 690

i[ncols(i)];

7→ x20

vector v = [x,y-z,x2,y-x,x2yz2-y];

ideal j = ideal(v);

j;

7→ j[1]=x

7→ j[2]=y-z

7→ j[3]=x2

7→ j[4]=-x+y

7→ j[5]=x2yz2-y

6.2.1.3 ideal operations (plural)

+ addition (concatenation of the generators and simplification)

* multiplication (with ideal, poly, vector, module; in case of multiplication

with ideal, the result will be simplified)

^ exponentiation (by a non-negative integer)

ideal expression [intvec expression]

are polynomial generators of the ideal, index 1 gives the first generator.

Note: For simplification of an ideal, see also Section 4.1.118 [simplify], page 232.

Example:

ring r=0,(x,y,z),dp;

matrix D[3][3];

D[1,2]=-z; D[1,3]=y; D[2,3]=x;

ncalgebra(1,D); // this algebra is U(so_3)

ideal I = 0,x,0,1;

I;

7→ I[1]=0

7→ I[2]=x

7→ I[3]=0

Chapter 6: Singular:Plural Manual 155

7→ I[4]=1

I + 0; // simplification

7→ _[1]=1

I*x;

7→ _[1]=0

7→ _[2]=x2

7→ _[3]=0

7→ _[4]=x

ideal J = I,0,x,x-z;

I * J; // multiplication with simplification

7→ _[1]=1

vector V = [x,y,z];

print(I*V);

7→ 0,x2,0,x,

7→ 0,xy,0,y,

7→ 0,xz,0,z

ideal m = maxideal(1);

m^2;

7→ _[1]=x2

7→ _[2]=xy

7→ _[3]=xz

7→ _[4]=y2

7→ _[5]=yz

7→ _[6]=z2

ideal II = I[2..4];

II;

7→ II[1]=x

7→ II[2]=0

7→ II[3]=1

6.2.1.4 ideal related functions (plural)

eliminate

elimination of variables (see Section 6.3.10 [eliminate (plural)], page 172)

intersect

ideal intersection (see Section 6.3.14 [intersect (plural)], page 176)

kbase vector space basis of basering modulo the leading ideal (see Sec-

tion 6.3.15 [kbase (plural)], page 176)

lead leading terms of a set of generators (see Section 4.1.63 [lead], page 186)

lift lift-matrix (see Section 6.3.16 [lift (plural)], page 177)

liftstd left Groebner basis and transformation matrix computation (see Sec-

tion 6.3.17 [liftstd (plural)], page 178)

maxideal generators of a power of the maximal ideal at 0 (see Section 4.1.72

[maxideal], page 193)

156 Singular:Plural Manual

modulo represents (h1 + h2)/h1 ∼= h2/(h1 ∩ h2) (see Section 6.3.19 [modulo

(plural)], page 180)

mres minimal free resolution of an ideal and a minimal set of generators of

the given ideal (see Section 6.3.20 [mres (plural)], page 180)

ncols number of columns (see Section 4.1.85 [ncols], page 203)

nres computes a free resolution of an ideal resp. module M which is mini-

mized from the second free module on (see Section 6.3.22 [nres (plural)],

page 184)

oppose creates an opposite ideal of a given ideal from the given ring into a

basering (see Section 6.3.23 [oppose], page 185)

preimage preimage under a ring map (see Section 6.3.25 [preimage (plural)],

page 187)

quotient ideal quotient (see Section 6.3.26 [quotient (plural)], page 188)

reduce left normal form with respect to a left Groebner basis (see Section 6.3.27

[reduce (plural)], page 189)

simplify simplify a set of polynomials (see Section 4.1.118 [simplify], page 232)

size number of non-zero generators (see Section 4.1.119 [size], page 233)

std left Groebner basis computation (see Section 6.3.28 [std (plural)],

page 191)

subst substitute a ring variable (see Section 6.3.29 [subst (plural)], page 192)

syz computation of the first syzygy module (see Section 6.3.30 [syz (plural)],

page 192)

twostd two-sided Groebner basis computation (see Section 6.3.31 [twostd],

page 193)

vdim vector space dimension of basering modulo the leading ideal (see Sec-

tion 6.3.32 [vdim (plural)], page 194)

6.2.2 map (plural)

Maps are ring maps from a preimage ring into the basering.

Note:

• the target of a map is ALWAYS the actual basering

• the preimage ring has to be stored "by its name", that means, maps can only

be used in such contexts, where the name of the preimage ring can be resolved

(this has to be considered in subprocedures). See also Section 5.4 [Identifier

resolution], page 277, Section 2.7.2 [Names in procedures], page 56.

Maps between rings with different coefficient fields are possible and listed below.

Canonically realized are

• Q → Q(a, . . .) (Q : the rational numbers)

Chapter 6: Singular:Plural Manual 157

• Q → R (R : the real numbers)

• Q → C (C : the complex numbers)

• Z/p → (Z/p)(a, . . .) (Z : the integers)

• Z/p → GF (pn) (GF : the Galois field)

• Z/p → R

• R → C

Possible are furthermore

• Z/p → Q, [i]p 7→ i ∈ [−p/2, p/2] ⊆ Z

• Z/p → Z/p′, [i]p 7→ i ∈ [−p/2, p/2] ⊆ Z, i 7→ [i]p′ ∈ Z/p′

• C → R, by taking the real part

Finally, in Plural we allow the mapping from rings with coefficient field Q to rings

whose ground fields have finite characteristic:

• Q → Z/p

• Q → (Z/p)(a, . . .)

In these cases the denominator and the numerator of a number are mapped sepa-

rately by the usual map from Z to Z/p, and the image of the number is built again

afterwards by division. It is thus not allowed to map numbers whose denominator is

divisible by the characteristic of the target ground field, or objects containing such

numbers. We, therefore, strongly recommend using such maps only to map objects

with integer coefficients.

6.2.2.1 map declarations (plural)

Syntax: map name = preimage ring name , ideal expression ;

map name = preimage ring name , list of poly and ideal expressions ;

map name = map expression ;

Purpose: defines a ring map from preimage_ring to basering.

Maps the variables of the preimage ring to the generators of the ideal.

If the ideal contains less elements than the number of variables in the

preimage_ring, the remaining variables are mapped to 0.

If the ideal contains more elements, extra elements are ignored.

The image ring is always the current basering. For the mapping of co-

efficients from different fields see Section 6.2.2 [map (plural)], page 156.

Default: none

Note: There are standard mappings for maps which are close to the identity

map: fetch (plural) and imap (plural).

The name of a map serves as the function which maps objects from

the preimage ring into the basering. These objects must be defined by

names (no evaluation in the preimage ring is possible).

Example:

158 Singular:Plural Manual

// an easy example

ring r1 = 0,(a,b),dp; // a commutative ring

poly P = a^2+ab+b^3;

ring r2 = 0,(x,y),dp;

ncalgebra(1,-1); // a Weyl algebra

map M = r1, x^2, -y^3;

// note: M is a map and not a morphism

M(P);

7→ -y9-x2y3+x4

// now, a more interesting example

LIB "ncalg.lib";

def Usl2 = makeUsl2();

// this algebra is U(sl_2), generated by e,f,h

setring Usl2;

poly C = 4*e*f+h^2-2*h; // the central el-t of Usl2

poly D = e^3*f-h^4; // some polynomial

ring W1 = 0,(D,X),dp;

ncalgebra(1,-1);

// this algebra is the opposite Weyl algebra

option(redSB);

option(redTail);

map F = Usl2, -X, D*D*X, 2*D*X;

F(C); // 0, because C is in the kernel of F

7→ 0

F(D);

7→ -16D4X4+96D3X3-D2X4-112D2X2+6DX3+16DX-6X2

See Section 6.3.12 [fetch (plural)], page 174; Section 6.2.1.2 [ideal expressions (plu-

ral)], page 153; Section 6.3.13 [imap (plural)], page 174; Section 6.2.2 [map (plural)],

page 156; Section 6.2.7 [ring (plural)], page 167.

6.2.2.2 map expressions (plural)

A map expression is:

1. an identifier of type map

2. a function returning map

3. map expressions combined by composition using parentheses ((,))

6.2.2.3 map (plural) operations

() composition of maps. If, for example, f and g are maps, then f(g) is a

map expression giving the composition f ◦ g of f and g,

provided the target ring of g is the basering of f.

map expression [int expressions]

is a map entry (the image of the corresponding variable)

Chapter 6: Singular:Plural Manual 159

Example:

LIB "ncalg.lib";

def Usl2 = makeUsl2(); // this algebra is U(sl_2)

setring Usl2;

map F = Usl2, f, e, -h; // endomorphism of U(sl_2)

map G = F(F);

poly p = (f+e*h)^2 + 3*h-e;

p;

7→ e2h2+2e2h+2efh-2ef+f2-h2-e+3h

F(p);

7→ f2h2-2efh-2f2h+e2-2ef+h2-f-h

G(p);

7→ e2h2+2e2h+2efh-2ef+f2-h2-e+3h

(G(p) == p); // G is the identity on p

7→ 1

6.2.2.4 map related functions (plural)

fetch (plural)

the identity map between rings and qrings (see Section 6.3.12 [fetch

(plural)], page 174)

imap (plural)

a convenient map procedure for inclusions and projections of rings (see

Section 6.3.13 [imap (plural)], page 174)

preimage (plural)

preimage under a ring map (see Section 6.3.25 [preimage (plural)],

page 187)

subst substitute a ring variable (see Section 6.3.29 [subst (plural)], page 192)

6.2.3 module (plural)

Modules are left submodules of a free module over the basering with basis gen(1),

gen(2), . . . , gen(n) for some natural number n.

They are represented by lists of vectors, which generate the left submodule. Like

vectors, they can only be defined or accessed with respect to a basering.

If M is a left submodule of Rn (where R is the basering) generated by vectors

v1, . . . , vk, then these generators may be considered as

the generators of relations of Rn/M between the canonical generators

gen(1),. . . ,gen(n). Hence, any finitely generated R -module can be represented in

Plural by its module of relations.

The assignments module M=v1,...,vk; matrix A=M; create the presentation

matrix of size n × k for Rn/M , i.e. the columns of A are the vectors v1, . . . , vk

which generate M .

160 Singular:Plural Manual

6.2.3.1 module declarations (plural)

Syntax: module name = list of vector expressions (which are interpreted as left

generators of the module) ;

module name = module expression ;

Purpose: defines a left module.

Default: [0]

Example:

ring r=0,(x,y,z),(c,dp);

matrix D[3][3];

D[1,2]=-z; D[1,3]=y; D[2,3]=x;

ncalgebra(1,D); // this algebra is U(so_3)

vector s1 = [x2,y3,z];

vector s2 = [xy,1,0];

vector s3 = [0,x2-y2,z];

poly f = -x*y;

module m = s1, s2-s1,f*(s3-s1);

m;

7→ m[1]=[x2,y3,z]

7→ m[2]=[-x2+xy,-y3+1,-z]

7→ m[3]=[x3y-2x2z-xy,xy4-x3y+xy3+2x2z+xy]

// show m in matrix format (columns generate m)

print(m);

7→ x2,-x2+xy,x3y-2x2z-xy,

7→ y3,-y3+1, xy4-x3y+xy3+2x2z+xy,

7→ z, -z, 0

6.2.3.2 module expressions (plural)

A module expression is:

1. an identifier of type module

2. a function returning module

3. module expressions combined by the arithmetic operation +

4. multiplication of a module expression with an ideal or a poly expression: *

5. a type cast to module

6.2.3.3 module operations (plural)

+ addition (concatenation of the generators and simplification)

* right or left multiplication with ideal or poly (but not ‘module‘ * ‘mo-

dule‘!)

module expression [int expression , int expression]

is a module entry, where the first index indicates the row and the second

the column

Chapter 6: Singular:Plural Manual 161

module expressions [int expression]

is a vector, where the index indicates the column (generator)

Example:

ring A=0,(x,y,z),Dp;

matrix D[3][3];

D[1,2]=-z; D[1,3]=y; D[2,3]=x; // this algebra is U(so_3)

ncalgebra(1,D);

module M = [x,y],[0,0,x*z];

module N = (x+y-z)*M - M*(x+y-z);

print(-N);

7→ y+z,0,

7→ x-z,0,

7→ 0, x2+xy+yz+z2

6.2.3.4 module related functions (plural)

eliminate

elimination of variables (see Section 6.3.10 [eliminate (plural)], page 172)

freemodule

the free module of given rank (see Section 4.1.38 [freemodule], page 169)

intersect

module intersection (see Section 6.3.14 [intersect (plural)], page 176)

kbase vector space basis of free module over the basering modulo the module

of leading terms (see Section 6.3.15 [kbase (plural)], page 176)

lead initial module (see Section 4.1.63 [lead], page 186)

lift lift-matrix (see Section 6.3.16 [lift (plural)], page 177)

liftstd left Groebner basis and transformation matrix computation (see Sec-

tion 6.3.17 [liftstd (plural)], page 178)

modulo represents (h1 + h2)/h1 ∼= h2/(h1 ∩ h2) (see Section 6.3.19 [modulo

(plural)], page 180)

mres minimal free resolution of a module and a minimal set of generators of

the given ideal module (see Section 6.3.20 [mres (plural)], page 180)

ncols number of columns (see Section 4.1.85 [ncols], page 203)

nres computes a free resolution of an ideal resp. module M which is mini-

mized from the second free module on (see Section 6.3.22 [nres (plural)],

page 184)

nrows number of rows (see Section 4.1.88 [nrows], page 205)

oppose creates an opposite module of a given module from the given ring into

a basering (see Section 6.3.23 [oppose], page 185)

print nice print format (see Section 4.1.99 [print], page 213)

162 Singular:Plural Manual

prune minimize the embedding into a free module (see Section 4.1.101 [prune],

page 217)

quotient module quotient (see Section 6.3.26 [quotient (plural)], page 188)

reduce left normal form with respect to a left Groebner basis (see Section 6.3.27

[reduce (plural)], page 189)

simplify simplify a set of vectors (see Section 4.1.118 [simplify], page 232)

size number of non-zero generators (see Section 4.1.119 [size], page 233)

std left Groebner basis computation (see Section 6.3.28 [std (plural)],

page 191)

subst substitute a ring variable (see Section 6.3.29 [subst (plural)], page 192)

syz computation of the first syzygy module (see Section 6.3.30 [syz (plural)],

page 192)

vdim vector space dimension of free module over the basering modulo module

of leading terms (see Section 6.3.32 [vdim (plural)], page 194)

6.2.4 poly (plural)

Polynomials are the basic data for all main algorithms in Plural. They consist of

finitely many terms (coefficient*monomial) which are combined by the usual poly-

nomial operations (see Section 6.2.4.2 [poly expressions (plural)], page 163). Poly-

nomials can only be defined or accessed with respect to a basering which determines

the coefficient type, the names of the indeterminants and the monomial ordering.

Example:

ring r=32003,(x,y,z),dp;

poly f=x3+y5+z2;

Remark: Remember the conventions on polynomial multiplication we follow (*-

multiplication in Section 6.1 [Getting started with PLURAL], page 151).

6.2.4.1 poly declarations (plural)

Syntax: poly name = poly expression ;

Purpose: defines a polynomial.

Default: 0

Example:

ring r = 32003,(x,y,z),dp;

ncalgebra(-1,1);

// ring of some differential-like operators

r;

7→ // characteristic : 32003

7→ // number of vars : 3

7→ // block 1 : ordering dp

7→ // : names x y z

Chapter 6: Singular:Plural Manual 163

7→ // block 2 : ordering C

7→ // noncommutative relations:

7→ // yx=-xy+1

7→ // zx=-xz+1

7→ // zy=-yz+1

yx; // not correct input

7→ xy

y*x; // correct input

7→ -xy+1

poly s1 = x3y2+151x5y+186xy6+169y9;

poly s2 = 1*x^2*y^2*z^2+3z8;

poly s3 = 5/4x4y2+4/5*x*y^5+2x2y2z3+y7+11x10;

int a,b,c,t=37,5,4,1;

poly f=3*x^a+x*y^(b+c)+t*x^a*y^b*z^c;

f;

7→ x37y5z4+3x37+xy9

short = 0;

f;

7→ x^37*y^5*z^4+3*x^37+x*y^9

6.2.4.2 poly expressions (plural)

A poly expression is (optional parts in square brackets):

1. a monomial (there are NO spaces allowed inside a monomial)

[coefficient] ring_var [exponent] [ring_var [exponent] ...]

monomials which contain an indexed ring variable must be built from ring_var

and coefficient with the operations * and ^

2. an identifier of type poly

3. a function returning poly

4. poly expressions combined by the arithmetic operations +, -, *, /, or ^.

5. a type cast to poly

Example:

ring r=0,(x,y),dp;

ncalgebra(1,1); // make it a Weyl algebra

r;

7→ // characteristic : 0

7→ // number of vars : 2

7→ // block 1 : ordering dp

7→ // : names x y

7→ // block 2 : ordering C

7→ // noncommutative relations:

7→ // yx=xy+1

yx; // not correct input

7→ xy

y*x; // correct input

164 Singular:Plural Manual

7→ xy+1

poly f = 10x2*y3 + 2y2*x^2 - 2*x*y + y - x + 2;

lead(f);

7→ 10x2y3

leadmonom(f);

7→ x2y3

simplify(f,1); // normalize leading coefficient

7→ x2y3+1/5x2y2+3/5xy-1/10x+1/10y+3/5

cleardenom(f);

7→ 10x2y3+2x2y2+6xy-x+y+6

6.2.4.3 poly operations (plural)

+ addition

- negation or subtraction

* multiplication

/ division by a monomial, non divisible terms yield 0

^, ** power by a positive integer

<, <=, >, >=, ==, <>

comparison (of leading monomials w.r.t. monomial ordering)

poly expression [intvec expression]

the sum of monomials at the indicated places w.r.t. the monomial or-

dering

6.2.4.4 poly related functions (plural)

bracket computes the Lie bracket of two polinomials (see Section 6.3.9 [bracket],

page 171)

lead leading term (see Section 4.1.63 [lead], page 186)

leadcoef coefficient of the leading term (see Section 4.1.64 [leadcoef], page 187)

leadexp the exponent vector of the leading monomial (see Section 4.1.65 [lead-

exp], page 188)

leadmonom

leading monomial (see Section 4.1.66 [leadmonom], page 188)

oppose creates an opposite poly of a given poly from the given ring into a

basering (see Section 6.3.23 [oppose], page 185)

reduce left normal form with respect to a left Groebner basis (see Section 6.3.27

[reduce (plural)], page 189)

simplify normalize a polynomial (see Section 4.1.118 [simplify], page 232)

size number of monomials (see Section 4.1.119 [size], page 233)

subst substitute a ring variable (see Section 6.3.29 [subst (plural)], page 192)

var the indicated variable of the ring (see Section 4.1.137 [var], page 249)

Chapter 6: Singular:Plural Manual 165

6.2.5 qring (plural)

Plural offers the possibility to compute within factor-rings modulo two-sided ide-

als. The ideal has to be given as a two-sided Groebner basis (see Section 6.3.31

[twostd], page 193 command).

For a detailed description of the concept of rings and quotient rings see Section 2.3

[Rings and orderings], page 33.

Note: we highly recommend to turn on option(redSB); option(redTail); while

computing in qrings. Otherwise results may have a difficult interpretation.

6.2.5.1 qring declaration (plural)

Syntax: qring name = ideal expression ;

Default: none

Purpose: declares a quotient ring as the basering modulo an ideal_expression

and sets it as current basering.

Note: reports error if an ideal is not a two-sided Groebner basis.

Example:

ring r=0,(z,u,v,w),dp;

ncalgebra(-1,0); // an anticommutative algebra

option(redSB);

option(redTail);

ideal i=z^2,u^2,v^2,w^2;

qring Q = i; // incorrect call produces error

7→ // ** i is no standard basis

7→ // ** i is no twosided standard basis

kill Q;

setring r; // go back to the ring r

qring q=twostd(i); // now it is an exterior algebra

q;

7→ // characteristic : 0

7→ // number of vars : 4

7→ // block 1 : ordering dp

7→ // : names z u v w

7→ // block 2 : ordering C

7→ // noncommutative relations:

7→ // uz=-zu

7→ // vz=-zv

7→ // wz=-zw

7→ // vu=-uv

7→ // wu=-uw

7→ // wv=-vw

7→ // quotient ring from ideal

7→ _[1]=w2

166 Singular:Plural Manual

7→ _[2]=v2

7→ _[3]=u2

7→ _[4]=z2

poly k = (v-u)*(zv+u-w);

k; // the output is not yet totally reduced

7→ zuv-zv2-u2-uv+uw-vw

poly ek=reduce(k,std(0));

ek; // the reduced form

7→ zuv-uv+uw-vw

6.2.5.2 qring related functions (plural)

envelope enveloping ring (see Section 6.3.11 [envelope], page 173)

nvars number of ring variables (see Section 4.1.89 [nvars], page 205)

opposite opposite ring (see Section 6.3.24 [opposite], page 186)

setring set a new basering (see Section 4.1.116 [setring], page 229)

6.2.6 resolution (plural)

The type resolution is intended as an intermediate representation which internally

retains additional information obtained during computation of resolutions. It fur-

thermore enables the use of partial results to compute, for example, Betti numbers

or minimal resolutions. Like ideals and modules, a resolution can only be defined

w.r.t. a basering.

Note: to access the elements of a resolution, it has to be assigned to a list. This

assignment also completes computations and may therefore take time, (resp. an

access directly with the brackets [,] causes implicitly a cast to a list).

6.2.6.1 resolution declarations (plural)

Syntax: resolution name = resolution expression ;

Purpose: defines a resolution.

Default: none

Example:

ring r=0,(x,y,z),dp;

matrix D[3][3];

D[1,2]=z;

ncalgebra(1,D); // it is a Heisenberg algebra

ideal i=z2+z,x+y;

resolution re=nres(i,0);

re;

7→ 1 2 1

7→ r <-- r <-- r

7→

Chapter 6: Singular:Plural Manual 167

7→ 0 1 2

7→ resolution not minimized yet

7→
list l = re;

l;

7→ [1]:

7→ _[1]=z2+z

7→ _[2]=x+y

7→ [2]:

7→ _[1]=z2*gen(2)-x*gen(1)-y*gen(1)+z*gen(2)

7→ [3]:

7→ _[1]=0

print(matrix(l[2]));

7→ -x-y,

7→ z2+z

6.2.6.2 resolution expressions (plural)

A resolution expression is:

1. an identifier of type resolution

2. a function returning a resolution

3. a type cast to resolution from a list of ideals, resp. modules.

6.2.6.3 resolution related functions (plural)

betti Betti numbers of a resolution (see Section 6.3.8 [betti (plural)], page 170)

minres minimizes a free resolution (see Section 6.3.18 [minres (plural)],

page 179)

mres computes a minimal free resolution of an ideal resp. module and a mini-

mal set of generators of the given ideal resp. module (see Section 6.3.20

[mres (plural)], page 180)

nres computes a free resolution of an ideal resp. module M which is minimized

from the second module on (see Section 6.3.22 [nres (plural)], page 184)

6.2.7 ring (plural)

Rings are used to describe properties of polynomials, ideals etc. Almost all compu-

tations in Plural require a basering. For a detailed description of the concept of

rings see Section 2.3 [Rings and orderings], page 33.

Note: Plural works with global orderings only (see Section 6.1 [Getting started

with PLURAL], page 151).

168 Singular:Plural Manual

6.2.7.1 ring declarations (plural)

Syntax: ring name = (coefficient field), (names of ring variables), (order-

ing);

Default: 2147483629,(x,y,z),(dp,C);

Purpose: declares a ring and sets it as the actual basering.

The coefficient field is given by one of the following:

1. a non-negative int expression less or equal 2147483629.

2. an expression list of an int expression and one or more names.

3. the name real.

4. an expression list of the name real and an int expression.

5. an expression list of the name complex, an optional int expression and a name.

’names of ring variables’ must be a list of names or indexed names.

’ordering’ is a list of block orderings where each block ordering is either

1. lp, dp, Dp, optionally followed by a size parameter in parentheses.

2. wp, Wp, or a followed by a weight vector given as an intvec expression in paren-

theses.

3. M followed by an intmat expression in parentheses.

4. c or C.

If one of coefficient field, names of ring variables, and ordering consists of only one

entry, the parentheses around this entry may be omitted.

In order to create the non-commutative extension, use Section 6.3.21 [ncalgebra],

page 182.

6.2.7.2 ring operations (plural)

+ construct a tensor product C = A⊗K B of two G-algebras A and B over

the groung field.

Let

A = k1〈x1, . . . , xn | {xjxi = cij · xixj + dij}, 1 ≤ i < j ≤ n〉, and

B = k2〈y1, . . . , ym | {yjyi = qij · yiyj + rij}, 1 ≤ i < j ≤ m〉
be two G -algebras, then C is defined to be the algebra

C = K〈x1, . . . , xn, y1, . . . , ym | {xjxi = cij · xixj + dij, 1 ≤ i < j ≤ n},
{yjyi = qij · yiyj + rij, 1 ≤ i < j ≤ m}, {yjxi = xiyj, 1 ≤ j ≤ m, 1 ≤ i ≤
n}〉.

Concerning the ground fields k1 resp. k2 of A resp. B , take the following guide

lines for A ⊗K B into consideration:

• Neither k1 nor k2 may be R or C .

• If the characteristic of k1 and k2 differs, then one of them must be Q .

Chapter 6: Singular:Plural Manual 169

• At most one of k1 and k2 may have parameters.

• If one of k1 and k2 is an algebraic extension of Z/p it may not be defined by a

charstr of type (p^n,a).

Example:

LIB "ncalg.lib";

def a = makeUsl2(); // U(sl_2) in e,f,h presentation

ring W = 0,(x,d),dp;

Weyl(); // 1st Weyl algebra in x,d

def S = a+W;

setring S;

S;

7→ // characteristic : 0

7→ // number of vars : 5

7→ // block 1 : ordering dp

7→ // : names e f h

7→ // block 2 : ordering dp

7→ // : names x d

7→ // block 3 : ordering C

7→ // noncommutative relations:

7→ // fe=ef-h

7→ // he=eh+2e

7→ // hf=fh-2f

7→ // dx=xd+1

6.2.7.3 ring related functions (plural)

charstr description of the coefficient field of a ring (see Section 4.1.6 [charstr],

page 147)

envelope enveloping ring (see Section 6.3.11 [envelope], page 173)

npars number of ring parameters (see Section 4.1.86 [npars], page 203)

nvars number of ring variables (see Section 4.1.89 [nvars], page 205)

opposite opposite ring (see Section 6.3.24 [opposite], page 186)

ordstr monomial ordering of a ring (see Section 4.1.93 [ordstr], page 211)

parstr names of all ring parameters or the name of the n-th ring parameter

(see Section 4.1.96 [parstr], page 212)

qring quotient ring (see Section 6.2.5 [qring (plural)], page 165)

setring set a new basering (see Section 4.1.116 [setring], page 229)

varstr names of all ring variables or the name of the n-th ring variable (see

Section 4.1.138 [varstr], page 250)

170 Singular:Plural Manual

6.3 Functions (plural)

This chapter gives a complete reference of all functions and commands of the Plural

kernel, i.e. all built-in commands (for the Plural libraries see Section 6.5 [PLURAL

libraries], page 201).

The general syntax of a function is

[target =] function name (<arguments>);

Note, that both Control structures and System variables of Plural are the same

as of Singular (see Section 4.2 [Control structures], page 253, Section 4.3 [System

variables], page 264).

6.3.8 betti (plural)

Syntax: betti (list expression)

betti (resolution expression)

betti (list expression , int expression)

betti (resolution expression , int expression)

Type: intmat

Note: in the noncommutative case, computing Betti numbers makes sense only

if the basering R has homogeneous relations

Purpose: with 1 argument: computes the graded Betti numbers of a minimal

resolution of Rn/M , if R denotes the basering and M a homogeneous

submodule of Rn and the argument represents a resolution of Rn/M .

The entry d of the intmat at place (i, j) is the minimal number of gen-

erators in degree i+j of the j-th syzygy module (= module of relations)

of Rn/M (the 0th (resp. 1st) syzygy module of Rn/M is Rn (resp. M)).

The argument is considered to be the result of a mres or nres command.

This implies that a zero is only allowed (and counted) as a generator in

the first module.

For the computation betti uses only the initial monomials. This could

lead to confusing results for a non-homogeneous input.

If the optional second argument is non-zero, the Betti numbers will be

minimized.

Example:

int i;int N=2;

ring r=0,(x(1..N),d(1..N),q(1..N)),Dp;

matrix D[3*N][3*N];

for (i=1;i<=N;i++)

{ D[i,N+i]=q(i)^2; }

ncalgebra(1,D);

// this algebra is a kind of homogenized Weyl algebra

r;

7→ // characteristic : 0

Chapter 6: Singular:Plural Manual 171

7→ // number of vars : 6

7→ // block 1 : ordering Dp

7→ // : names x(1) x(2) d(1) d(2) q(1) q(2)

7→ // block 2 : ordering C

7→ // noncommutative relations:

7→ // d(1)x(1)=x(1)*d(1)+q(1)^2

7→ // d(2)x(2)=x(2)*d(2)+q(2)^2

ideal I = x(1),x(2),d(1),d(2),q(1),q(2);

option(redSB);

option(redTail);

resolution R = mres(I,0);

// thus R will be the full length minimal resolution

print(betti(R),"betti");

7→ 0 1 2 3 4 5 6

7→ --

7→ 0: 1 6 15 20 15 6 1

7→ --

7→ total: 1 6 15 20 15 6 1

6.3.9 bracket

Syntax: bracket (poly expression, poly expression)

Type: poly

Purpose: Computes the Lie bracket [p,q]=pq-qp of the first polynomial with the

second. Uses special routines, based on the Leibniz rule.

Example:

ring r=(0,Q),(x,y,z),Dp;

minpoly=Q^2-Q+1;

matrix C[3][3]; matrix D[3][3];

C[1,2]=Q2; C[1,3]=1/Q2; C[2,3]=Q2;

D[1,2]=-Q*z; D[1,3]=1/Q*y; D[2,3]=-Q*x;

ncalgebra(C,D);

// this is a quantum deformation of U(so_3),

// where Q is a 6th root of unity

poly p=Q^4*x2+y2+Q^4*z2+Q*(1-Q^4)*x*y*z;

// p is the central element of the algebra

p=p^3; // any power of a central element is central

poly q=(x+Q*y+Q^2*z)^4;

// take q to be some big noncentral element

size(q); // check how many monomials are in big poly q

7→ 28

bracket(p,q); // check p*q=q*p

7→ 0

// a more common behaviour of the bracket follows:

bracket(x+Q*y+Q^2*z,z);

7→ (Q+1)*xz+(Q+1)*yz+(Q-1)*x+(Q-1)*y

172 Singular:Plural Manual

6.3.10 eliminate (plural)

Syntax: eliminate (ideal expression, product of ring variables)

eliminate (module expression, product of ring variables)

Type: the same as the type of the first argument

Purpose: eliminates variables occurring as factors of the second argument from an

ideal (resp. a submodule of a free module), by intersecting it (resp. each

component of the submodule) with the subring not containing these

variables.

Note: eliminate does not need neither a special ordering on the basering nor

a Groebner basis as input.

Remark: in a noncommutative algebra, not every subset of a set of variables

generates a proper subalgebra. But if it is so, there may be cases, when

no elimination is possible. In these situations error messages will be

reported.

Example:

ring r=0,(e,f,h,a),Dp;

matrix d[4][4];

d[1,2]=-h; d[1,3]=2*e; d[2,3]=-2*f;

ncalgebra(1,d);

// this algebra is U(sl_2), tensored with K[a] over K

option(redSB);

option(redTail);

poly p = 4*e*f+h^2-2*h - a;

// p is a central element with parameter

ideal I = e^3, f^3, h^3-4*h, p; // take this ideal

// and intersect I with the ring K[a]

ideal J = eliminate(I, e*f*h);

// if we want substitute ’a’ with a value,

// it has to be a root of this polynomial:

J;

7→ J[1]=a3-32a2+192a

// now we try to eliminate h,

// that is we intersect I with the subalgebra S,

// generated by e and f.

// But S is not closed in itself, since f*e-e*f=-h !

// the next command will definitely produce an error

eliminate(I,h);

7→ ? no elimination is possible:

subalgebra is not admissible

7→ ? error occurred in line 13: ‘eliminate(I,h);

// since a commutes with e,f,h, we can eliminate it:

eliminate(I,a);

7→ _[1]=h3-4h

7→ _[2]=fh2-2fh

Chapter 6: Singular:Plural Manual 173

7→ _[3]=f3

7→ _[4]=eh2+2eh

7→ _[5]=2efh-h2-2h

7→ _[6]=e3

See Section 6.2.1 [ideal (plural)], page 152; Section 6.2.3 [module (plural)], page 159;

Section 6.3.28 [std (plural)], page 191.

6.3.11 envelope

Syntax: envelope (ring name)

Type: ring

Purpose: creates an enveloping algebra of a given algebra, that is Aenv = A ⊗K

Aopp, where Aopp is the opposite algebra of A.

Remark: You have to activate the ring with the setring command. For the

presentation, see explanation of opposite in Section 6.3.24 [opposite],

page 186.

LIB "ncalg.lib";

def A = makeUsl2();

setring A; A;

7→ // characteristic : 0

7→ // number of vars : 3

7→ // block 1 : ordering dp

7→ // : names e f h

7→ // block 2 : ordering C

7→ // noncommutative relations:

7→ // fe=ef-h

7→ // he=eh+2e

7→ // hf=fh-2f

def Aenv = envelope(A);

setring Aenv;

Aenv;

7→ // characteristic : 0

7→ // number of vars : 6

7→ // block 1 : ordering dp

7→ // : names e f h

7→ // block 2 : ordering a

7→ // : names H F E

7→ // : weights 1 1 1

7→ // block 3 : ordering ls

7→ // : names H F E

7→ // block 4 : ordering C

7→ // noncommutative relations:

7→ // fe=ef-h

7→ // he=eh+2e

7→ // hf=fh-2f

7→ // FH=HF-2F

174 Singular:Plural Manual

7→ // EH=HE+2E

7→ // EF=FE-H

See Section 6.3.23 [oppose], page 185; Section 6.3.24 [opposite], page 186.

6.3.12 fetch (plural)

Syntax: fetch (ring name, name)

Type: number, poly, vector, ideal, module, matrix or list (the same type as the

second argument)

Purpose: maps objects between rings. fetch is the identity map between rings

and qrings, the i-th variable of the source ring is mapped to the i-

th variable of the basering. The coefficient fields must be compatible.

(See Section 6.2.2 [map (plural)], page 156 for a description of possible

mappings between different ground fields).

fetch offers a convenient way to change variable names or orderings, or

to map objects from a ring to a quotient ring of that ring or vice versa.

Note: Compared with imap, fetch uses the position of the ring variables, not

their names.

Example:

LIB "ncalg.lib";

def Usl2 = makeUsl2(); // this algebra is U(sl_2)

setring Usl2;

option(redSB);

option(redTail);

poly C = 4*e*f+h^2-2*h; // the central element of Usl2

ideal I = e^3,f^3,h^3-4*h;

ideal J = twostd(I);

print(matrix(J)); // print a compact presentation of J

7→ h3-4h,fh2-2fh,eh2+2eh,f2h-2f2,2efh-h2-2h, \

e2h+2e2,f3,ef2-fh,e2f-eh-2e,e3

ideal QC = twostd(C-8);

qring Q = QC;

ideal QJ = fetch(Usl2,J);

QJ = std(QJ);

// thus QJ is the image of I in the factor-algebra QC

print(matrix(QJ)); // print QJ compactly

7→ h3-4h,fh2-2fh,eh2+2eh,f2h-2f2,e2h+2e2,f3,e3

See Section 6.3.13 [imap (plural)], page 174; Section 6.2.2 [map (plural)], page 156;

Section 6.2.5 [qring (plural)], page 165; Section 6.2.7 [ring (plural)], page 167.

6.3.13 imap (plural)

Syntax: imap (ring name, name)

Type: number, poly, vector, ideal, module, matrix or list (the same type as the

second argument)

Chapter 6: Singular:Plural Manual 175

Purpose: identity map on common subrings. imap is the map between rings and

qrings with compatible ground fields which is the identity on variables

and parameters of the same name and 0 otherwise. (See Section 6.2.2

[map (plural)], page 156 for a description of possible mappings between

different ground fields). Useful for mappings from a homogenized ring

to the original ring or for mappings from/to rings with/without para-

meters. Compared with fetch, imap uses the names of variables and

parameters. Unlike map and fetch, imap can map parameters to vari-

ables.

Example:

LIB "ncalg.lib";

ring ABP=0,(p4,p5,a,b),dp; // a commutative ring

def Usl3 = makeUsl(3);

def BIG = Usl3+ABP;

setring BIG;

poly P4 = 3*x(1)*y(1)+3*x(2)*y(2)+3*x(3)*y(3);

P4 = P4 +h(1)^2+h(1)*h(2)+h(2)^2-3*h(1)-3*h(2);

// P4 is a central element of Usl3 of degree 2

poly P5 = 4*x(1)*y(1) + h(1)^2 - 2*h(1);

// P5 is a central element of the subalgebra of Usl3,

// generated by x(1),y(1),h(1)

ideal J = x(1),x(2),h(1)-a,h(2)-b;

// we are interested in the module U(sl_3)/J,

// which depends on parameters a,b

ideal I = p4-P4, p5-P5;

ideal K = I, J;

poly el = x(1)*x(2)*x(3)*y(1)*y(2)*y(3)*h(1)*h(2);

ideal E = eliminate(K,el);

E; // this is the ideal of central characters in ABP

7→ E[1]=a*b+b^2-p4+p5+a+3*b

7→ E[2]=a^2-p5+2*a

7→ E[3]=b^3+p4*a-p5*a-a^2-p4*b+3*b^2

// what are the characters on nonzero a,b?

ring abP = (0,a,b),(p4,p5),dp;

ideal abE = imap(BIG, E);

option(redSB);

option(redTail);

abE = std(abE);

// here come characters (indeed, we have only one)

// that is a maximal ideal in K[p4,p5]

abE;

7→ abE[1]=p5+(-a^2-2*a)

7→ abE[2]=p4+(-a^2-a*b-3*a-b^2-3*b)

See Section 6.3.12 [fetch (plural)], page 174; Section 6.2.2 [map (plural)], page 156;

Section 6.2.5 [qring (plural)], page 165; Section 6.2.7 [ring (plural)], page 167.

176 Singular:Plural Manual

6.3.14 intersect (plural)

Syntax: intersect (expression list of ideal expression)

intersect (expression list of module expression)

Type: ideal, resp. module

Purpose: computes the intersection of ideals, resp. modules.

Example:

ring r=0,(x,y),dp;

ncalgebra(-1,0);

module M=[x,x],[y,0];

module N=[0,y^2],[y,x];

option(redSB);

module Res;

Res=intersect(M,N);

print(Res);

7→ y2, 0,

7→ -xy,xy2

kill r;

//--------------------------------

LIB "ncalg.lib";

ring r=0,(x,d),dp;

Weyl(); // make r into Weyl algebra

ideal I = x+d^2;

ideal J = d-1;

ideal H = intersect(I,J);

H;

7→ H[1]=d4+xd2-2d3-2xd+d2+x+2d-2

7→ H[2]=xd3+x2d-xd2+d3-x2+xd-2d2-x+1

6.3.15 kbase (plural)

Syntax: kbase (ideal expression)

kbase (module expression)

kbase (ideal expression, int expression)

kbase (module expression, int expression)

Type: the same as the input type of the first argument

Purpose:

computes the vector space basis of the factor-module that equals ring

(resp. free module) modulo the ideal (resp. submodule), generated by

the initial terms of the given generators.

If the factor-module is not of finite dimension, -1 is returned.

If the generators form a Groebner basis, this is the same as the vector

space basis of the factor-module.

Chapter 6: Singular:Plural Manual 177

Note: in the noncommutative case, a ring modulo an ideal has a ring stucture

if and only if an ideal is two-sided.

Example:

ring r=0,(x,y,z),dp;

matrix d[3][3];

d[1,2]=-z; d[1,3]=2x; d[2,3]=-2y;

ncalgebra(1,d); // this algebra is U(sl_2)

ideal i=x2,y2,z2-1;

i=std(i);

print(matrix(i)); // print a compact presentation of i

7→ z2-1,yz-y,xz+x,y2,2xy-z-1,x2

kbase(i);

7→ _[1]=z

7→ _[2]=y

7→ _[3]=x

7→ _[4]=1

vdim(i);

7→ 4

ideal j=x,z-1;

j=std(j);

kbase(j,3);

7→ _[1]=y3

See Section 6.2.1 [ideal (plural)], page 152; Section 6.2.3 [module (plural)], page 159;

Section 6.3.32 [vdim (plural)], page 194.

6.3.16 lift (plural)

Syntax: lift (ideal expression, subideal expression)

lift (module expression, submodule expression)

Type: matrix

Purpose: computes the (left) transformation matrix which expresses the (left)

generators of a submodule in terms of the (left) generators of a

module. Uses different algorithms for modules which are (resp. are

not) represented by a Groebner basis.

More precisely, if m is the module, sm the submodule, and T the

transformation matrix returned by lift, then transpose(matrix(sm))

= transpose(T)*transpose(m) and module(transpose(sm)) =

module(transpose(T)*transpose(m)). If m and sm are ideals,

ideal(sm) = ideal(transpose(T)*transpose(m)).

Note: Gives a warning if sm is not a submodule.

Example:

ring r = (0,a),(e,f,h),(c,dp);

matrix D[3][3];

D[1,2]=-h; D[1,3]=2*e; D[2,3]=-2*f;

178 Singular:Plural Manual

ncalgebra(1,D); // this algebra is a parametric U(sl_2)

ideal i = e,h-a; // consider this parametric ideal

i = std(i);

print(matrix(i)); // print a compact presentation of i

7→ h+(-a),e

poly Z = 4*e*f+h^2-2*h; // a central element

Z = Z - NF(Z,i); // a central character

ideal j = std(Z);

j;

7→ j[1]=4*ef+h2-2*h+(-a2-2a)

matrix T = lift(i,j);

print(T);

7→ h+(a+2),

7→ 4*f

ideal tj = ideal(transpose(T)*transpose(matrix(i)));

std(ideal(j-tj)); // test

7→ _[1]=0

See Section 6.2.1 [ideal (plural)], page 152; Section 6.3.17 [liftstd (plural)], page 178;

Section 6.2.3 [module (plural)], page 159.

6.3.17 liftstd (plural)

Syntax: liftstd (ideal expression, matrix name)

liftstd (module expression, matrix name)

Type: ideal or module

Purpose: returns a Groebner basis of an ideal or module and the transformation

matrix from the given ideal, resp. module, to the Groebner basis.

That is, if m is the ideal or module, sm is the Groebner basis of

m, returned by liftstd, and T is the transformation matrix, then

transpose(matrix(sm))=transpose(T)*transpose(matrix(m)) and

sm=module(transpose(transpose(T)*transpose(matrix(m)))).

If m is an ideal, sm=ideal(transpose(T)*transpose(matrix(m))).

Example:

LIB "ncalg.lib";

def A = makeUsl2();

setring A; // this algebra is U(sl_2)

ideal i = e2,f;

option(redSB);

option(redTail);

matrix T;

ideal j = liftstd(i,T);

// the Groebner basis in a compact form:

print(matrix(j));

7→ f,2h2+2h,2eh+2e,e2

print(T); // the transformation matrix

7→ 0,f2, -f,1,

Chapter 6: Singular:Plural Manual 179

7→ 1,-e2f+4eh+8e,e2,0

ideal tj = ideal(transpose(T)*transpose(matrix(i)));

std(ideal(j-tj)); // test

7→ _[1]=0

See Section 6.2.1 [ideal (plural)], page 152; Section 6.2.7 [ring (plural)], page 167;

Section 6.3.28 [std (plural)], page 191.

6.3.18 minres (plural)

Syntax: minres (list expression)

Type: list

Syntax: minres (resolution expression)

Type: resolution

Purpose: minimizes a free resolution of an ideal or module given by the

list expression, resp. resolution expression.

Example:

LIB "ncalg.lib";

def A = makeUsl2();

setring A; // this algebra is U(sl_2)

ideal i=e,f,h;

i=std(i);

resolution F=nres(i,0); F;

7→ 1 3 3 1

7→ A <-- A <-- A <-- A

7→
7→ 0 1 2 3

7→ resolution not minimized yet

7→
print(matrix(F[1])); // print F’s compactly

7→ h,f,e

print(matrix(F[2]));

7→ f, e, -1,

7→ -h-2,0, e,

7→ 0, -h+2,-f

print(matrix(F[3]));

7→ e,

7→ -f,

7→ h

resolution MF=minres(F); MF;

7→ 1 3 3 1

7→ A <-- A <-- A <-- A

7→
7→ 0 1 2 3

7→
print(matrix(MF[1]));

180 Singular:Plural Manual

7→ f,e

print(matrix(MF[2]));

7→ -ef+2h+2,-e2,

7→ f2, ef+h-2

print(matrix(MF[3]));

7→ e,

7→ -f

See Section 6.3.20 [mres (plural)], page 180; Section 6.3.22 [nres (plural)], page 184.

6.3.19 modulo (plural)

Syntax: modulo (ideal expression, ideal expression)

modulo (module expression, module expression)

Type: module

Purpose: modulo(h1,h2) represents h1/(h1 ∩ h2) ∼= (h1 + h2)/h2 , where h1 and

h2 are considered as submodules of the same free module Rs (s=1 for

ideals).

Let H1 (resp. H2) be the matrix of size l × k (resp. l × m), having the

generators of h1 (resp. h2) as columns.

Then h1/(h1 ∩ h2) ∼= Rk/ker(H1) , where H1 : Rk → Rs/Im(H2) =

Rs/h2 is the induced map.

modulo(h1,h2) returns generators of the kernel of this induced map.

Example:

LIB "ncalg.lib";

def A = makeUsl2();

setring A; // this algebra is U(sl_2)

option(redSB);

option(redTail);

ideal I = e2,f2,h2-1;

I = twostd(I);

print(matrix(I)); // print I in a compact form

7→ h2-1,fh-f,eh+e,f2,2ef-h-1,e2

ideal E = std(e);

ideal T = modulo(E,I);

T = NF(std(I+T),I);

T = std(T);

T;

7→ T[1]=h-1

7→ T[2]=e

See also Section 6.3.30 [syz (plural)], page 192.

6.3.20 mres (plural)

Syntax: mres (ideal expression, int expression)

mres (module expression, int expression)

Chapter 6: Singular:Plural Manual 181

Type: resolution

Purpose: computes a minimal free resolution of an ideal or module M with the

Groebner basis method. More precisely, let A=matrix(M), then mres

computes a free resolution of coker(A) = F0/M

... −→ F2

A2−→ F1

A1−→ F0 −→ F0/M −→ 0,

where the columns of the matrix A1 are a (possibly) minimal set of

generators of M . If the int expression k is not zero, then the computa-

tion stops after k steps and returns a list of modules Mi = module(Ai),

i = 1 . . . k.

mres(M,0) returns a resolution consisting of at most n+2 modules, where

n is the number of variables of the basering. Let list L=mres(M,0);

then L[1] consists of a minimal set of generators of the input, L[2]

consists of a minimal set of generators for the first syzygy module of

L[1], etc., until L[p+1], such that L[i] 6= 0 for i ≤ p, but L[p+1] (the

first syzygy module of L[p]) is 0 (if the basering is not a qring).

Note: Accessing single elements of a resolution may require that some partial

computations have to be finished and may therefore take some time.

Example:

LIB "ncalg.lib";

def A = makeUsl2();

setring A; // this algebra is U(sl_2)

option(redSB);

option(redTail);

ideal i = e,f,h;

i = std(i);

resolution M=mres(i,0);

M;

7→ 1 2 2 1

7→ A <-- A <-- A <-- A

7→
7→ 0 1 2 3

7→
print(matrix(M[1])); // print M’s in a compact way

7→ f,e

print(matrix(M[2]));

7→ ef-2h-2,e2,

7→ -f2, -ef-h+2

// see the exactness at this point

std(ideal(transpose(M[2])*transpose(M[1])));

7→ _[1]=0

print(matrix(M[3]));

7→ e,

7→ -f

// see the exactness at this point

std(ideal(transpose(M[3])*transpose(M[2])));

182 Singular:Plural Manual

7→ _[1]=0

See Section 6.2.1 [ideal (plural)], page 152; Section 6.3.18 [minres (plural)], page 179;

Section 6.2.3 [module (plural)], page 159; Section 6.3.22 [nres (plural)], page 184.

6.3.21 ncalgebra

Syntax:

ncalgebra(matrix expression C, matrix expression D)

ncalgebra(number expression n, matrix expression D)

ncalgebra(matrix expression C, poly expression p)

ncalgebra(number expression n, poly expression p)

Type: ring

Purpose: Executed in the basering r, say, in k variables x1, . . . , xk, ncalgebra

creates the noncommutative extension of r subject to relations {xjxi =

cij · xixj + dij, 1 ≤ i < j ≤ k}, where cij and dij must be put into two

strictly upper triangular matrices C with entries cij from the ground

field of r and D with polynomial entries dij from r. See all the details

in Section 6.4.33 [G-algebras], page 195.

If ∀i < j, cij = n , one can input a number n instead of matrix C.

If ∀i < j, dij = p , one can input a poly p instead of matrix D.

Remark: At present, Plural does not check the non-degeneracy conditions (see

Section 6.4.33 [G-algebras], page 195) while setting an algebra.

Example:

LIB "nctools.lib";

// ----- first example: C, D are matrices ------

ring r1 = (0,Q),(x,y,z),Dp;

minpoly = rootofUnity(6);

matrix C[3][3];

matrix D[3][3];

C[1,2]=Q2; C[1,3]=1/Q2; C[2,3]=Q2;

D[1,2]=-Q*z; D[1,3]=1/Q*y; D[2,3]=-Q*x;

ncalgebra(C,D);

// this algebra is a quantum deformation U’_q(so_3),

// where Q is a 6th root of unity

r1;

7→ // characteristic : 0

7→ // 1 parameter : Q

7→ // minpoly : (Q2-Q+1)

7→ // number of vars : 3

7→ // block 1 : ordering Dp

7→ // : names x y z

7→ // block 2 : ordering C

7→ // noncommutative relations:

7→ // yx=(Q-1)*xy+(-Q)*z

7→ // zx=(-Q)*xz+(-Q+1)*y

Chapter 6: Singular:Plural Manual 183

7→ // zy=(Q-1)*yz+(-Q)*x

kill r1;

// ------ second example : number n=1, D is a matrix

ring r2=0,(Xa,Xb,Xc,Ya,Yb,Yc,Ha,Hb),dp;

matrix d[8][8];

d[1,2]=-Xc; d[1,4]=-Ha; d[1,6]=Yb; d[1,7]=2*Xa;

d[1,8]=-Xa; d[2,5]=-Hb; d[2,6]=-Ya; d[2,7]=-Xb;

d[2,8]=2*Xb; d[3,4]=Xb; d[3,5]=-Xa; d[3,6]=-Ha-Hb;

d[3,7]=Xc; d[3,8]=Xc; d[4,5]=Yc; d[4,7]=-2*Ya;

d[4,8]=Ya; d[5,7]=Yb; d[5,8]=-2*Yb;

d[6,7]=-Yc; d[6,8]=-Yc;

ncalgebra(1,d); // this algebra is U(sl_3)

r2;

7→ // characteristic : 0

7→ // number of vars : 8

7→ // block 1 : ordering dp

7→ // : names Xa Xb Xc Ya Yb Yc Ha Hb

7→ // block 2 : ordering C

7→ // noncommutative relations:

7→ // XbXa=Xa*Xb-Xc

7→ // YaXa=Xa*Ya-Ha

7→ // YcXa=Xa*Yc+Yb

7→ // HaXa=Xa*Ha+2*Xa

7→ // HbXa=Xa*Hb-Xa

7→ // YbXb=Xb*Yb-Hb

7→ // YcXb=Xb*Yc-Ya

7→ // HaXb=Xb*Ha-Xb

7→ // HbXb=Xb*Hb+2*Xb

7→ // YaXc=Xc*Ya+Xb

7→ // YbXc=Xc*Yb-Xa

7→ // YcXc=Xc*Yc-Ha-Hb

7→ // HaXc=Xc*Ha+Xc

7→ // HbXc=Xc*Hb+Xc

7→ // YbYa=Ya*Yb+Yc

7→ // HaYa=Ya*Ha-2*Ya

7→ // HbYa=Ya*Hb+Ya

7→ // HaYb=Yb*Ha+Yb

7→ // HbYb=Yb*Hb-2*Yb

7→ // HaYc=Yc*Ha-Yc

7→ // HbYc=Yc*Hb-Yc

kill r2;

// --- third example : C is a matrix, p=0 is a poly

ring r3=0,(a,b,c,d),lp;

matrix c[4][4];

c[1,2]=1; c[1,3]=3; c[1,4]=-2;

c[2,3]=-1; c[2,4]=-3; c[3,4]=1;

ncalgebra(c,0); // it is a quasi--commutative algebra

r3;

184 Singular:Plural Manual

7→ // characteristic : 0

7→ // number of vars : 4

7→ // block 1 : ordering lp

7→ // : names a b c d

7→ // block 2 : ordering C

7→ // noncommutative relations:

7→ // ca=3ac

7→ // da=-2ad

7→ // cb=-bc

7→ // db=-3bd

kill r3;

// -- fourth example: number n = -1, poly p = 3w

ring r4=0,(u,v,w),dp;

ncalgebra(-1,3w);

r4;

7→ // characteristic : 0

7→ // number of vars : 3

7→ // block 1 : ordering dp

7→ // : names u v w

7→ // block 2 : ordering C

7→ // noncommutative relations:

7→ // vu=-uv+3w

7→ // wu=-uw+3w

7→ // wv=-vw+3w

kill r4;

See also Section 6.5.41 [ncalg lib], page 213; Section 6.5.43 [nctools lib], page 226;

Section 6.5.44 [qmatrix lib], page 236.

6.3.22 nres (plural)

Syntax: nres (ideal expression, int expression)

nres (module expression, int expression)

Type: resolution

Purpose: computes a free resolution of an ideal or module which is minimized

from the second module on (by the Groebner basis method).

Example:

LIB "ncalg.lib";

def A = makeUsl2();

setring A; // this algebra is U(sl_2)

option(redSB);

option(redTail);

ideal i = e,f,h;

i = std(i);

resolution F=nres(i,0);

F;

7→ 1 3 3 1

Chapter 6: Singular:Plural Manual 185

7→ A <-- A <-- A <-- A

7→
7→ 0 1 2 3

7→ resolution not minimized yet

7→
// print the resolution componentwise:

print(matrix(F[1]));

7→ h,f,e

print(matrix(F[2]));

7→ f, e, -1,

7→ -h-2,0, e,

7→ 0, -h+2,-f

// see the exactness at this point:

std(ideal(transpose(F[2])*transpose(F[1])));

7→ _[1]=0

print(matrix(F[3]));

7→ e,

7→ -f,

7→ h

// see the exactness at this point:

std(ideal(transpose(F[3])*transpose(F[2])));

7→ _[1]=0

See Section 6.2.1 [ideal (plural)], page 152; Section 6.3.18 [minres (plural)], page 179;

Section 6.2.3 [module (plural)], page 159; Section 6.3.20 [mres (plural)], page 180.

6.3.23 oppose

Syntax: oppose (ring name, name)

Type: poly, vector, ideal, module or matrix (the same type as the second ar-

gument)

Purpose: for a given object in the given ring, creates its opposite object in the op-

posite (Section 6.3.24 [opposite], page 186) ring (the last one is assumed

to be the current ring).

Remark: for any object O, (Oopp)opp = O.

LIB "ncalg.lib";

def r = makeUsl2();

setring r;

matrix m[3][4];

poly p = (h^2-1)*f*e;

vector v = [1,e*h,0,p];

ideal i = h*e, f^2*e,h*f*e;

m = e,f,h,1,0,h^2, p,0,0,1,e^2,e*f*h+1;

module mm = module(m);

def b = opposite(r);

// we will oppose these objects: p,v,i,m,mm

setring b; b;

186 Singular:Plural Manual

7→ // characteristic : 0

7→ // number of vars : 3

7→ // block 1 : ordering a

7→ // : names H F E

7→ // : weights 1 1 1

7→ // block 2 : ordering ls

7→ // : names H F E

7→ // block 3 : ordering C

7→ // noncommutative relations:

7→ // FH=HF-2F

7→ // EH=HE+2E

7→ // EF=FE-H

poly P = oppose(r,p);

vector V = oppose(r,v);

ideal I = oppose(r,i);

matrix M = oppose(r,m);

module MM = oppose(r,mm);

setring r; // now let’s check the correctness:

// print compact presentations of objects

print(matrix(oppose(b,P)-p));

7→ 0

print(matrix(oppose(b,V)-v));

7→ 0

print(matrix(oppose(b,I)-i));

7→ 0,0,0

print(matrix(oppose(b,M)-m));

7→ 0,0,0,0,

7→ 0,0,0,0,

7→ 0,0,0,0

print(matrix(oppose(b,MM)-mm));

7→ 0,0,0,0,

7→ 0,0,0,0,

7→ 0,0,0,0

See Section 6.3.11 [envelope], page 173; Section 6.3.24 [opposite], page 186.

6.3.24 opposite

Syntax: opposite (ring name)

Type: ring

Purpose: creates an opposite algebra of a given algebra.

Note: activate the ring with the setring command.

An opposite algebra of a given algebra (A ,.) is an algebra (A ,*) with

the same vectorspace but with the opposite multiplication, i.e.

∀ f, g ∈ Aopp, a new multiplication ∗ on Aopp is defined to be f ∗g := g ·f .

Remark: Starting from the variables x 1,...,x N and the ordering < of the given

algebra, an opposite algebra will have variables X N,...,X 1 (where the

Chapter 6: Singular:Plural Manual 187

case and the position are reverted). Moreover, it is equipped with an

opposed ordering <_opp (it is given by the matrix, obtained from the

matrix ordering of < with the reverse order of columns).

LIB "ncalg.lib";

def B = makeQso3(3);

// this algebra is a quantum deformation of U(so_3),

// where the quantum parameter is a 6th root of unity

setring B; B;

7→ // characteristic : 0

7→ // 1 parameter : Q

7→ // minpoly : (Q2-Q+1)

7→ // number of vars : 3

7→ // block 1 : ordering dp

7→ // : names x y z

7→ // block 2 : ordering C

7→ // noncommutative relations:

7→ // yx=(Q-1)*xy+(-Q)*z

7→ // zx=(-Q)*xz+(-Q+1)*y

7→ // zy=(Q-1)*yz+(-Q)*x

def Bopp = opposite(B);

setring Bopp;

Bopp;

7→ // characteristic : 0

7→ // 1 parameter : Q

7→ // minpoly : (Q2-Q+1)

7→ // number of vars : 3

7→ // block 1 : ordering a

7→ // : names Z Y X

7→ // : weights 1 1 1

7→ // block 2 : ordering ls

7→ // : names Z Y X

7→ // block 3 : ordering C

7→ // noncommutative relations:

7→ // YZ=(Q-1)*ZY+(-Q)*X

7→ // XZ=(-Q)*ZX+(-Q+1)*Y

7→ // XY=(Q-1)*YX+(-Q)*Z

See Section B.2.6 [Matrix orderings], page 257; Section 6.3.11 [envelope], page 173;

Section 6.3.23 [oppose], page 185.

6.3.25 preimage (plural)

Syntax: preimage (ring name, map name, ideal name)

preimage (ring name, ideal expression, ideal name)

Type: ideal

Purpose: returns the preimage of an ideal under a given map. The second argu-

ment has to be a map from the basering to the given ring (or an ideal

defining such a map), and the ideal has to be an ideal in the given ring.

188 Singular:Plural Manual

Note: To compute the kernel of a map, the preimage of zero has to be deter-

mined. Hence there is no special command for computing the kernel of

a map in Plural.

Remark: In the noncommutative case, it is implemented only for maps A -> B ,

where A is a commutative ring.

Example:

LIB "ncalg.lib";

ring R = 0,a,dp;

def Usl2 = makeUsl2();

setring Usl2;

poly C = 4*e*f+h^2-2*h;

// C is a central element of U(sl2)

ideal I = e^3, f^3, h^3-4*h;

ideal J = twostd(I); // two-sided GB

ideal K = std(I); // left GB

map Phi = R,C;

setring R;

ideal PreJ = preimage(Usl2,Phi,J);

// PreJ gives the central character of J

PreJ;

7→ PreJ[1]=a2-8a

factorize(PreJ[1],1);

// hence, there are two simple characters for J

7→ _[1]=a

7→ _[2]=a-8

ideal PreK = preimage(Usl2,Phi,K);

// the central character of K

PreK;

7→ PreK[1]=a3-32a2+192a

factorize(PreK[1],1);

// hence, there are three simple characters for K

7→ _[1]=a

7→ _[2]=a-8

7→ _[3]=a-24

See Section 6.2.1 [ideal (plural)], page 152; Section 6.2.2 [map (plural)], page 156;

Section 6.2.7 [ring (plural)], page 167.

6.3.26 quotient (plural)

Syntax: quotient (ideal expression, ideal expression)

quotient (module expression, module expression)

Type: ideal

Syntax: quotient (module expression, ideal expression)

Type: module

Chapter 6: Singular:Plural Manual 189

Purpose: computes the ideal quotient, resp. module quotient. Let R be the base-

ring, I,J ideals and M a module in Rn. Then

quotient(I,J)= {a ∈ R | aJ ⊂ I},
quotient(M,J)= {b ∈ Rn | bJ ⊂ M}.

Note: It must used for two-sided ideals (bimodules) only, otherwise the result

may have no meaning.

Example:

//------ a very easy example ------------

ring r=(0,q),(x,y),Dp;

ncalgebra(q,0); // this algebra is a quantum plane

option(returnSB);

poly f1 = x^3+2*x*y^2+2*x^2*y;

poly f2 = y;

poly f1’ = x^2;

poly f2’ = x+y;

ideal i = f1,f2;

ideal I = twostd(i);

ideal j = f1’,f2’;

ideal J = twostd(j);

quotient(I,J);

7→ _[1]=y

7→ _[2]=x2

kill r;

//------- a bit more complicated example

LIB "ncalg.lib";

def Usl2 = makeUsl2();

// this algebra is U(sl_2)

setring Usl2;

ideal i = e3,f3,h3-4*h;

ideal I = std(i);

poly C = 4*e*f+h^2-2*h;

ideal H = twostd(C-8);

option(returnSB);

ideal Q = quotient(I,H);

// print a compact presentation of Q:

print(matrix(Q));

7→ h,f3,ef2-4f,e2f-6e,e3

See Section 6.2.1 [ideal (plural)], page 152; Section 6.2.3 [module (plural)], page 159.

6.3.27 reduce (plural)

Syntax:

reduce (poly expression, ideal expression)

reduce (poly expression, ideal expression, int expression)

reduce (vector expression, ideal expression)

reduce (vector expression, ideal expression, int expression)

190 Singular:Plural Manual

reduce (vector expression, module expression)

reduce (vector expression, module expression, int expression)

reduce (ideal expression, ideal expression)

reduce (ideal expression, ideal expression, int expression)

reduce (module expression, ideal expression)

reduce (module expression, ideal expression, int expression)

reduce (module expression, module expression)

reduce (module expression, module expression, int expression)

Type: the type of the first argument

Purpose: reduces a polynomial, vector, ideal or module to its left normal form

with respect to an ideal or module represented by a left Groebner basis.

Returns 0 if and only if the polynomial (resp. vector, ideal, module)

is an element (resp. subideal, submodule) of the ideal (resp. module).

The result may have no meaning if the second argument is not a left

Groebner basis.

The third (optional) argument 1 of type int forces a reduction which

considers only the leading term and does no tail reduction.

Note: The commands reduce and NF are synonymous.

Example:

ring r=(0,a),(e,f,h),Dp;

matrix d[3][3];

d[1,2]=-h; d[1,3]=2e; d[2,3]=-2f;

ncalgebra(1,d);

// this algebra is a parametric U(sl_2)

ideal I=e2,f2,h2-1;

I=std(I);

// print a compact presentation of I

print(matrix(I));

7→ h2-1,fh-f,f2,eh+e,2*ef-h2-h,e2

ideal J=e,h-a;

J=std(J);

// print a compact presentation of J

print(matrix(J));

7→ h+(-a),e

poly z=4*e*f+h^2-2*h;

// z is the central element of U(sl_2)

NF(z,I); // the central character of I:

7→ 3

NF(z,J); // the central character of J:

7→ (a2+2a)

poly nz = z - NF(z,J); // nz will belong to J

NF(nz,J);

7→ 0

See also Section 6.2.1 [ideal (plural)], page 152; Section 6.2.3 [module (plural)],

page 159; Section 6.3.28 [std (plural)], page 191.

Chapter 6: Singular:Plural Manual 191

6.3.28 std (plural)

Syntax: std (ideal expression)

std (module expression)

std (ideal expression, poly expression)

std (module expression, vector expression)

Type: ideal or module

Purpose: returns a left Groebner basis (see Section 6.4.34 [Groebner bases in G-

algebras], page 196 for a definition) of an ideal or module with respect

to the monomial ordering of the basering.

Use an optional second argument of type poly, resp. vector, to construct

the Groebner basis from an already computed one (given as the first

argument) and one additional generator (the second argument).

Note: To view the progress of long running computations, use option(prot).

(see Section 4.1.91 [option], page 206(prot)).

Example:

LIB "ncalg.lib";

def R = makeUsl2();

// this algebra is U(sl_2)

setring R;

ideal I = e2, f2, h2-1;

I=std(I);

I;

7→ I[1]=h2-1

7→ I[2]=fh-f

7→ I[3]=eh+e

7→ I[4]=f2

7→ I[5]=2ef-h-1

7→ I[6]=e2

kill R;

//--

def RQ = makeQso3(3);

// this algebra is U’_q(so_3),

// where Q is a 6th root of unity

setring RQ;

RQ;

7→ // characteristic : 0

7→ // 1 parameter : Q

7→ // minpoly : (Q2-Q+1)

7→ // number of vars : 3

7→ // block 1 : ordering dp

7→ // : names x y z

7→ // block 2 : ordering C

7→ // noncommutative relations:

7→ // yx=(Q-1)*xy+(-Q)*z

192 Singular:Plural Manual

7→ // zx=(-Q)*xz+(-Q+1)*y

7→ // zy=(Q-1)*yz+(-Q)*x

ideal J=x2, y2, z2;

J=std(J);

J;

7→ J[1]=z

7→ J[2]=y

7→ J[3]=x

See also Section 6.2.1 [ideal (plural)], page 152; Section 6.2.7 [ring (plural)], page 167.

6.3.29 subst (plural)

Syntax: subst (poly expression,ring variable, poly expression)

subst (vector expression,ring variable, poly expression)

subst (ideal expression,ring variable, poly expression)

subst (module expression,ring variable, poly expression)

Type: poly, vector, ideal or module (corresponding to the first argument)

Purpose: substitutes a ring variable by a polynomial.

Example:

LIB "ncalg.lib";

def R = makeUsl2();

// this algebra is U(sl_2)

setring R;

poly C = e*f*h;

poly C1 = subst(C,e,h^3);

C1;

7→ fh4-6fh3+12fh2-8fh

poly C2 = subst(C,f,e+f);

C2;

7→ e2h+efh

6.3.30 syz (plural)

Syntax: syz (ideal expression)

syz (module expression)

Type: module

Purpose: computes the first syzygy (i.e., the module of relations of the given

generators) of the ideal, resp. module.

Note: if S is a matrix of a left syzygy module of left submodule given by matrix

M, then transpose(S)*transpose(M) = 0.

Example:

LIB "ncalg.lib";

def R = makeQso3(3);

setring R;

Chapter 6: Singular:Plural Manual 193

option(redSB);

// we wish to have completely reduced bases:

option(redTail);

ideal tst;

ideal J = x3+x,x*y*z;

print(syz(J));

7→ -yz,

7→ x2+1

ideal K = x+y+z,y+z,z;

module S = syz(K);

print(S);

7→ (Q-1), (-Q+1)*z, (Q-1)*y,

7→ (Q)*z+(-Q+1),(Q-1)*z+(Q),(Q)*x+(-Q+1)*y,

7→ y+(-Q)*z, x+(-Q), (-Q)*x-1

tst = ideal(transpose(S)*transpose(K));

// check the property of a syzygy module (tst=0):

size(tst);

7→ 0

// now compute the Groebner basis of K ...

K = std(K);

// ... print a matrix presentation of K ...

print(matrix(K));

7→ z,y,x

S = syz(K); // ... and its syzygy module

print(S);

7→ y, (-Q)*yz+(Q)*x,y2+1,

7→ (Q)*z,-z2-1, (Q)*yz+(-Q)*x,

7→ (Q-1),0, 0

tst = ideal(transpose(S)*transpose(K));

// check the property of a syzygy module (tst=0):

size(tst);

7→ 0

// but the "commutative" syzygy property does not hold

size(ideal(matrix(K)*matrix(S)));

7→ 1

See also Section 6.2.1 [ideal (plural)], page 152; Section 6.3.18 [minres (plural)],

page 179; Section 6.2.3 [module (plural)], page 159; Section 6.3.20 [mres (plural)],

page 180; Section 6.3.22 [nres (plural)], page 184.

6.3.31 twostd

Syntax: twostd(ideal expression);

Type: ideal or module

Purpose: returns a left Groebner basis of the two-sided ideal, generated by the

input, treated as a set of two-sided generators. see Section 4.1.125 [std],

page 240

194 Singular:Plural Manual

Remark: There are algebras with no two-sided ideals except 0 and the whole

algebra (like Weyl algebras).

Example:

LIB "ncalg.lib";

def U = makeUsl2(); // this algebra is U(sl_2)

setring U;

ideal i= e^3, f^3, h^3 - 4*h;

option(redSB);

option(redTail);

ideal I = std(i);

// print a compact presentation of I:

print(matrix(I));

7→ h3-4h,fh2-2fh,eh2+2eh,2efh-h2-2h,f3,e3

ideal J = twostd(i);

// print a compact presentation of J:

print(matrix(J));

7→ h3-4h,fh2-2fh,eh2+2eh,f2h-2f2,2efh-h2-2h, \

e2h+2e2, f3,ef2-fh,e2f-eh-2e,e3

// compute the set of elements present in J but not in I

ideal K = NF(J,I);

K = K+0; // simplify K

print(matrix(K));

7→ f2h-2f2,e2h+2e2,ef2-fh,e2f-eh-2e

6.3.32 vdim (plural)

Syntax: vdim (ideal expression)

vdim (module expression)

Type: int

Purpose: computes the vector space dimension of the factor-module that equals

ring (resp. free module) modulo the ideal (resp. submodule), generated

by the leading terms of the given generators.

If the factor-module is not of finite dimension, -1 is returned.

If the generators form a Groebner basis, this is the same as the vector

space dimension of the factor-module.

Note: In the noncommutative case, a ring modulo an ideal has a ring stucture

if and only if the ideal is two-sided.

Example:

ring R=0,(x,y,z),dp;

matrix d[3][3];

d[1,2]=-z; d[1,3]=2x; d[2,3]=-2y;

ncalgebra(1,d); //U(sl_2)

option(redSB); option(redTail);

ideal I=x3,y3,z3-z;

I=std(I);

Chapter 6: Singular:Plural Manual 195

I;

7→ I[1]=z3-z

7→ I[2]=y3

7→ I[3]=x3

7→ I[4]=y2z2-y2z

7→ I[5]=x2z2+x2z

7→ I[6]=x2y2z-2xyz2-2xyz+2z2+2z

vdim(I);

7→ 21

See also Section 6.2.1 [ideal (plural)], page 152; Section 6.3.15 [kbase (plural)],

page 176; Section 6.3.28 [std (plural)], page 191.

6.4 Mathematical background (plural)

This section introduces some of the mathematical notions and definitions used

throughout the Plural manual. For details, please, refer to appropriate articles

or text books (see Section 6.4.36 [References (plural)], page 199). A detailed dis-

cussion of the subjects in this section can be found in the doctoral thesis [LV] of V.

Levandovskyy (see Section 6.4.36 [References (plural)], page 199).

All algebras are assumed to be associative K -algebras for some field K .

6.4.33 G-algebras

Definition (PBW basis)

Let K be a field, and let a K-algebra A be generated by variables x1, . . . , xn subject

to some relations. We call A an algebra with PBW basis (Poincaré-Birkhoff-Witt

basis), if a K–basis of A is Mon(x1, . . . , xn) = {xa1

1 xa2

2 . . . xan

n | ai ∈ N ∪ {0}}, where

a power-product xa1

1 xa2

2 . . . xan

n (in this particular order) is called a monomial. For

example, x1x2 is a monomial, while x2x1 is, in general, not a monomial.

Definition (G-algebra)

Let K be a field, and let a K-algebra A be given in terms of generators subject to

the following relations:

A = K〈x1, . . . , xn | {xjxi = cij · xixj + dij}, 1 ≤ i < j ≤ n〉, where cij ∈ K∗, dij ∈
K[x1, . . . , xn].

A is called a G–algebra, if the following conditions hold:

• there is a monomial well-ordering ¡ such that ∀i < j LM(dij) < xixj,

• non-degeneracy conditions: ∀ 1 ≤ i < j < k ≤ n : NDCijk = 0, where

NDCijk = cikcjk · dijxk − xkdij + cjk · xjdik − cij · dikxj + djkxi − cijcik · xidjk.

196 Singular:Plural Manual

Theorem (properties of G-algebras)

Let A be a G-algebra. Then

A has a PBW (Poincaré-Birkhoff-Witt) basis,

A is left and right noetherian,

A is an integral domain.

Setting up a G-algebra

In order to set up a G–algebra in Plural, one has to do the following steps:

define a commutative ring R = K[x1, . . . , xn], equipped with a global monomial

ordering < (see Section 6.2.7.1 [ring declarations (plural)], page 168).

This provides us with the information on a field K (together with its parame-

ters), variables {xi} and an ordering <.

From the sequence of variables we will build a G-algebra with the PBW basis

{xa1

1 xa2

2 . . . xan

n }.
Define strictly n × n upper triangular matrices (of type matrix)

1. C = {cij, i < j}, with nonzero entries cij of type number (cij for i ≥ j will

be ignored).

2. D = {dij, i < j}, with polynomial entries dij from R (dij for i ≥ j will be

ignored).

Call the initialization function ncalgebra(C,D) (see Section 6.3.21 [ncalgebra],

page 182) with the data C and D.

At present, Plural does not check automatically whether the non-degeneracy con-

ditions hold but it provides a procedure Section 6.5.43.3 [ndcond], page 229 from

the library Section 6.5.43 [nctools lib], page 226 to check this.

6.4.34 Groebner bases in G-algebras

We follow the notations, used in the Singular Manual (e.g. in Section C.1 [Stan-

dard bases], page 261).

For a G–algebra A, we denote by A〈g1, . . . , gs〉 the left submodule of a free module

Ar, generated by elements {g1, . . . , gs} ⊂ Ar.

Let < be a fixed monomial well-ordering on the G–algebra A with the PBW basis

{xα = xa1

1 xa2

2 . . . xan

n }. For a given free module Ar with the basis {e1, . . . , er}, <

denotes also a fixed module ordering on the set of monomials {xαei | α ∈ Nn, 1 ≤
i ≤ r}.

Definition

For a set S ⊂ Ar, define L(S) to be the K–vector space, spanned on the leading

monomials of elements of S, L(S) = ⊕{Kxαei | ∃s ∈ S, LM(s) = xαei}. We call

L(S) the span of leading monomials of S.

Chapter 6: Singular:Plural Manual 197

Let I ⊂ Ar be a left A–submodule. A finite set G ⊂ I is called a left Groebner

basis of I if and only if L(G) = L(I), that is for any f ∈ I \ {0} there exists a

g ∈ G satisfying LM(g) | LM(f), i.e., if LM(f) = xαei, then LM(f) = xβei with

βj ≤ αj, 1 ≤ j ≤ n.

Remark: In the non-commutative case we are working with well ordering only (see

Section 6.1 [Getting started with PLURAL], page 151, Section B.2 [Monomial or-

derings], page 254 and Section 2.3.3 [Term orderings], page 37).

A Groebner basis G ⊂ Ar is called minimal (or reduced) if 0 /∈ G and if LM(g) /∈
L(G \ {g}) for all g ∈ G. Note, that any Groebner basis can be made minimal by

deleting successively those g with LM(h) | LM(g) for some h ∈ G \ {g}.
For f ∈ Ar and G ⊂ Ar we say that f is completely reduced with respect to G if

no monomial of f is contained in L(G).

Left Normal Form

A map NF : Ar × {G | G a (left) Groebner basis} → Ar, (f |G) 7→
NF(f |G), is called a (left) normal form on Ar if for any f ∈ Ar and any

left Groebner basis G the following holds:

(i) NF(0|G) = 0,

(ii) if NF(f |G) 6= 0 then LM(g) does not divide LM(NF(f |G)) for all

g ∈ G,

(iii) f − NF(f |G) ∈ A〈G〉.
NF(f |G) is called a left normal form of f with respect to G (note that

such a map is not unique).

Remark: As we have already mentioned in the definitions ideal and module (see

Section 6.1 [Getting started with PLURAL], page 151), Plural works with left

normal form only.

Left ideal membership

For a left Groebner basis G of I the following holds: f ∈ I if and only

if the left normal form NF(f |G) = 0.

6.4.35 Syzygies and resolutions (plural)

Syzygies

Let K be a field and < a well ordering on Ar = ⊕r
i=1Aei. A left (resp. right) syzygy

between k elements {f1, . . . , fk} ⊂ Ar is a k-tuple (g1, . . . , gk) ∈ Ak satisfying

k∑

i=1

gifi = 0 resp.
k∑

i=1

figi = 0.

198 Singular:Plural Manual

The set of all left (resp. right) syzygies between {f1, ..., fk} is a left (resp. right)

submodule S of Ak.

Remark: With respect to the definitions of ideal and module (see Section 6.1

[Getting started with PLURAL], page 151), Plural works with left syzygies only

(by syz we understand a left syzygy). If S is a matrix of a left syzygy module of

left submodule given by matrix M, then transpose(S)*transpose(M) = 0 (but, in

general, M · S 6= 0).

Note, that the syzygy modules of I depend on a choice of generators {g1, . . . , gs},
but one can show that they depend on I uniquely up to direct summands.

Free resolutions

Let I = A〈g1, . . . , gs〉 ⊆ Ar and M = Ar/I. A free resolution of M is a long exact

sequence

. . . −→ F2

B2−→ F1

B1−→ F0 −→ M −→ 0,

with transpose(Bi+1) · transpose(Bi) = 0

and where the columns of the matrix B1 generate I . Note, that resolutions over

factor-algebras need not to be of finite length.

Generalized Hilbert Syzygy Theorem

For a G–algebra A, generated by n variables, there exists a free resolution of length

smaller or equal than n .

Example:

ring R=0,(x,y,z),dp;

matrix d[3][3];

d[1,2]=-z; d[1,3]=2x; d[2,3]=-2y;

ncalgebra(1,d); // this algebra is U(sl_2)

option(redSB); option(redTail);

ideal I=x3,y3,z3-z;

I=std(I);

I;

7→ I[1]=z3-z

7→ I[2]=y3

7→ I[3]=x3

7→ I[4]=y2z2-y2z

7→ I[5]=x2z2+x2z

7→ I[6]=x2y2z-2xyz2-2xyz+2z2+2z

resolution resI = mres(I,0);

resI;

7→ 1 5 7 3

7→ R <-- R <-- R <-- R

7→

Chapter 6: Singular:Plural Manual 199

7→ 0 1 2 3

7→
// The matrix A_1 is given by

print(matrix(resI[1]));

7→ z3-z,y3,x3,y2z2-y2z,x2z2+x2z

// We see that the columns of A_1 generate I.

// The matrix A_2 is given by

print(matrix(resI[2]));

7→ 0, 0, y2, x2, 6yz, -36xy+18z+24,-6xz,

7→ z2+11z+30,0, 0, 0, 2x2z+12x2, 2x3, 0,

7→ 0, z2-11z+30,0, 0, 0,-2y3, 2y2z-12y2,

7→ -y, 0, -z-5, 0, x2y-6xz-30x, 9x2, x3,

7→ 0, -x, 0, -z+5,-y3, -9y2, -xy2-4yz+28y

// now, let us show that the resolution is exact

ideal tst;

matrix TST;

// the 2nd term ...

TST = transpose(resI[3])*transpose(resI[2]);

tst = std(ideal(TST));

tst;

7→ tst[1]=0

// the 1st term ...

TST = transpose(resI[2])*transpose(resI[1]);

tst = std(ideal(TST));

tst;

7→ tst[1]=0

6.4.36 References (plural)

The Centre for Computer Algebra Kaiserslautern publishes a series of

preprints which are electronically available at http://www.mathematik.uni-

kl.de/~zca/Reports_on_ca. Other sources to check are the following books and

articles:

Text books

• Y. Drozd and V. Kirichenko. Finite dimensional algebras. With an appendix

by Vlastimil Dlab. Springer, 1994

• [GPS] Greuel, G.-M. and Pfister, G. with contributions by Bachmann, O. ;

Lossen, C. and Schönemann, H. A SINGULAR Introduction to Commutative

Algebra. Springer, 2002

• [BGV] Bueso, J.; Gomez Torrecillas, J.; Verschoren, A. Algorithmic methods in

non-commutative algebra. Applications to quantum groups. Kluwer Academic

Publishers, 2003

• Kredel, H. Solvable polynomial rings. Shaker, 1993

• [Li] Huishi Li. Noncommutative Gröbner bases and filtered-graded transfer.

Springer, 2002

200 Singular:Plural Manual

• [MR] McConnell, J.C. and Robson, J.C. Noncommutative Noetherian rings.

With the cooperation of L. W. Small. Graduate Studies in Mathematics. 30.

Providence, RI: American Mathematical Society (AMS)., 2001

Descriptions of algorithms and problems

• Havlicek, M. and Klimyk, A. and Posta, S. Central elements of the algebras

U ′

q(som) and U ′

q(isom). arXiv. math. QA/9911130, (1999)

• J. Apel. Gröbnerbasen in nichtkommutativen algebren und ihre anwendung.

Dissertation, Universität Leipzig, 1988.

• Apel, J. Computational ideal theory in finitely generated extension rings.

Theor. Comput. Sci.(2000), 244(1-2):1-33

• O. Bachmann and H. Schönemann. Monomial operations for computations of

Gröbner bases. In Reports On Computer Algebra 18. Centre for Computer

Algebra, University of Kaiserslautern (1998)

• D. Decker and D. Eisenbud. Sheaf algorithms using the exterior algebra. In

Eisenbud, D.; Grayson, D.; Stillman, M.; Sturmfels, B., editor, Computations

in algebraic geometry with Macaulay 2, (2001)

• Jose L. Bueso, J. Gomez Torrecillas and F. J. Lobillo. Computing the Gelfand-

Kirillov dimension II. In A. Granja, J. A. Hermida and A. Verschoren eds. Ring

Theory and Algebraic Geometry, Lect. Not. in Pure and Appl. Maths., Marcel

Dekker, 2001.

• Jose L. Bueso, J. Gomez Torrecillas and F. J. Lobillo. Re-filtering and exactness

of the Gelfand-Kirillov dimension. Bulletin des Sciences Mathematiques 125(8),

689-715 (2001).

• J. Gomez Torrecillas and F.J. Lobillo. Global homological dimension of mul-

tifiltered rings and quantized enveloping algebras. J. Algebra, 225(2):522-533,

2000.

• N. Iorgov. On the Center of q-Deformed Algebra U ′

q(so3) Related to Quantum

Gravity at q a Root of 1. In Proceedings of IV Int. Conf. "Symmetry in

Nonlinear Mathematical Physics",(2001) Kyiv, Ukraine

• A. Kandri-Rody and V. Weispfenning. Non-commutative Gröbner bases in

algebras of solvable type. J. Symbolic Computation, 9(1):1-26, 1990.

• Levandovskyy, V. On Gröbner bases for non-commutative G-algebras. In Kre-

del, H. and Seiler, W.K., editor, Proceedings of the 8th Rhine Workshop on

Computer Algebra, 2002.

• [L1] Levandovskyy, V. PBW Bases, Non-degeneracy Conditions and Applica-

tions. In Buchweitz, R.-O. and Lenzing, H., editor, Proceedings of the ICRA X

conference, Toronto, 2003.

• [LS] Levandovskyy V.; Schönemann, H. Plural - a computer algebra system for

noncommutative polynomial algebras. In Proc. of the International Symposium

on Symbolic and Algebraic Computation (ISSAC’03). ACM Press, 2003.

Chapter 6: Singular:Plural Manual 201

• [LV] Levandovskyy, V. Non-commutative Computer Algebra for polynomial al-

gebras: Gröbner bases, applications and implementation. Doctoral Thesis, Uni-

versität Kaiserslautern, 2005.

• [L2] Levandovskyy, V. On preimages of ideals in certain non-commutative al-

gebras. In Pfister G., Cojocaru S. and Ufnarovski, V. (editors), Computational

Commutative and Non-Commutative Algebraic Geometry, IOS Press, 2005.

• Mora, T. Gröbner bases for non-commutative polynomial rings. Proc. AAECC

3 Lect. N. Comp. Sci, 229: 353-362, 1986.

• Mora, T. An introduction to commutative and non-commutative Groebner

bases. Theor. Comp. Sci., 134: 131-173, 1994.

• T. Nüßler and H. Schönemann. Gröbner bases in algebras with zero-divisors.

Preprint 244, Universität Kaiserslautern, 1993.

• Ringel, C. M. PBW-bases of quantum groups. J. Reine Angew. Math., 470:51-

88, 1996.

• Schönemann, H. Singular in a Framework for Polynomial Computations. In

Joswig, M. and Takayama, N., editor, Algebra, Geometry and Software Systems,

pages 163-176. Springer, 2003.

• T. Yan. The geobucket data structure for polynomials. J. Symbolic Computa-

tion, 25(3):285-294, March 1998.

6.5 PLURAL libraries

Plural comes with a set of standard libraries. Their content is described in the

following subsections.

Use the LIB command for loading of single libraries.

Note: For any computation in Plural, the monomial ordering must be a global

ordering.

6.5.37 center lib

Library: center.lib

Purpose: computation of central elements of G-algebras and their factor-algebras.

Author: Oleksandr Motsak, motsak@mathematik.uni-kl.de.

Overview: This is a library for computing the central elements and centralizers of

elements in various noncommutative algebras. Implementation is based

on algorithms, written in the frame of the diploma thesis by O. Motsak

(advisor: Prof. S.A. Ovsienko, support: V. Levandovskyy), at Kyiv

Taras Shevchenko University (Ukraine) with the title ’An algorithm for

the computation of the center of noncommutative polynomial algebra’.

Support: Forschungsschwerpunkt ’Mathematik und Praxis’, University of Kaiser-

slautern

Procedures:

202 Singular:Plural Manual

6.5.37.1 center

Procedure from library center.lib (see Section 6.5.37 [center lib], page 201).

Return: ideal, generated by elements of degree at most MaxDeg

Purpose: computes a minimal set of central elements up to degree MaxDeg.

Note: In general, one cannot predict the number or the heighest degree of

central elements. Hence, one has to specify a termination condition via

arguments MaxDeg and/or N.

If MaxDeg is positive, the computation stops after all central elements

of degree at most MaxDeg has been found.

If MaxDeg is negative, the termination is determined by N only.

If N is given, the computation stops if at least N central elements has

been found.

Warning: if N is given and bigger than the real number of generators,

the procedure may not terminate.

Example:

LIB "center.lib";

ring A = 0,(x,y,z,t),dp;

matrix D[4][4]=0;

D[1,2]=-z; D[1,3]=2*x; D[2,3]=-2*y;

ncalgebra(1,D); // this algebra is U(sl_2) tensored with K[t]

ideal Z = center(3); // find all central elements of degree <= 3

Z;

7→ Z[1]=t

7→ Z[2]=4xy+z2-2z

inCenter(Z);

7→ 1

// find the generator of the center of the lowest degree

ideal ZZ = center(-1, 1);

ZZ;

7→ ZZ[1]=t

inCenter(ZZ);

7→ 1

Section 6.5.37.2 [centralizer], page 202, Section 6.5.37.3 [inCenter], page 204

6.5.37.2 centralizer

Procedure from library center.lib (see Section 6.5.37 [center lib], page 201).

Return: ideal, generated by elements of degree <= MaxDeg

Purpose: computes a minimal set of elements centralizer(S) up to degree MaxDeg.

Note: In general, one cannot predict the number or the heighest degree of cen-

tralizing elements. Hence, one has to specify a termination condition

via arguments MaxDeg and/or N.

Chapter 6: Singular:Plural Manual 203

If MaxDeg is positive, the computation stops after all centralizing ele-

ments of degree at most MaxDeg has been found.

If MaxDeg is negative, the termination is determined by N only.

If N is given, the computation stops if at least N centralizing elements

has been found.

Warning: if N is given and bigger than the real number of generators,

the procedure may not terminate.

Example:

LIB "center.lib";

ring A = 0,(x,y,z),dp;

matrix D[3][3]=0;

D[1,2]=-z; D[1,3]=2*x; D[2,3]=-2*y;

ncalgebra(1,D); // this algebra is U(sl_2)

poly f = 4*x*y+z^2-2*z; // a central polynomial

f;

7→ 4xy+z2-2z

// find generators of the centralizer of f:

ideal c = centralizer(f, 2);

// of degree <= 2

c; // since f is central, these are the generators of A

7→ c[1]=z

7→ c[2]=y

7→ c[3]=x

inCentralizer(c, f);

7→ 1

// find at least two generators of the centralizer of f:

ideal cc = centralizer(f,-1,2);

cc;

7→ cc[1]=z

7→ cc[2]=y

7→ cc[3]=x

inCentralizer(cc, f);

7→ 1

poly g = z^2-2*z; // some non-central polynomial

// find all elements of the centralizer of g:

// of degree <= 2

c = centralizer(g, 2);

c;

7→ c[1]=z

7→ c[2]=xy

inCentralizer(c, g);

7→ 1

// find the element of the lowest degree in the centralizer:

centralizer(g,-1,1);

7→ _[1]=z

// find at least two elements of the centralizer of g:

cc;

204 Singular:Plural Manual

cc = centralizer(g,-1,2);

7→ cc[1]=z

7→ cc[2]=xy

inCentralizer(cc, g);

7→ 1

Section 6.5.37.1 [center], page 202, Section 6.5.37.4 [inCentralizer], page 204

6.5.37.3 inCenter

Procedure from library center.lib (see Section 6.5.37 [center lib], page 201).

Return: integer, 1 if a in the center, 0 otherwise

Purpose: check whether a given element is central

Example:

LIB "center.lib";

ring r=0,(x,y,z),dp;

matrix D[3][3]=0;

D[1,2]=-z;

D[1,3]=2*x;

D[2,3]=-2*y;

ncalgebra(1,D); // this is U(sl_2)

poly p=4*x*y+z^2-2*z;

inCenter(p);

7→ 1

poly f=4*x*y;

inCenter(f);

7→ 0

list l= list(1, p, p^2, p^3);

inCenter(l);

7→ 1

ideal I= p, f;

inCenter(I);

7→ 0

6.5.37.4 inCentralizer

Procedure from library center.lib (see Section 6.5.37 [center lib], page 201).

Return: integer, 1 if a in the centralizer(S), 0 otherwise

Purpose: check whether a given element is centralizing with respect to elements

of S

Example:

LIB "center.lib";

ring r=0,(x,y,z),dp;

matrix D[3][3]=0;

D[1,2]=-z;

ncalgebra(1,D); // the Heisenberg algebra

Chapter 6: Singular:Plural Manual 205

poly f = x^2;

poly a = z; // we know this element if central

poly b = y^2;

inCentralizer(a, f);

7→ 1

inCentralizer(b, f);

7→ 0

list l = list(1, a);

inCentralizer(l, f);

7→ 1

ideal I = a, b;

inCentralizer(I, f);

7→ 0

6.5.37.5 isCartan

Procedure from library center.lib (see Section 6.5.37 [center lib], page 201).

Purpose: check whether f is Cartan’s element

Return: 1 if f is Cartan’s element and 0 otherwise.

Note: f is Cartan’s element <=> ∀g ∈ A,∃α ∈ K such that [f, g] = α ∗ g. <=>

∀vi (variables of A),∃α ∈ K such that [f, vi] = α ∗ vi.

Example:

LIB "center.lib";

ring r=0,(x,y,z),dp;

matrix D[3][3]=0;

D[1,2]=-z;

D[1,3]=2*x;

D[2,3]=-2*y;

ncalgebra(1,D); // this is U(sl_2) with cartan - z

isCartan(z); // yes!

7→ 1

poly p=4*x*y+z^2-2*z;

isCartan(p); // central elements are cartans!

7→ 1

poly f=4*x*y;

isCartan(f); // no way!

7→ 0

isCartan(10 + p + z); // scalar + central + cartan

7→ 1

6.5.37.6 sa reduce

Procedure from library center.lib (see Section 6.5.37 [center lib], page 201).

Purpose: subalgebra reduction of a set of pairwise commuting polynomials.

206 Singular:Plural Manual

6.5.37.7 sa poly reduce

Procedure from library center.lib (see Section 6.5.37 [center lib], page 201).

Purpose: subalgebra reduction of a given polynomial f wrt a set of pairwise com-

muting polynomials.

6.5.38 involut lib

Library: involut.lib

Purpose: Procedures for Computations and Operations with Involutions

Authors: Oleksandr Iena, yena@mathematik.uni-kl.de,

Markus Becker, mbecker@mathematik.uni-kl.de,

Viktor Levandovskyy, levandov@mathematik.uni-kl.de

Theory: Involution is an antiisomorphism of a noncommutative algebra with the

property that applied an involution twice, one gets an identity. In-

volution is linear with respect to the ground field. In this library we

compute linear involutions, distinguishing the case of a diagonal matrix

(such involutions are called homothetic) and a general one.

Support: Forschungsschwerpunkt ’Mathematik und Praxis’ (Project of Dr. E.

Zerz and V. Levandovskyy), Uni Kaiserslautern

Note: This library provides algebraic tools for computations and operations

with algebraic involutions and linear automorphisms of noncommutative

algebras

Procedures:

6.5.38.1 findInvo

Procedure from library involut.lib (see Section 6.5.38 [involut lib], page 206).

Usage: findInvo();

Return: a ring containing a list L of pairs, where

L[i][1] = Groebner Basis of an i-th associated prime,

L[i][2] = matrix, defining a linear map, with entries, reduced with respect

to L[i][1]

Purpose: computed the ideal of linear involutions of the basering

Note: for convenience, the full ideal of relations idJ and the initial matrix with

indeterminates matD are exported in the output ring

Example:

LIB "involut.lib";

def a = makeWeyl(1);

setring a; // this algebra is a first Weyl algebra

def X = findInvo();

Chapter 6: Singular:Plural Manual 207

setring X;

// ring with new variables,

// which correspond to unknown coefficients

L;

7→ [1]:

7→ [1]:

7→ _[1]=a11+a22

7→ _[2]=a12*a21+a22^2-1

7→ [2]:

7→ _[1,1]=-a22

7→ _[1,2]=a12

7→ _[2,1]=a21

7→ _[2,2]=a22

// look at the matrix in the new variables,

// defining the linear involution

print(L[1][2]);

7→ -a22,a12,

7→ a21, a22

L[1][1]; // where new variables obey these relations

7→ _[1]=a11+a22

7→ _[2]=a12*a21+a22^2-1

Section 6.5.38.2 [findInvoDiag], page 207, Section 6.5.38.5 [involution], page 210

6.5.38.2 findInvoDiag

Procedure from library involut.lib (see Section 6.5.38 [involut lib], page 206).

Usage: findInvoDiag();

Return: a ring together with a list of pairs L, where

L[i][1] = Groebner Basis of an i-th associated prime,

L[i][2] = matrix, defining a linear map, with entries, reduced with respect

to L[i][1]

Purpose: compute the ideal of homothetic (diagonal) involutions of the basering

Note: for convenience, the full ideal of relations idJ and the initial matrix with

indeterminates matD are exported in the output ring

Example:

LIB "involut.lib";

def a = makeWeyl(1);

setring a; // this algebra is a first Weyl algebra

def X = findInvoDiag();

setring X; // ring with new variables,

// which correspond to unknown coefficients

// print matrices, defining linear involutions

print(L[1][2]); // a first matrix: we see it is constant

7→ -1,0,

7→ 0, 1

208 Singular:Plural Manual

print(L[2][2]); // a second possible matrix; it is constant too

7→ 1,0,

7→ 0,-1

L; // let us take a look on the whole list

7→ [1]:

7→ [1]:

7→ _[1]=a22-1

7→ _[2]=a11+1

7→ [2]:

7→ _[1,1]=-1

7→ _[1,2]=0

7→ _[2,1]=0

7→ _[2,2]=1

7→ [2]:

7→ [1]:

7→ _[1]=a22+1

7→ _[2]=a11-1

7→ [2]:

7→ _[1,1]=1

7→ _[1,2]=0

7→ _[2,1]=0

7→ _[2,2]=-1

Section 6.5.38.1 [findInvo], page 206, Section 6.5.38.5 [involution], page 210

6.5.38.3 findAuto

Procedure from library involut.lib (see Section 6.5.38 [involut lib], page 206).

Usage: findAuto(n); n an integer

Return: a ring together with a list of pairs L, where

L[i][1] = Groebner Basis of an i-th associated prime,

L[i][2] = matrix, defining a linear map, with entries, reduced with respect

to L[i][1]

Purpose: computes the ideal of linear automorphisms of the basering, given by a

matrix, n-th power of which gives identity (i.e. unipotent matrix)

Note: if n=0, a matrix, defining an automorphism is not assumed to be unipo-

tent. For convenience, the full ideal of relations idJ and the initial

matrix with indeterminates matD are exported in the output ring

Example:

LIB "involut.lib";

def a = makeWeyl(1);

setring a; // this algebra is a first Weyl algebra

def X = findAuto(2);

setring X; // ring with new variables - unknown coefficients

// look at matrices, defining linear automorphisms:

print(L[1][2]); // a first one: we see it is constant

Chapter 6: Singular:Plural Manual 209

7→ 1,0,

7→ 0,1

print(L[2][2]); // a second possible matrix; it is constant too

7→ -1,0,

7→ 0, -1

L; // let us take a look on the whole list

7→ [1]:

7→ [1]:

7→ _[1]=a22-1

7→ _[2]=a21

7→ _[3]=a12

7→ _[4]=a11-1

7→ [2]:

7→ _[1,1]=1

7→ _[1,2]=0

7→ _[2,1]=0

7→ _[2,2]=1

7→ [2]:

7→ [1]:

7→ _[1]=a22+1

7→ _[2]=a21

7→ _[3]=a12

7→ _[4]=a11+1

7→ [2]:

7→ _[1,1]=-1

7→ _[1,2]=0

7→ _[2,1]=0

7→ _[2,2]=-1

Section 6.5.38.1 [findInvo], page 206

6.5.38.4 ncdetection

Procedure from library involut.lib (see Section 6.5.38 [involut lib], page 206).

Usage: ncdetection();

Return: ideal, representing an involution map

Purpose: compute classical involutions (i.e. acting rather on operators than on

variables) for some particular noncommutative algebras

Assume: the procedure is aimed at noncommutative algebras with differential,

shift or advance operators arising in Control Theory. It has to be exe-

cuted in the ring.

Example:

LIB "involut.lib";

ring r=0,(x,y,z,D(1..3)),dp;

matrix D[6][6];

D[1,4]=1; D[2,5]=1; D[3,6]=1;

210 Singular:Plural Manual

ncalgebra(1,D);

ncdetection();

7→ _[1]=x

7→ _[2]=y

7→ _[3]=z

7→ _[4]=-D(1)

7→ _[5]=-D(2)

7→ _[6]=-D(3)

kill r;

//--

ring r=0,(x,S),dp;

ncalgebra(1,-S);

ncdetection();

7→ _[1]=-x

7→ _[2]=S

kill r;

//--

ring r=0,(x,D(1),S),dp;

matrix D[3][3];

D[1,2]=1; D[1,3]=-S;

ncalgebra(1,D);

ncdetection();

7→ _[1]=-x

7→ _[2]=D(1)

7→ _[3]=S

6.5.38.5 involution

Procedure from library involut.lib (see Section 6.5.38 [involut lib], page 206).

Usage: involution(m, theta); m is a poly/vector/ideal/matrix/module, theta is

a map

Return: object of the same type as m

Purpose: applies the involution, presented by theta to the object m

Theory: for an involution theta and two polynomials a,b from the algebra,

theta(ab) = theta(b) theta(a); theta is linear with respect to the ground

field

Example:

LIB "involut.lib";

ring r = 0,(x,d),dp;

ncalgebra(1,1); // Weyl-Algebra

map F = r,x,-d;

poly f = x*d^2+d;

poly If = involution(f,F);

f-If;

7→ 0

poly g = x^2*d+2*x*d+3*x+7*d;

Chapter 6: Singular:Plural Manual 211

poly tg = -d*x^2-2*d*x+3*x-7*d;

poly Ig = involution(g,F);

tg-Ig;

7→ 0

ideal I = f,g;

ideal II = involution(I,F);

II;

7→ II[1]=xd2+d

7→ II[2]=-x2d-2xd+x-7d-2

I - involution(II,F);

7→ _[1,1]=0

7→ _[1,2]=0

module M = [f,g,0],[g,0,x^2*d];

module IM = involution(M,F);

print(IM);

7→ xd2+d, -x2d-2xd+x-7d-2,

7→ -x2d-2xd+x-7d-2,0,

7→ 0, -x2d-2x

print(M - involution(IM,F));

7→ 0,0,

7→ 0,0,

7→ 0,0

6.5.39 gkdim lib

Library: GKdim.lib

Purpose: Procedures for calculating the Gelfand-Kirillov dimension

Authors: Lobillo, F.J., jlobillo@ugr.es

Rabelo, C., crabelo@ugr.es

Support: ’Metodos algebraicos y efectivos en grupos cuanticos’, BFM2001-3141,

MCYT, Jose Gomez-Torrecillas (Main researcher).

Procedures:

6.5.39.1 GKdim

Procedure from library gkdim.lib (see Section 6.5.39 [gkdim lib], page 211).

Usage: GKdim(L); L is a left ideal/module/matrix

Return: int

Purpose: compute the Gelfand-Kirillov dimension of the factor-module, whose

presentation is given by L

Note: if the factor-module is zero, -1 is returned

Example:

212 Singular:Plural Manual

LIB "gkdim.lib";

ring r = 0,(x,y,z),Dp;

matrix C[3][3]=0,1,1,0,0,-1,0,0,0;

matrix D[3][3]=0,0,0,0,0,x;

ncalgebra(C,D);

r;

7→ // characteristic : 0

7→ // number of vars : 3

7→ // block 1 : ordering Dp

7→ // : names x y z

7→ // block 2 : ordering C

7→ // noncommutative relations:

7→ // zy=-yz+x

ideal I=x;

GKdim(I);

7→ 2

ideal J=x2,y;

GKdim(J);

7→ 1

module M=[x2,y,1],[x,y2,0];

GKdim(M);

7→ 3

ideal A = x,y,z;

GKdim(A);

7→ 0

ideal B = 1;

GKdim(B);

7→ -1

6.5.40 ncall lib

The library ncall.lib provides a convenient way to load all libraries, featuring

noncommutative algorithms of the Singular distribution.

Example:

option(loadLib);

LIB "ncall.lib";

7→ // ** loaded ncall.lib (1.4,2005/06/07)

7→ // ** loaded involut.lib (1.8,2005/06/10)

7→ // ** loaded primdec.lib (1.105,2005/05/06)

7→ // ** loaded triang.lib (1.9,2005/05/10)

7→ // ** loaded matrix.lib (1.30,2005/05/06)

7→ // ** loaded ring.lib (1.26,2005/05/18)

7→ // ** loaded inout.lib (1.25,2005/05/10)

7→ // ** loaded random.lib (1.16,2001/01/16)

7→ // ** loaded elim.lib (1.18,2005/05/18)

7→ // ** loaded general.lib (1.47,2005/05/10)

7→ // ** loaded poly.lib (1.37,2005/05/18)

7→ // ** loaded qmatrix.lib (1.12,2005/05/18)

Chapter 6: Singular:Plural Manual 213

7→ // ** loaded gkdim.lib (1.9,2005/05/09)

7→ // ** loaded nctools.lib (1.17,2005/08/12)

7→ // ** loaded ncdecomp.lib (1.11,2005/05/18)

7→ // ** loaded ncalg.lib (1.15,2005/08/12)

7→ // ** loaded toric.lib (1.11,2001/02/06)

7→ // ** loaded center.lib (1.16,2005/05/18)

6.5.41 ncalg lib

Library: ncalg.lib

Purpose: Definitions of important GR-algebras

Authors: Viktor Levandovskyy, levandov@mathematik.uni-kl.de,

Oleksandr Motsak, motsak@mathematik.uni-kl.de.

Conventions:

This library provides pre-defined important noncommutative algebras.

For universal enveloping algebras of finite dimensional Lie algebras sl n,

gl n and g 2 there are functions makeUsl, makeUgl and makeUg2.

There are quantized enveloping algebras U q(sl 2) and U q(sl 3) (via

functions makeQsl2, makeQsl3)

and non-standard quantum deformation of so 3, accessible via makeQso3

function.

Procedures:

6.5.41.1 makeUsl

Procedure from library ncalg.lib (see Section 6.5.41 [ncalg lib], page 213).

Usage: makeUsl(n,[p]); n an integer, n>1; p an optional integer (field character-

istic)

Return: ring

Purpose: set up the U(sl n) in the variables (x(i),y(i),h(i) | i=1..n+1) over the

field of char p

Note: activate this ring with the setring command

This presentation of U(sl n) is the standard one, i.e. positive resp.

negative roots are denoted by x(i) resp. y(i) and the Cartan elements

are denoted by h(i).

The variables are ordered as x(1),...x(n),y(1),...,y(n),h(1),...h(n).

Example:

LIB "ncalg.lib";

def a = makeUsl(3);

setring a;

a;

7→ // characteristic : 0

7→ // number of vars : 8

214 Singular:Plural Manual

7→ // block 1: ordering dp

7→ // : names x(1) x(2) x(3) y(1) y(2) y(3) h(1) h(2)

7→ // block 2: ordering C

7→ // noncommutative relations:

7→ // x(2)x(1)=x(1)*x(2)-x(3)

7→ // y(1)x(1)=x(1)*y(1)-h(1)

7→ // y(3)x(1)=x(1)*y(3)+y(2)

7→ // h(1)x(1)=x(1)*h(1)+2*x(1)

7→ // h(2)x(1)=x(1)*h(2)-x(1)

7→ // y(2)x(2)=x(2)*y(2)-h(2)

7→ // y(3)x(2)=x(2)*y(3)-y(1)

7→ // h(1)x(2)=x(2)*h(1)-x(2)

7→ // h(2)x(2)=x(2)*h(2)+2*x(2)

7→ // y(1)x(3)=x(3)*y(1)+x(2)

7→ // y(2)x(3)=x(3)*y(2)-x(1)

7→ // y(3)x(3)=x(3)*y(3)-h(1)-h(2)

7→ // h(1)x(3)=x(3)*h(1)+x(3)

7→ // h(2)x(3)=x(3)*h(2)+x(3)

7→ // y(2)y(1)=y(1)*y(2)+y(3)

7→ // h(1)y(1)=y(1)*h(1)-2*y(1)

7→ // h(2)y(1)=y(1)*h(2)+y(1)

7→ // h(1)y(2)=y(2)*h(1)+y(2)

7→ // h(2)y(2)=y(2)*h(2)-2*y(2)

7→ // h(1)y(3)=y(3)*h(1)-y(3)

7→ // h(2)y(3)=y(3)*h(2)-y(3)

Section 6.5.41.2 [makeUsl2], page 214, Section 6.5.41.3 [makeUg2], page 215, Sec-

tion 6.5.41.4 [makeUgl], page 216, Section 6.5.41.8 [makeQsl3], page 220, Sec-

tion 6.5.41.5 [makeQso3], page 217

6.5.41.2 makeUsl2

Procedure from library ncalg.lib (see Section 6.5.41 [ncalg lib], page 213).

Usage: makeUsl2([p]), p an optional integer (field characteristic)

Return: ring

Purpose: set up the U(sl 2) in the variables e,f,h over the field of char p

Note: activate this ring with the setring command

Example:

LIB "ncalg.lib";

def a=makeUsl2();

setring a;

a;

7→ // characteristic : 0

7→ // number of vars : 3

7→ // block 1 : ordering dp

7→ // : names e f h

Chapter 6: Singular:Plural Manual 215

7→ // block 2 : ordering C

7→ // noncommutative relations:

7→ // fe=ef-h

7→ // he=eh+2e

7→ // hf=fh-2f

Section 6.5.41.1 [makeUsl], page 213, Section 6.5.41.3 [makeUg2], page 215, Sec-

tion 6.5.41.4 [makeUgl], page 216

6.5.41.3 makeUg2

Procedure from library ncalg.lib (see Section 6.5.41 [ncalg lib], page 213).

Usage: makeUg2([p]), p an optional int (field characteristic)

Return: ring

Purpose: set up the U(g 2) in variables (x(i),y(i),Ha,Hb) for i=1..6 over the field

of char p

Note: activate this ring with the setring command

the variables are ordered as x(1),...x(6),y(1),...,y(6),Ha,Hb.

Example:

LIB "ncalg.lib";

def a = makeUg2();

setring a; a;

7→ // characteristic : 0

7→ // number of vars : 14

7→ // block 1 : ordering dp

7→ // : names x(1) x(2) x(3) x(4) x(5) x(6) \

7→ y(1) y(2) y(3) y(4) y(5) y(6) Ha Hb

7→ // block 2 : ordering C

7→ // noncommutative relations:

7→ // x(2)x(1)=x(1)*x(2)-x(3)

7→ // x(3)x(1)=x(1)*x(3)-2*x(4)

7→ // x(4)x(1)=x(1)*x(4)+3*x(5)

7→ // y(1)x(1)=x(1)*y(1)-Ha

7→ // y(3)x(1)=x(1)*y(3)+3*y(2)

7→ // y(4)x(1)=x(1)*y(4)+2*y(3)

7→ // y(5)x(1)=x(1)*y(5)-y(4)

7→ // Hax(1)=x(1)*Ha+2*x(1)

7→ // Hbx(1)=x(1)*Hb-x(1)

7→ // x(5)x(2)=x(2)*x(5)+x(6)

7→ // y(2)x(2)=x(2)*y(2)-Hb

7→ // y(3)x(2)=x(2)*y(3)-y(1)

7→ // y(6)x(2)=x(2)*y(6)-y(5)

7→ // Hax(2)=x(2)*Ha-3*x(2)

7→ // Hbx(2)=x(2)*Hb+2*x(2)

7→ // x(4)x(3)=x(3)*x(4)+3*x(6)

7→ // y(1)x(3)=x(3)*y(1)+3*x(2)

216 Singular:Plural Manual

7→ // y(2)x(3)=x(3)*y(2)-x(1)

7→ // y(3)x(3)=x(3)*y(3)-Ha-3*Hb

7→ // y(4)x(3)=x(3)*y(4)-2*y(1)

7→ // y(6)x(3)=x(3)*y(6)-y(4)

7→ // Hax(3)=x(3)*Ha-x(3)

7→ // Hbx(3)=x(3)*Hb+x(3)

7→ // y(1)x(4)=x(4)*y(1)+2*x(3)

7→ // y(3)x(4)=x(4)*y(3)-2*x(1)

7→ // y(4)x(4)=x(4)*y(4)-2*Ha-3*Hb

7→ // y(5)x(4)=x(4)*y(5)+y(1)

7→ // y(6)x(4)=x(4)*y(6)+y(3)

7→ // Hax(4)=x(4)*Ha+x(4)

7→ // y(1)x(5)=x(5)*y(1)-x(4)

7→ // y(4)x(5)=x(5)*y(4)+x(1)

7→ // y(5)x(5)=x(5)*y(5)-Ha-Hb

7→ // y(6)x(5)=x(5)*y(6)+y(2)

7→ // Hax(5)=x(5)*Ha+3*x(5)

7→ // Hbx(5)=x(5)*Hb-x(5)

7→ // y(2)x(6)=x(6)*y(2)-x(5)

7→ // y(3)x(6)=x(6)*y(3)-x(4)

7→ // y(4)x(6)=x(6)*y(4)+x(3)

7→ // y(5)x(6)=x(6)*y(5)+x(2)

7→ // y(6)x(6)=x(6)*y(6)-Ha-2*Hb

7→ // Hbx(6)=x(6)*Hb+x(6)

7→ // y(2)y(1)=y(1)*y(2)+y(3)

7→ // y(3)y(1)=y(1)*y(3)+2*y(4)

7→ // y(4)y(1)=y(1)*y(4)-3*y(5)

7→ // Hay(1)=y(1)*Ha-2*y(1)

7→ // Hby(1)=y(1)*Hb+y(1)

7→ // y(5)y(2)=y(2)*y(5)-y(6)

7→ // Hay(2)=y(2)*Ha+3*y(2)

7→ // Hby(2)=y(2)*Hb-2*y(2)

7→ // y(4)y(3)=y(3)*y(4)-3*y(6)

7→ // Hay(3)=y(3)*Ha+y(3)

7→ // Hby(3)=y(3)*Hb-y(3)

7→ // Hay(4)=y(4)*Ha-y(4)

7→ // Hay(5)=y(5)*Ha-3*y(5)

7→ // Hby(5)=y(5)*Hb+y(5)

7→ // Hby(6)=y(6)*Hb-y(6)

Section 6.5.41.1 [makeUsl], page 213, Section 6.5.41.4 [makeUgl], page 216

6.5.41.4 makeUgl

Procedure from library ncalg.lib (see Section 6.5.41 [ncalg lib], page 213).

Usage: makeUgl(n,[p]); n an int, n>1; p an optional int (field characteristic)

Return: ring

Chapter 6: Singular:Plural Manual 217

Purpose: set up the U(gl n) in the (e ij (1<i,j<n)) presentation (where e ij corre-

sponds to a matrix with 1 at i,j only) over the field of char p

Note: activate this ring with the setring command

the variables are ordered as e 12,e 13,...,e 1n,e 21,...,e nn.

Example:

LIB "ncalg.lib";

def a=makeUgl(3);

setring a; a;

7→ // characteristic : 0

7→ // number of vars : 9

7→ // block 1 : ordering dp

7→ // : names e_1_1 e_1_2 e_1_3 e_2_1 e_2_2 \

7→ e_2_3 e_3_1 e_3_2 e_3_3

7→ // block 2 : ordering C

7→ // noncommutative relations:

7→ // e_1_2e_1_1=e_1_1*e_1_2-e_1_2

7→ // e_1_3e_1_1=e_1_1*e_1_3-e_1_3

7→ // e_2_1e_1_1=e_1_1*e_2_1+e_2_1

7→ // e_3_1e_1_1=e_1_1*e_3_1+e_3_1

7→ // e_2_1e_1_2=e_1_2*e_2_1-e_1_1+e_2_2

7→ // e_2_2e_1_2=e_1_2*e_2_2-e_1_2

7→ // e_2_3e_1_2=e_1_2*e_2_3-e_1_3

7→ // e_3_1e_1_2=e_1_2*e_3_1+e_3_2

7→ // e_2_1e_1_3=e_1_3*e_2_1+e_2_3

7→ // e_3_1e_1_3=e_1_3*e_3_1-e_1_1+e_3_3

7→ // e_3_2e_1_3=e_1_3*e_3_2-e_1_2

7→ // e_3_3e_1_3=e_1_3*e_3_3-e_1_3

7→ // e_2_2e_2_1=e_2_1*e_2_2+e_2_1

7→ // e_3_2e_2_1=e_2_1*e_3_2+e_3_1

7→ // e_2_3e_2_2=e_2_2*e_2_3-e_2_3

7→ // e_3_2e_2_2=e_2_2*e_3_2+e_3_2

7→ // e_3_1e_2_3=e_2_3*e_3_1-e_2_1

7→ // e_3_2e_2_3=e_2_3*e_3_2-e_2_2+e_3_3

7→ // e_3_3e_2_3=e_2_3*e_3_3-e_2_3

7→ // e_3_3e_3_1=e_3_1*e_3_3+e_3_1

7→ // e_3_3e_3_2=e_3_2*e_3_3+e_3_2

Section 6.5.41.1 [makeUsl], page 213, Section 6.5.41.3 [makeUg2], page 215

6.5.41.5 makeQso3

Procedure from library ncalg.lib (see Section 6.5.41 [ncalg lib], page 213).

Usage: makeQso3([n]), n an optional int

Purpose: set up the U q(so 3) in the presentation of Klimyk; if n is specified, the

quantum parameter Q will be specialized at the (2n)-th root of unity

Return: ring

218 Singular:Plural Manual

Note: activate this ring with the setring command

Example:

LIB "ncalg.lib";

def K = makeQso3(3);

setring K;

K;

7→ // characteristic : 0

7→ // 1 parameter : Q

7→ // minpoly : (Q2-Q+1)

7→ // number of vars : 3

7→ // block 1 : ordering dp

7→ // : names x y z

7→ // block 2 : ordering C

7→ // noncommutative relations:

7→ // yx=(Q-1)*xy+(-Q)*z

7→ // zx=(-Q)*xz+(-Q+1)*y

7→ // zy=(Q-1)*yz+(-Q)*x

Section 6.5.41.1 [makeUsl], page 213, Section 6.5.41.3 [makeUg2], page 215, Sec-

tion 6.5.41.4 [makeUgl], page 216, Section 6.5.41.7 [makeQsl2], page 219, Sec-

tion 6.5.41.8 [makeQsl3], page 220, Section 6.5.41.6 [Qso3Casimir], page 218

6.5.41.6 Qso3Casimir

Procedure from library ncalg.lib (see Section 6.5.41 [ncalg lib], page 213).

Usage: Qso3Casimir(n [,m]), n an integer, m an optional integer

Return: list (of polynomials)

Purpose: compute the Casimir (central) elements of U q(so 3) for the quantum

parameter specialized at the n-th root of unity; if m!=0 is given, poly-

nomials will be normalized

Assume: the basering must be U q(so 3)

Example:

LIB "ncalg.lib";

def R = makeQso3(5);

setring R;

list C = Qso3Casimir(5);

C;

7→ [1]:

7→ 1/5*x5+(1/5Q3-1/5Q2+2/5)*x3+(1/5Q3-1/5Q2+1/5)*x

7→ [2]:

7→ 1/5*y5+(1/5Q3-1/5Q2+2/5)*y3+(1/5Q3-1/5Q2+1/5)*y

7→ [3]:

7→ 1/5*z5+(1/5Q3-1/5Q2+2/5)*z3+(1/5Q3-1/5Q2+1/5)*z

list Cnorm = Qso3Casimir(5,1);

Cnorm;

7→ [1]:

Chapter 6: Singular:Plural Manual 219

7→ x5+(Q3-Q2+2)*x3+(Q3-Q2+1)*x

7→ [2]:

7→ y5+(Q3-Q2+2)*y3+(Q3-Q2+1)*y

7→ [3]:

7→ z5+(Q3-Q2+2)*z3+(Q3-Q2+1)*z

Section 6.5.41.5 [makeQso3], page 217

6.5.41.7 makeQsl2

Procedure from library ncalg.lib (see Section 6.5.41 [ncalg lib], page 213).

Usage: makeQsl2([n]), n an optional int

Return: ring

Purpose: define the U q(sl 2) as a factor-ring of a ring V q(sl 2) modulo the ideal

Qideal

Note: the output consists of a ring, presenting V q(sl 2) together with the

ideal called Qideal in this ring

activate this ring with the setring command

in order to create the U q(sl 2) from the output, execute the command

like qring Usl2q = Qideal;

If n is specified, the quantum parameter q will be specialized at the n-th

root of unity

Example:

LIB "ncalg.lib";

def A = makeQsl2(3);

setring A;

Qideal;

7→ Qideal[1]=Ke*Kf-1

qring Usl2q = Qideal;

Usl2q;

7→ // characteristic : 0

7→ // 1 parameter : q

7→ // minpoly : (q^2+q+1)

7→ // number of vars : 4

7→ // block 1 : ordering dp

7→ // : names E F Ke Kf

7→ // block 2 : ordering C

7→ // noncommutative relations:

7→ // FE=E*F+(2/3*q+1/3)*Ke+(-2/3*q-1/3)*Kf

7→ // KeE=(-q-1)*E*Ke

7→ // KfE=(q)*E*Kf

7→ // KeF=(q)*F*Ke

7→ // KfF=(-q-1)*F*Kf

7→ // quotient ring from ideal

7→ _[1]=Ke*Kf-1

220 Singular:Plural Manual

Section 6.5.41.1 [makeUsl], page 213, Section 6.5.41.8 [makeQsl3], page 220, Sec-

tion 6.5.41.5 [makeQso3], page 217

6.5.41.8 makeQsl3

Procedure from library ncalg.lib (see Section 6.5.41 [ncalg lib], page 213).

Usage: makeQsl3([n]), n an optional int

Return: ring

Purpose: define the U q(sl 3) as a factor-ring of a ring V q(sl 3) modulo the ideal

Qideal

Note: the output consists of a ring, presenting V q(sl 3) together with the

ideal called Qideal in this ring

activate this ring with the setring command

in order to create the U q(sl 3) from the output, execute the command

like qring Usl3q = Qideal;

If n is specified, the quantum parameter q will be specialized at the n-th

root of unity

Example:

LIB "ncalg.lib";

def B = makeQsl3(5);

setring B;

qring Usl3q = Qideal;

Usl3q;

7→ // characteristic : 0

7→ // 1 parameter : q

7→ // minpoly : (q^4+q^3+q^2+q+1)

7→ // number of vars : 10

7→ // block 1 : ordering wp

7→ // : names f12 f13 f23 k1 k2 l1 l2 e12 e13 e23

7→ // : weights 2 3 2 1 1 1 1 2 3 2

7→ // block 2 : ordering C

7→ // noncommutative relations:

7→ // f13f12=(q^3)*f12*f13

7→ // f23f12=(q^2)*f12*f23+(-q)*f13

7→ // k1f12=(q^3)*f12*k1

7→ // k2f12=(q)*f12*k2

7→ // l1f12=(q^2)*f12*l1

7→ // l2f12=(-q^3-q^2-q-1)*f12*l2

7→ // e12f12=f12*e12+(1/5*q^3-3/5*q^2-2/5*q-1/5)*k1^2+ \

7→ (-1/5*q^3+3/5*q^2+2/5*q+1/5)*l1^2

7→ // e13f12=f12*e13+(q^3+q^2+q+1)*l1^2*e23

7→ // f23f13=(q^3)*f13*f23

7→ // k1f13=(-q^3-q^2-q-1)*f13*k1

7→ // k2f13=(-q^3-q^2-q-1)*f13*k2

7→ // l1f13=(q)*f13*l1

Chapter 6: Singular:Plural Manual 221

7→ // l2f13=(q)*f13*l2

7→ // e12f13=f13*e12+(q)*f23*k1^2

7→ // e13f13=f13*e13+(-1/5*q^3+3/5*q^2+2/5*q+1/5)*k1^2*k2^2+ \

7→ (1/5*q^3-3/5*q^2-2/5*q-1/5)*l1^2*l2^2

7→ // e23f13=f13*e23+(q^3+q^2+q+1)*f12*l2^2

7→ // k1f23=(q)*f23*k1

7→ // k2f23=(q^3)*f23*k2

7→ // l1f23=(-q^3-q^2-q-1)*f23*l1

7→ // l2f23=(q^2)*f23*l2

7→ // e13f23=f23*e13+(q)*k2^2*e12

7→ // e23f23=f23*e23+(1/5*q^3-3/5*q^2-2/5*q-1/5)*k2^2+ \

7→ (-1/5*q^3+3/5*q^2+2/5*q+1/5)*l2^2

7→ // e12k1=(q^3)*k1*e12

7→ // e13k1=(-q^3-q^2-q-1)*k1*e13

7→ // e23k1=(q)*k1*e23

7→ // e12k2=(q)*k2*e12

7→ // e13k2=(-q^3-q^2-q-1)*k2*e13

7→ // e23k2=(q^3)*k2*e23

7→ // e12l1=(q^2)*l1*e12

7→ // e13l1=(q)*l1*e13

7→ // e23l1=(-q^3-q^2-q-1)*l1*e23

7→ // e12l2=(-q^3-q^2-q-1)*l2*e12

7→ // e13l2=(q)*l2*e13

7→ // e23l2=(q^2)*l2*e23

7→ // e13e12=(q^3)*e12*e13

7→ // e23e12=(q^2)*e12*e23+(-q)*e13

7→ // e23e13=(q^3)*e13*e23

7→ // quotient ring from ideal

7→ _[1]=k2*l2-1

7→ _[2]=k1*l1-1

Section 6.5.41.1 [makeUsl], page 213, Section 6.5.41.7 [makeQsl2], page 219, Sec-

tion 6.5.41.5 [makeQso3], page 217

6.5.41.9 GKZsystem

Procedure from library ncalg.lib (see Section 6.5.41 [ncalg lib], page 213).

Usage: GKZsystem(A, sord, alg, [,v]); A intmat, sord, alg string, v intvec

Return: ring

Purpose: define a ring (Weyl algebra) and create a Gelfand-Kapranov-Zelevinsky

(GKZ) system of equations in a ring from the following data:

A is an intmat, defining the system,

sord is a string with desired term ordering,

alg is a string, saying which algorithm to use (exactly like in toric lib),

v is an optional intvec.

In addition, the ideal called GKZid containing actual equations is calcu-

lated and exported to the ring.

222 Singular:Plural Manual

Note: activate the ring with the setring command. This procedure is elabo-

rated by Oleksandr Yena

Assume: This procedure uses toric lib and therefore inherits its input require-

ments:

possible values for input variable alg are: "ect","pt","blr", "hs", "du".

As for the term ordering, it should be a string sord in Singular format

like "lp","dp", etc.

Please consult the toric lib for allowed orderings and more details.

Example:

LIB "ncalg.lib";

// example 3.1.4 from the [SST] without vector w

intmat A[2][4]=3,2,1,0,0,1,2,3;

print(A);

7→ 3 2 1 0

7→ 0 1 2 3

def D1 = GKZsystem(A,"lp","ect");

setring D1;

D1;

7→ // characteristic : 0

7→ // 2 parameter : b(1) b(2)

7→ // minpoly : 0

7→ // number of vars : 8

7→ // block 1 : ordering lp

7→ // : names x(1) x(2) x(3) x(4) d(1) d(2) d(3) d(4)

7→ // block 2 : ordering C

7→ // noncommutative relations:

7→ // d(1)x(1)=x(1)*d(1)+1

7→ // d(2)x(2)=x(2)*d(2)+1

7→ // d(3)x(3)=x(3)*d(3)+1

7→ // d(4)x(4)=x(4)*d(4)+1

print(GKZid);

7→ 3*x(1)*d(1)+2*x(2)*d(2)+x(3)*d(3)+(-b(1)),

7→ x(2)*d(2)+2*x(3)*d(3)+3*x(4)*d(4)+(-b(2)),

7→ d(2)*d(4)-d(3)^2,

7→ d(1)*d(4)-d(2)*d(3),

7→ d(1)*d(3)-d(2)^2

// now, consider A with the vector w=1,1,1,1

intvec v=1,1,1,1;

def D2 = GKZsystem(A,"lp","blr",v);

setring D2;

print(GKZid);

7→ 3*x(1)*d(1)+2*x(2)*d(2)+x(3)*d(3)+(-b(1)),

7→ x(2)*d(2)+2*x(3)*d(3)+3*x(4)*d(4)+(-b(2)),

7→ d(2)*d(4)-d(3)^2,

7→ d(1)*d(4)-d(2)*d(3),

7→ d(1)*d(3)-d(2)^2

Section D.4.16 [toric lib], page 489

Chapter 6: Singular:Plural Manual 223

6.5.42 ncdecomp lib

Library: ncdecomp.lib

Purpose: Decomposition of a module into its central characters

Authors: Viktor Levandovskyy, levandov@mathematik.uni-kl.de.

Overview: This library presents algorithms for the central character decomposi-

tion of a module, i.e. a decomposition into generalized weight modules

with respect to the center. Based on ideas of O. Khomenko and V.

Levandovskyy (see the article [L2] in the References for details).

Procedures:

6.5.42.1 CentralQuot

Procedure from library ncdecomp.lib (see Section 6.5.42 [ncdecomp lib], page 223).

Usage: CentralQuot(M, G), M a module, G an ideal

Assume: G is an ideal in the center

Return: module

Purpose: compute the central quotient M:G

Theory: for an ideal G of the center of an algebra and a submodule M of A^n,

the central quotient of M by G is defined to be

M:G := { v in A^n | z*v in M, for all z in G }.

Note: the output module is not necessarily given in a Groebner basis

Example:

LIB "ncdecomp.lib";

option(returnSB);

def a = makeUsl2();

setring a;

ideal I = e3,f3,h3-4*h;

I = std(I);

poly C=4*e*f+h^2-2*h;

ideal G = (C-8)*(C-24);

ideal R = CentralQuot(I,G);

R;

7→ R[1]=h

7→ R[2]=f

7→ R[3]=e

Section 6.5.42.2 [CentralSaturation], page 224, Section 6.5.42.3 [CenCharDec],

page 224

224 Singular:Plural Manual

6.5.42.2 CentralSaturation

Procedure from library ncdecomp.lib (see Section 6.5.42 [ncdecomp lib], page 223).

Usage: CentralSaturation(M, T), for a module M and an ideal T

Assume: T is an ideal in the center

Return: module

Purpose: compute the central saturation of M by T, that is M:T^{\infty}, by

repititive application of CentralQuot

Note: the output module is not necessarily a Groebner basis

Example:

LIB "ncdecomp.lib";

option(returnSB);

def a = makeUsl2();

setring a;

ideal I = e3,f3,h3-4*h;

I = std(I);

poly C=4*e*f+h^2-2*h;

ideal G = C*(C-8);

ideal R = CentralSaturation(I,G);

R=std(R);

vdim(R);

7→ 5

R;

7→ R[1]=h

7→ R[2]=ef-6

7→ R[3]=f3

7→ R[4]=e3

Section 6.5.42.1 [CentralQuot], page 223, Section 6.5.42.3 [CenCharDec], page 224

6.5.42.3 CenCharDec

Procedure from library ncdecomp.lib (see Section 6.5.42 [ncdecomp lib], page 223).

Usage: CenCharDec(I, C); I a module, C an ideal

Assume: C consists of generators of the center

Return: a list L, where each entry consists of three records (if a finite decompo-

sition exists)

L[*][1] (’ideal’ type), the central character as the maximal ideal in the

center,

L[*][2] (’module’ type), the Groebner basis of the weight module, corre-

sponding to the character in L[*][1],

L[*][3] (’int’ type) is the vector space dimension of the weight module

(-1 in case of infinite dimension);

Chapter 6: Singular:Plural Manual 225

Purpose: compute a finite decomposition of C into central characters or determine

that there is no finite decomposition

Note: actual decomposition is a sum of L[i][2] above;

some modules have no finite decomposition (in such case one gets warn-

ing message)

Example:

LIB "ncdecomp.lib";

option(returnSB);

def a = makeUsl2(); // U(sl_2) in characteristic 0

setring a;

ideal I = e3,f3,h3-4*h;

I = twostd(I); // two-sided ideal generated by I

vdim(I); // it is finite-dimensional

7→ 10

ideal Cn = 4*e*f+h^2-2*h; // the only central element

list T = CenCharDec(I,Cn);

T;

7→ [1]:

7→ [1]:

7→ _[1]=4ef+h2-2h-8

7→ [2]:

7→ _[1]=h

7→ _[2]=f

7→ _[3]=e

7→ [3]:

7→ 1

7→ [2]:

7→ [1]:

7→ _[1]=4ef+h2-2h

7→ [2]:

7→ _[1]=4ef+h2-2h-8

7→ _[2]=h3-4h

7→ _[3]=fh2-2fh

7→ _[4]=eh2+2eh

7→ _[5]=f2h-2f2

7→ _[6]=e2h+2e2

7→ _[7]=f3

7→ _[8]=e3

7→ [3]:

7→ 9

// consider another example

ideal J = e*f*h;

CenCharDec(J,Cn);

7→ There is no finite decomposition

7→ 0

Section 6.5.42.1 [CentralQuot], page 223, Section 6.5.42.2 [CentralSaturation],

page 224

226 Singular:Plural Manual

6.5.42.4 IntersectWithSub

Procedure from library ncdecomp.lib (see Section 6.5.42 [ncdecomp lib], page 223).

Usage: IntersectWithSub(M,Z), M an ideal, Z an ideal

Assume: Z consists of pairwise commutative elements

Return: ideal, of two-sided generators, not a Groebner basis

Purpose: computes an intersection of M with the subalgebra, generated by Z

Note: usually Z consists of generators of the center

Example:

LIB "ncdecomp.lib";

ring r=(0,a),(e,f,h),Dp;

matrix @d[3][3];

@d[1,2]=-h;

@d[1,3]=2e;

@d[2,3]=-2f;

ncalgebra(1,@d); // parametric U(sl_2)

ideal I = e,h-a;

ideal C;

C[1] = h^2-2*h+4*e*f; // the center of U(sl_2)

ideal X = IntersectWithSub(I,C);

X;

7→ X[1]=4*ef+h2-2*h+(-a2-2a)

ideal G = e*f, h; // the biggest comm. subalgebra of U(sl_2)

ideal Y = IntersectWithSub(I,G);

Y;

7→ Y[1]=h+(-a)

7→ Y[2]=ef+(-a)

6.5.43 nctools lib

Library: nctools.lib

Purpose: General tools for noncommutative algebras

Authors: Levandovskyy V., levandov@mathematik.uni-kl.de,

Lobillo, F.J., jlobillo@ugr.es,

Rabelo, C., crabelo@ugr.es.

Support: DFG (Deutsche Forschungsgesellschaft) and Metodos algebraicos y

efectivos en grupos cuanticos, BFM2001-3141, MCYT, Jose Gomez-

Torrecillas (Main researcher).

Main procedures: Auxiliary procedures:

Chapter 6: Singular:Plural Manual 227

6.5.43.1 Gweights

Procedure from library nctools.lib (see Section 6.5.43 [nctools lib], page 226).

Usage: Gweights(r); r a ring or a square matrix

Return: intvec

Purpose: compute the weight vector for the following G-algebra:

for r itself, if it is of the type ring,

or for a G-algebra, defined by the square polynomial matrix r

Theory: Gweights returns a vector, which must be used to redefine the G-

algebra. If the input is a matrix and the output is the zero vector then

there is not a G-algebra structure associated to these relations with re-

spect to the given variables. Another possibility is to use weightedRing

to obtain directly the G-algebra with the new weighted ordering.

Example:

LIB "nctools.lib";

ring r = (0,q),(a,b,c,d),lp;

matrix C[4][4];

C[1,2]=q; C[1,3]=q; C[1,4]=1; C[2,3]=1; C[2,4]=q; C[3,4]=q;

matrix D[4][4];

D[1,4]=(q-1/q)*b*c;

ncalgebra(C,D);

r;

7→ // characteristic : 0

7→ // 1 parameter : q

7→ // minpoly : 0

7→ // number of vars : 4

7→ // block 1 : ordering lp

7→ // : names a b c d

7→ // block 2 : ordering C

7→ // noncommutative relations:

7→ // ba=(q)*ab

7→ // ca=(q)*ac

7→ // da=ad+(q2-1)/(q)*bc

7→ // db=(q)*bd

7→ // dc=(q)*cd

Gweights(r);

7→ 2,1,1,1

Gweights(D);

7→ 2,1,1,1

Section 6.5.43.2 [weightedRing], page 227

6.5.43.2 weightedRing

Procedure from library nctools.lib (see Section 6.5.43 [nctools lib], page 226).

228 Singular:Plural Manual

Usage: weightedRing(r); r a ring

Return: ring

Purpose: equip the variables of a ring with such weights,that the relations of

new ring (with weighted variables) satisfies the ordering condition for

G-algebras

Note: activate this ring with the "setring" command

Example:

LIB "nctools.lib";

ring r = (0,q),(a,b,c,d),lp;

matrix C[4][4];

C[1,2]=q; C[1,3]=q; C[1,4]=1; C[2,3]=1; C[2,4]=q; C[3,4]=q;

matrix D[4][4];

D[1,4]=(q-1/q)*b*c;

ncalgebra(C,D);

r;

7→ // characteristic : 0

7→ // 1 parameter : q

7→ // minpoly : 0

7→ // number of vars : 4

7→ // block 1 : ordering lp

7→ // : names a b c d

7→ // block 2 : ordering C

7→ // noncommutative relations:

7→ // ba=(q)*ab

7→ // ca=(q)*ac

7→ // da=ad+(q2-1)/(q)*bc

7→ // db=(q)*bd

7→ // dc=(q)*cd

def t=weightedRing(r);

setring t; t;

7→ // characteristic : 0

7→ // 1 parameter : q

7→ // minpoly : 0

7→ // number of vars : 4

7→ // block 1 : ordering M

7→ // : names a b c d

7→ // : weights 2 1 1 1

7→ // : weights 0 0 0 1

7→ // : weights 0 0 1 0

7→ // : weights 0 1 0 0

7→ // block 2 : ordering C

7→ // noncommutative relations:

7→ // ba=(q)*ab

7→ // ca=(q)*ac

7→ // da=ad+(q2-1)/(q)*bc

7→ // db=(q)*bd

Chapter 6: Singular:Plural Manual 229

7→ // dc=(q)*cd

Section 6.5.43.1 [Gweights], page 227

6.5.43.3 ndcond

Procedure from library nctools.lib (see Section 6.5.43 [nctools lib], page 226).

Usage: ndcond();

Return: ideal

Purpose: compute the non-degeneracy conditions of the basering

Note: if printlevel > 0, the procedure displays intermediate information (by

default, printlevel=0)

Example:

LIB "nctools.lib";

ring r = (0,q1,q2),(x,y,z),dp;

matrix C[3][3];

C[1,2]=q2; C[1,3]=q1; C[2,3]=1;

matrix D[3][3];

D[1,2]=x; D[1,3]=z;

ncalgebra(C,D);

r;

7→ // characteristic : 0

7→ // 2 parameter : q1 q2

7→ // minpoly : 0

7→ // number of vars : 3

7→ // block 1 : ordering dp

7→ // : names x y z

7→ // block 2 : ordering C

7→ // noncommutative relations:

7→ // yx=(q2)*x*y+x

7→ // zx=(q1)*x*z+z

ideal j=ndcond(); // the silent version

j;

7→ j[1]=(-q2+1)*y*z-z

printlevel=1;

ideal i=ndcond(); // the verbose version

7→ Processing degree : 1

7→ 1 . 2 . 3 .

7→ failed: (-q2+1)*y*z-z

7→ done

i;

7→ i[1]=(-q2+1)*y*z-z

6.5.43.4 Weyl

Procedure from library nctools.lib (see Section 6.5.43 [nctools lib], page 226).

230 Singular:Plural Manual

Usage: Weyl([p]); p an optional integer

Return: nothing

Purpose: create a Weyl algebra structure on a basering

Note: suppose the number of variables of a basering is 2k.

(if this number is odd, an error message will be returned)

by default, the procedure treats first k variables as coordinates x i and

the last k as differentials d i

if nonzero p is given, the procedure treats 2k variables of a basering

as k pairs (x i,d i), i.e. variables with odd numbers are treated as

coordinates and with even numbers as differentials

Example:

LIB "nctools.lib";

ring A1=0,(x(1..2),d(1..2)),dp;

Weyl();

A1;

7→ // characteristic : 0

7→ // number of vars : 4

7→ // block 1 : ordering dp

7→ // : names x(1) x(2) d(1) d(2)

7→ // block 2 : ordering C

7→ // noncommutative relations:

7→ // d(1)x(1)=x(1)*d(1)+1

7→ // d(2)x(2)=x(2)*d(2)+1

kill A1;

ring B1=0,(x1,d1,x2,d2),dp;

Weyl(1);

B1;

7→ // characteristic : 0

7→ // number of vars : 4

7→ // block 1 : ordering dp

7→ // : names x1 d1 x2 d2

7→ // block 2 : ordering C

7→ // noncommutative relations:

7→ // d1x1=x1*d1+1

7→ // d2x2=x2*d2+1

Section 6.5.43.5 [makeWeyl], page 230

6.5.43.5 makeWeyl

Procedure from library nctools.lib (see Section 6.5.43 [nctools lib], page 226).

Usage: makeWeyl(n,[p]); n an integer, n>0; p an optional integer (field charac-

teristic)

Return: ring

Purpose: create an n-th Weyl algebra

Chapter 6: Singular:Plural Manual 231

Note: activate this ring with the "setring" command.

The presentation of an n-th Weyl algebra is classical:

D(i)x(i)=x(i)D(i)+1,

where x(i) correspond to coordinates and D(i) to partial differentiations,

i=1,...,n.

Example:

LIB "nctools.lib";

def a = makeWeyl(3);

setring a;

a;

7→ // characteristic : 0

7→ // number of vars : 6

7→ // block 1 : ordering dp

7→ // : names x(1) x(2) x(3) D(1) D(2) D(3)

7→ // block 2 : ordering C

7→ // noncommutative relations:

7→ // D(1)x(1)=x(1)*D(1)+1

7→ // D(2)x(2)=x(2)*D(2)+1

7→ // D(3)x(3)=x(3)*D(3)+1

Section 6.5.43.4 [Weyl], page 229

6.5.43.6 makeHeisenberg

Procedure from library nctools.lib (see Section 6.5.43 [nctools lib], page 226).

Usage: makeHeisenberg(n, [p,d]); int n (setting 2n+1 variables), optional int p

(field characteristic), optional int d (power of h in the commutator)

Return: nothing

Purpose: create an n-th Heisenberg algebra in the variables

x(1),y(1),...,x(n),y(n),h

Note: activate this ring with the "setring" command

Example:

LIB "nctools.lib";

def a = makeHeisenberg(2);

setring a; a;

7→ // characteristic : 0

7→ // number of vars : 5

7→ // block 1 : ordering lp

7→ // : names x(1) x(2) y(1) y(2) h

7→ // block 2 : ordering C

7→ // noncommutative relations:

7→ // y(1)x(1)=x(1)*y(1)+h

7→ // y(2)x(2)=x(2)*y(2)+h

def H3 = makeHeisenberg(3, 7, 2);

setring H3; H3;

232 Singular:Plural Manual

7→ // characteristic : 7

7→ // number of vars : 7

7→ // block 1 : ordering lp

7→ // : names x(1) x(2) x(3) y(1) y(2) y(3) h

7→ // block 2 : ordering C

7→ // noncommutative relations:

7→ // y(1)x(1)=x(1)*y(1)+h^2

7→ // y(2)x(2)=x(2)*y(2)+h^2

7→ // y(3)x(3)=x(3)*y(3)+h^2

Section 6.5.43.5 [makeWeyl], page 230

6.5.43.7 Exterior

Procedure from library nctools.lib (see Section 6.5.43 [nctools lib], page 226).

Usage: Exterior();

Return: qring

Purpose: create the exterior algebra of a basering

Note: activate this qring with the "setring" command

Theory: given a basering, this procedure introduces the anticommutative rela-

tions x(j)x(i)=-x(i)x(j) for all j>i,

moreover, creates a factor algebra modulo the two-sided ideal, generated

by x(i)^2 for all i

Example:

LIB "nctools.lib";

ring R = 0,(x(1..3)),dp;

def ER = Exterior();

setring ER;

ER;

7→ // characteristic : 0

7→ // number of vars : 3

7→ // block 1 : ordering dp

7→ // : names x(1) x(2) x(3)

7→ // block 2 : ordering C

7→ // noncommutative relations:

7→ // x(2)x(1)=-x(1)*x(2)

7→ // x(3)x(1)=-x(1)*x(3)

7→ // x(3)x(2)=-x(2)*x(3)

7→ // quotient ring from ideal

7→ _[1]=x(3)^2

7→ _[2]=x(2)^2

7→ _[3]=x(1)^2

6.5.43.8 findimAlgebra

Procedure from library nctools.lib (see Section 6.5.43 [nctools lib], page 226).

Chapter 6: Singular:Plural Manual 233

Usage: findimAlgebra(M,[r]); M a matrix, r an optional ring

Return: nothing

Purpose: define a finite dimensional algebra structure on a ring

Note: the matrix M is used to define the relations x(j)*x(i) = M[i,j] in the

basering (by default) or in the optional ring r.

The procedure equips the ring with the noncommutative structure.

The procedure exports the ideal (not a two-sided Groebner basis!), called

fdQuot, for further qring definition.

Theory: finite dimensional algebra can be represented as a factor algebra of a G-

algebra modulo certain two-sided ideal. The relations of a f.d. algebra

are thus naturally divided into two groups: firstly, the relations on the

variables of the ring, making it into G-algebra and the rest of them,

which constitute the ideal which will be factored out.

Example:

LIB "nctools.lib";

ring r=(0,a,b),(x(1..3)),dp;

matrix S[3][3];

S[2,3]=a*x(1); S[3,2]=-b*x(1);

findimAlgebra(S);

fdQuot = twostd(fdQuot);

qring Qr = fdQuot;

Qr;

7→ // characteristic : 0

7→ // 2 parameter : a b

7→ // minpoly : 0

7→ // number of vars : 3

7→ // block 1 : ordering dp

7→ // : names x(1) x(2) x(3)

7→ // block 2 : ordering C

7→ // noncommutative relations:

7→ // x(3)x(2)=(-b)/(a)*x(2)*x(3)

7→ // quotient ring from ideal

7→ _[1]=x(3)^2

7→ _[2]=x(2)*x(3)+(-a)*x(1)

7→ _[3]=x(1)*x(3)

7→ _[4]=x(2)^2

7→ _[5]=x(1)*x(2)

7→ _[6]=x(1)^2

6.5.43.9 ncRelations

Procedure from library nctools.lib (see Section 6.5.43 [nctools lib], page 226).

Usage: ncRelations(r); r a ring

234 Singular:Plural Manual

Return: list L with two elements, both elements are of type matrix:

L[1] = matrix of coefficients C,

L[2] = matrix of polynomials D

Purpose: recover the noncommutative relations via matrices C and D from a non-

commutative ring

Example:

LIB "nctools.lib";

ring r = 0,(x,y,z),dp;

matrix C[3][3]=0,1,2,0,0,-1,0,0,0;

print(C);

7→ 0,1,2,

7→ 0,0,-1,

7→ 0,0,0

matrix D[3][3]=0,1,2y,0,0,-2x+y+1;

print(D);

7→ 0,1,2y,

7→ 0,0,-2x+y+1,

7→ 0,0,0

ncalgebra(C,D);

r;

7→ // characteristic : 0

7→ // number of vars : 3

7→ // block 1 : ordering dp

7→ // : names x y z

7→ // block 2 : ordering C

7→ // noncommutative relations:

7→ // yx=xy+1

7→ // zx=2xz+2y

7→ // zy=-yz-2x+y+1

def l=ncRelations(r);

print (l[1]);

7→ 0,1,2,

7→ 0,0,-1,

7→ 0,0,0

print (l[2]);

7→ 0,1,2y,

7→ 0,0,-2x+y+1,

7→ 0,0,0

Section 4.1.114 [ringlist], page 227, Section 6.4.33 [G-algebras], page 195

6.5.43.10 isCentral

Procedure from library nctools.lib (see Section 6.5.43 [nctools lib], page 226).

Usage: isCentral(p); p poly

Return: int, 1 if p commutes with all variables and 0 otherwise

Chapter 6: Singular:Plural Manual 235

Purpose: check whether p is central in a basering (that is, commutes with every

generator of a ring)

Note: if printlevel > 0, the procedure displays intermediate information (by

default, printlevel=0)

Example:

LIB "nctools.lib";

ring r=0,(x,y,z),dp;

matrix D[3][3]=0;

D[1,2]=-z;

D[1,3]=2*x;

D[2,3]=-2*y;

ncalgebra(1,D); // this is U(sl_2)

poly c = 4*x*y+z^2-2*z;

printlevel = 0;

isCentral(c);

7→ 1

poly h = x*c;

printlevel = 1;

isCentral(h);

7→ Noncentral at: y

7→ Noncentral at: z

7→ 0

6.5.43.11 isNC

Procedure from library nctools.lib (see Section 6.5.43 [nctools lib], page 226).

Usage: isNC();

Purpose: check whether a basering is commutative or not

Return: int, 1 if basering is noncommutative and 0 otherwise

Example:

LIB "nctools.lib";

def a = makeWeyl(2);

setring a;

isNC();

7→ 1

kill a;

ring r = 17,(x(1..7)),dp;

isNC();

7→ 0

kill r;

6.5.43.12 UpOneMatrix

Procedure from library nctools.lib (see Section 6.5.43 [nctools lib], page 226).

236 Singular:Plural Manual

Usage: UpOneMatrix(n); n an integer

Return: intmat

Purpose: compute an n x n matrix with 1’s in the whole upper triangle

Note: helpful for setting noncommutative algebras with complicated coefficient

matrices

Example:

LIB "nctools.lib";

ring r = (0,q),(x,y,z),dp;

matrix C = UpOneMatrix(3);

C[1,3] = q;

print(C);

7→ 0,1,(q),

7→ 0,0,1,

7→ 0,0,0

ncalgebra(C,0);

r;

7→ // characteristic : 0

7→ // 1 parameter : q

7→ // minpoly : 0

7→ // number of vars : 3

7→ // block 1 : ordering dp

7→ // : names x y z

7→ // block 2 : ordering C

7→ // noncommutative relations:

7→ // zx=(q)*xz

6.5.44 qmatrix lib

Library: qmatrix.lib

Purpose: Quantum matrices, quantum minors and symmetric groups

Authors: Lobillo, F.J., jlobillo@ugr.es

Rabelo, C., crabelo@ugr.es

Support: ’Metodos algebraicos y efectivos en grupos cuanticos’, BFM2001-3141,

MCYT, Jose Gomez-Torrecillas (Main researcher).

Main procedures: Auxiliary procedures:

6.5.44.1 quantMat

Procedure from library qmatrix.lib (see Section 6.5.44 [qmatrix lib], page 236).

Usage: quantMat(n [, p]); n integer (n>1), p an optional integer

Return: ring (of quantum matrices). If p is specified, the quantum parameter q

will be specialized at the p-th root of unity

Purpose: compute the quantum matrix ring of order n

Chapter 6: Singular:Plural Manual 237

Note: activate this ring with the "setring" command.

The usual representation of the variables in this quantum

algebra is not used because double indexes are not allowed

in the variables. Instead the variables are listed by reading

the rows of the usual matrix representation.

Example:

LIB "qmatrix.lib";

def r = quantMat(2); // generate O_q(M_2) at q generic

setring r; r;

7→ // characteristic : 0

7→ // 1 parameter : q

7→ // minpoly : 0

7→ // number of vars : 4

7→ // block 1 : ordering Dp

7→ // : names y(1) y(2) y(3) y(4)

7→ // block 2 : ordering C

7→ // noncommutative relations:

7→ // y(2)y(1)=1/(q)*y(1)*y(2)

7→ // y(3)y(1)=1/(q)*y(1)*y(3)

7→ // y(4)y(1)=y(1)*y(4)+(-q^2+1)/(q)*y(2)*y(3)

7→ // y(4)y(2)=1/(q)*y(2)*y(4)

7→ // y(4)y(3)=1/(q)*y(3)*y(4)

kill r;

def r = quantMat(2,5); // generate O_q(M_2) at q^5=1

setring r; r;

7→ // characteristic : 0

7→ // 1 parameter : q

7→ // minpoly : (q^4+q^3+q^2+q+1)

7→ // number of vars : 4

7→ // block 1 : ordering Dp

7→ // : names y(1) y(2) y(3) y(4)

7→ // block 2 : ordering C

7→ // noncommutative relations:

7→ // y(2)y(1)=(-q^3-q^2-q-1)*y(1)*y(2)

7→ // y(3)y(1)=(-q^3-q^2-q-1)*y(1)*y(3)

7→ // y(4)y(1)=y(1)*y(4)+(-q^3-q^2-2*q-1)*y(2)*y(3)

7→ // y(4)y(2)=(-q^3-q^2-q-1)*y(2)*y(4)

7→ // y(4)y(3)=(-q^3-q^2-q-1)*y(3)*y(4)

Section 6.5.44.2 [qminor], page 237

6.5.44.2 qminor

Procedure from library qmatrix.lib (see Section 6.5.44 [qmatrix lib], page 236).

Usage: qminor(I,J,n); I,J intvec, n int

Return: poly, the quantum minor

238 Singular:Plural Manual

Assume: I is the ordered list of the rows to consider in the minor,

J is the ordered list of the columns to consider in the minor,

I and J must have the same number of elements,

n is the order of the quantum matrix algebra you are working with

(quantMat(n)).

Example:

LIB "qmatrix.lib";

def r = quantMat(3); // let r be a quantum matrix of order 3

setring r;

intvec u = 1,2;

intvec v = 2,3;

intvec w = 1,2,3;

qminor(w,w,3);

7→ y(1)*y(5)*y(9)+(-q)*y(1)*y(6)*y(8)+(-q)*y(2)*y(4)*y(9)+ \

7→ (q^2)*y(2)*y(6)*y(7)+(q^2)*y(3)*y(4)*y(8)+(-q^3)*y(3)*y(5)*y(7)

qminor(u,v,3);

7→ y(2)*y(6)+(-q)*y(3)*y(5)

qminor(v,u,3);

7→ y(4)*y(8)+(-q)*y(5)*y(7)

qminor(u,u,3);

7→ y(1)*y(5)+(-q)*y(2)*y(4)

Section 6.5.44.1 [quantMat], page 236

6.5.44.3 SymGroup

Procedure from library qmatrix.lib (see Section 6.5.44 [qmatrix lib], page 236).

Usage: SymGroup(n); n an integer (positive)

Return: intmat

Purpose: represent the symmetric group S(n) via integer vectors (permutations)

Note: each row of the output integer matrix is an element of S(n)

Example:

LIB "qmatrix.lib";

// "S(3)={(1,2,3),(1,3,2),(3,1,2),(2,1,3),(2,3,1),(3,2,1)}";

SymGroup(3);

7→ 1,2,3,

7→ 1,3,2,

7→ 3,1,2,

7→ 2,1,3,

7→ 2,3,1,

7→ 3,2,1

Section 6.5.44.5 [LengthSym], page 239, Section 6.5.44.4 [LengthSymElement],

page 239

Chapter 6: Singular:Plural Manual 239

6.5.44.4 LengthSymElement

Procedure from library qmatrix.lib (see Section 6.5.44 [qmatrix lib], page 236).

Usage: LengthSymElement(v); v intvec

Return: int

Purpose: determine the length of v

Assume: v represents an element of S(n); otherwise the output may have no sense

Example:

LIB "qmatrix.lib";

intvec v=1,3,4,2,8,9,6,5,7,10;

LengthSymElement(v);

7→ 9

Section 6.5.44.3 [SymGroup], page 238, Section 6.5.44.5 [LengthSym], page 239

6.5.44.5 LengthSym

Procedure from library qmatrix.lib (see Section 6.5.44 [qmatrix lib], page 236).

Usage: LengthSym(M); M an intmat

Return: intvec

Purpose: determine a vector, where the i-th element is the length of the i-th row

of M

Assume: M represents a subset of S(n) (each row must be an element of S(n));

otherwise, the output may have no sense

Example:

LIB "qmatrix.lib";

def M = SymGroup(3); M;

7→ 1,2,3,

7→ 1,3,2,

7→ 3,1,2,

7→ 2,1,3,

7→ 2,3,1,

7→ 3,2,1

LengthSym(M);

7→ 0,1,2,1,2,3

Section 6.5.44.3 [SymGroup], page 238, Section 6.5.44.4 [LengthSymElement],

page 239

240 Singular:Plural Manual

A.6 Noncommutative Algebra: Examples

A.6.1 Left and two-sided Groebner bases

For a set of polynomials (resp. vectors) S in a noncommutative G-algebra, Singu-

lar:Plural provides two algorithms for computing Groebner bases.

The command std computes a left Groebner basis of a left module, generated by the

set S (see Section 6.3.28 [std (plural)], page 191). The command twostd computes

a two-sided Groebner basis (which is in particular also a left Groebner basis) of a

two-sided ideal, generated by the set S (see Section 6.3.31 [twostd], page 193).

In the example below, we consider a particular set S in the algebra A := U(sl2) with

the degree reverse lexicographic ordering. We compute a left Groebner basis L of

the left ideal generated by S and a two-sided Groebner basis T of the two-sided ideal

generated by S.

Then, we read off the information on the vector space dimension of the factor

modules A/L and A/T using the command vdim (see Section 6.3.32 [vdim (plural)],

page 194).

Further on, we use the command reduce (see Section 6.3.27 [reduce (plural)],

page 189) to compare the left ideals generated by L and T.

We set option(redSB) and option(redTail) to make Singular compute com-

pletely reduced minimal bases of ideals (see Section 4.1.91 [option], page 206 and

Section 6.4.34 [Groebner bases in G-algebras], page 196 for definitions and further

details).

For long running computations, it is always recommended to set option(prot)

to make Singular display some information on the performed computations (see

Section 4.1.91 [option], page 206 for an interpretation of the displayed symbols).

// ----- 1. setting up the algebra

ring A = 0,(e,f,h),dp;

matrix D[3][3];

D[1,2]=-h; D[1,3]=2*e; D[2,3]=-2*f;

ncalgebra(1,D);

// ----- equivalently, you may use the following:

// LIB "ncalg.lib";

// def A = makeUsl2();

// setring A;

// ----- 2. defining the set S

ideal S = e^3, f^3, h^3 - 4*h;

option(redSB);

option(redTail);

option(prot); // let us see the protocol

ideal L = std(S);

7→ 3(2)s

7→ s

7→ s

7→ 5s

Appendix A: Examples 241

7→ s

7→ (4)s

7→ 4(5)s

7→ (7)s

7→ 3(6)s

7→ (8)(7)(6)4(5)(4)(3)(2)s

7→ (3)(2)s

7→ 3(3)(2)45

7→ (S:5)-----

7→ product criterion:6 chain criterion:16

L;

7→ L[1]=h3-4h

7→ L[2]=fh2-2fh

7→ L[3]=eh2+2eh

7→ L[4]=2efh-h2-2h

7→ L[5]=f3

7→ L[6]=e3

vdim(L); // the vector space dimension of the module A/L

7→ 15

option(noprot); // turn off the protocol

ideal T = twostd(S);

T;

7→ T[1]=h3-4h

7→ T[2]=fh2-2fh

7→ T[3]=eh2+2eh

7→ T[4]=f2h-2f2

7→ T[5]=2efh-h2-2h

7→ T[6]=e2h+2e2

7→ T[7]=f3

7→ T[8]=ef2-fh

7→ T[9]=e2f-eh-2e

7→ T[10]=e3

vdim(T); // the vector space dimension of the module A/T

7→ 10

// reduce L with respect to T:

print(matrix(reduce(L,T)));

7→ 0,0,0,0,0,0

// as we see, L is included in the left ideal generated by T

// now, reduce T with respect to L:

print(matrix(reduce(T,L)));

7→ 0,0,0,f2h-2f2,0,e2h+2e2,0,ef2-fh,e2f-eh-2e,0

// the non-zero elements belong to T only

ideal LT = twostd(L);

// LT is the two-sided Groebner basis of L

// LT and T coincide as left ideals:

size(reduce(LT,T));

7→ 0

size(reduce(T,LT));

7→ 0

242 Singular:Plural Manual

A.6.2 Right Groebner bases and syzygies

Most of the Singular:Plural commands correspond to the left-sided computa-

tions, that is left Groebner bases, left syzygies, left resolutions and so on. However,

the right-sided computations can be done, using the left-sided functionality and

opposite algebras.

In the example below, we consider the algebra A := U(sl2) and a set of generators

I = {e2, f}.
We will compute a left Groebner basis LI and a left syzygy module LS of a left ideal,

generated by the set I .

Then, we define the opposite algebra Aop of A, set it as a basering, and create

opposite objects of already computed ones.

Further on, we compute a right Groebner basis RI and a right syzygy module RS of

a right ideal, generated by the set I in A .

// ----- setting up the algebra:

LIB "ncalg.lib";

def A = makeUsl2();

setring A; A;

7→ // characteristic : 0

7→ // number of vars : 3

7→ // block 1 : ordering dp

7→ // : names e f h

7→ // block 2 : ordering C

7→ // noncommutative relations:

7→ // fe=ef-h

7→ // he=eh+2e

7→ // hf=fh-2f

// ----- equivalently, you may use

// ring A = 0,(e,f,h),dp;

// matrix D[3][3];

// D[1,2]=-h; D[1,3]=2*e; D[2,3]=-2*f;

// ncalgebra(1,D);

option(redSB);

option(redTail);

matrix T;

// --- define a generating set

ideal I = e2,f;

ideal LI = std(I); // the left Groebner basis of I

LI; // we see that I was not a Groebner basis

7→ LI[1]=f

7→ LI[2]=h2+h

7→ LI[3]=eh+e

7→ LI[4]=e2

module LS = syz(I); // the left syzygy module of I

print(LS);

7→ -ef-2h+6,-f3, -ef2-fh+4f, -e2f2-4efh+16ef-6h2+42h-72,

Appendix A: Examples 243

7→ e3, e2f2-6efh-6ef+6h2+18h+12,e3f-3e2h-6e2,e4f

// check: LS is a left syzygy, if T=0

T = transpose(LS)*transpose(I);

print(T);

7→ 0,

7→ 0,

7→ 0,

7→ 0

// --- let us define the opposite algebra of A

def Aop = opposite(A);

setring Aop; Aop; // see how Aop looks like

7→ // characteristic : 0

7→ // number of vars : 3

7→ // block 1 : ordering a

7→ // : names H F E

7→ // : weights 1 1 1

7→ // block 2 : ordering ls

7→ // : names H F E

7→ // block 3 : ordering C

7→ // noncommutative relations:

7→ // FH=HF-2F

7→ // EH=HE+2E

7→ // EF=FE-H

// --- we "oppose" (transfer) objects from A to Aop

ideal Iop = oppose(A,I);

ideal RIop = std(Iop); // the left Groebner basis of Iop in Aop

module RSop = syz(Iop); // the left syzygy module of Iop in Aop

module LSop = oppose(A,LS);

module RLS = syz(transpose(LSop));

// RLS is the left syzygy of transposed LSop in Aop

// --- let us return to A and transfer (i.e. oppose)

// all the computed objects back

setring A;

ideal RI = oppose(Aop,RIop); // the right Groebner basis of I

RI; // it differs from the left Groebner basis LI

7→ RI[1]=f

7→ RI[2]=h2-h

7→ RI[3]=eh+e

7→ RI[4]=e2

module RS = oppose(Aop,RSop); // the right syzygy module of I

print(RS);

7→ -ef+3h+6,-f3, -ef2+3fh,-e2f2+4efh+4ef,

7→ e3, e2f2+2efh-6ef+2h2-10h+12,e3f, e4f

// check: RS is a right syzygy, if T=0

T = matrix(I)*RS;

T;

7→ T[1,1]=0

7→ T[1,2]=0

244 Singular:Plural Manual

7→ T[1,3]=0

7→ T[1,4]=0

module RLS;

RLS = transpose(oppose(Aop,RLS));

// RLS is the right syzygy of a left syzygy of I

// it is I itself?

print(RLS);

7→ e2,f

Conclusion and Future Work

The implicit aim of this thesis was to create a possibly complete picture

of symbolic methods for GR–algebras, together with numerous motivating

and illustrating examples.

We have presented the Gröbner basics, enlisted in Section 2 and elabo-

rated the theory in Chapters 2 and 3. Beyond our scope are Hilbert series

and polynomials, more detailed discussion on dimensions, definition and

computation of a multiplicity e(M) of a module (what is done in the book

[56]). The Betti numbers for graded modules over graded algebras (for ex-

ample, algebras, where the relations can be made quasi–homogeneous) are

implemented in Plural, but are also not discussed in details.

The last topics fit into a wide area of computations, related to homo-

logical algebra together with computations of HomA, ExtA, TorA modules

with the applications to computing of torsion submodules, Hochschild co-

homology of algebras and modules, cohomology of modules over universal

enveloping algebras and so on. In the lecture notes [52] we have already

proposed an approach, which differs from the one described in the book

[14]. Meanwhile, yet another way of computations was used in [19], ap-

plying algebraic involutions instead of continuous transitions between an

algebra and it opposite. The work on this topic is in progress and shows a

big potential in the future. I particular, the algorithms, related to homo-

logical algebra will be implemented in the library nchomolog.lib, which is

already under development.

There are some generalizations of G–algebras, like rings of solvable type

of Kredel [46], enveloping Lie fields of Apel ([3] and references therein),

PBW rings of Bueso et.al. [14], Ore algebras of Chyzak and Salvy [18].

One of the most important setting is the non–commutative localization

of a G–algebra with respect to a subset of a set of variables. Since a left

resp. right quotient fields exists, as soon as the Ore condition is satisfied

and a quotient field is, in particular, a localization, a needed algebra can

be described as follows. Let K be a numeric field (Zp, Q, R, C) and the set

of variables is S = X ∪ D = {x1, . . . , xn} ∪ {∂1, . . . , ∂n}. Let there be a

set of relations R, such that A := K〈S | R〉 is a G–algebra and, say, B :=

K〈X | R |X〉 is a proper G–subalgebra. Then, there exists a localization

245

246 CONCLUSION AND FUTURE WORK

of A with respect to B; in particular, we are interested in considering the

quotient field of B, thus declaring xi to rational variables, while ∂i remain

polynomial. Such an algebra is denoted by AB = K(X)〈S\X | R〉. Algebras

of this type play an increasingly important role in modern computer algebra

and its applications. In the theory of linear differential equations it is quite

natural to consider partial differential ∂i as polynomial generators, while

the coordinates xi are understood rather as rational generators. Nearly

the same applies to linear operator algebras. In such cases, X is usually

commutative and relations R on D do not involve x.

It seems that the framework of rings of solvable type and PBW rings is

too general to be efficiently implemented in whole generality, on the other

hand there are only a few applications, requiring this. A better perspective

has the approach of Ore algebras, which has been successfully applied to

concrete problems of System and Control Theory ([19]). The Gröbner basis

theory in such algebras is a variation of the polynomial case we have pre-

sented, however, only two systems, OpenXM (Kan) and OreAlgebra

(Mgfun) are able to perform Gröbner basis and some related computa-

tions. The efficiency of implementations was merely discussed; we are not

aware of existence of new criteria and of revision of older. There are only

some basic tests to measure the performance and so on. The natural gen-

eralization of our methods and a new task for Plural would be to review

the methods, to adopt them into some reasonable framework (like we did

for G–algebras) and implement several possible algorithms for computing

Gröbner bases.

The ”Delta Gröbner bases” method, proposed by F. Castro in [16] looks

very promising, since it utilizes the commutative subalgebras at a full scale.

The ”involutive bases” ([29, 72]) are getting more sophisticated implemen-

tations and sometimes show a better performance, than the Gröbner bases.

Since the proof of the equivalence of an involutive basis of a module to its

non–reduced Gröbner basis, involutive basis algorithm is often used as an

alternative to Buchberger’s. The involutive approach is quite universal and

exists both in G–algebras ([72]) and in rational PBW algebras described

above.

Summarizing, we note that the movement towards rational noncom-

mutativity is strategically important both for Singular:Plural research

group and for the Computer Algebra in general, since numerous applica-

tions in natural sciences require a symbolical intervention, which, however,

should have been done on a fast and reliable computer algebra system.

Bibliography

[1] D. Anick. On the homology of associative algebras. Trans. Am. Math. Soc., 296:641–
659, 1986.

[2] J. Apel and U. Klaus. FELIX – an assistant for algebraists . In Proc. of the In-
ternational Symposium on Symbolic and Algebraic Computation (ISSAC’91), pages
382–389. ACM Press, 1991.

[3] Apel, J. Gröbnerbasen in nichtkommutativen Algebren und ihre Anwendung. Dis-
sertation, Universität Leipzig, 1988.

[4] Apel, J. Computational ideal theory in finitely generated extension rings. Theor.
Comput. Sci., 244(1-2):1–33, 2000.

[5] Apel, J. and Klaus, U. Implementation Aspects for Non-Commutative Domains. In
Proc. Computer Algebra in Physical Research, pages 127–132. World Scientific, 1991.

[6] O. Bachmann and H. Schönemann. Monomial Representations for Gröbner Bases
Computations. In Proc. of the International Symposium on Symbolic and Algebraic
Computation (ISSAC’98), pages 309–316. ACM Press, 1998.

[7] Becker, M., Levandovskyy, V. and Yena, O. A Singular 3.0 library for computa-
tions and operations with involutions involut.lib. 2003.

[8] Benkart, G. and Roby, T. Down–up algebras. J. Algebra, 209(1):305–344, 1998.
[9] Berger, R. Quantification de l’identité de Jacobi. (Quantization of the Jacobi iden-

tity). C. R. Acad. Sci., Paris, Sér. I, 312(10):721–724, 1991.
[10] Berger, R. The quantum Poincaré-Birkhoff-Witt theorem. Commun. Math. Phys.,

143(2):215–234, 1992.
[11] Bergman, G. The diamond lemma for ring theory. Adv. Math., 29:178–218, 1978.
[12] Brickenstein, M. Neue Varianten zur Berechnung von Gröebnerbasen. Diplomarbeit,

Universität Kaiserslautern, 2004.
[13] Buchberger, B. A Criterion for Detecting Unnecessary Reductions in the Construc-

tion of a Gröbner Basis. In Bose, N. K., editor, Recent trends in multidimensional
system theory. 1985.

[14] Bueso, J., Gómez–Torrecillas, J. and Verschoren, A. Algorithmic methods in non-
commutative algebra. Applications to quantum groups. Kluwer Academic Publishers,
2003.

[15] Bueso, J. L.; Gómez Torrecillas, J.; Lobillo, F.J.; Castro, F.J. An introduction to
effective calculus in quantum groups. In Caenepeel, S. and Verschoren, A., editor,
Rings, Hopf algebras, and Brauer groups, pages 55–83. Marcel Dekker, 1998.

[16] Castro-Jiménez, F.J. and Moreno-Fŕıas, M.A. Gröbner δ-bases and Gröbner bases
for differential operators. arXiv. math. AG/0111266, 2001.

[17] Castro-Jiménez, F.J. and Ucha, J.M. On the computation of Bernstein–Sato ideals.
J. Symbolic Computation, 37:629–639, 2004.

[18] Chyzak, F. and Salvy, B. Non–commutative Elimination in Ore Algebras Proves
Multivariate Identities. J. Symbolic Computation, 26(2):187–227, 1998.

[19] Chyzak, F., Quadrat, A. and Robertz, D. Linear control systems over Ore algebras.
Effective algorithms for the computation of parametrizations. In Proc. of Workshop
on Time-Delay Systems (TDS03). INRIA, 2003.

[20] Decker, D. and Eisenbud, D. Sheaf algorithms using the exterior algebra. In Eisen-
bud, D., Grayson, D., Stillman, M., Sturmfels, B., editor, Computations in algebraic
geometry with Macaulay 2, 2001.

[21] Decker, W., Pfister, G. and Schönemann, H. A Singular 2.0 library for computing
the primary decomposition and radical of ideals primdec.lib. 2001.

247

248 BIBLIOGRAPHY

[22] Delius, G.W. and Gould, M.D. Quantum Lie algebras, their existence, uniqueness
and q-antisymmetry. Commun. Math. Phys., 185(3):709–722, 1997.

[23] Dixmier, J. Enveloping Algebras. AMS, 1996.
[24] Drozd, Y. and Kirichenko, V. Finite dimensional algebras. With an appendix by

Vlastimil Dlab. Springer, 1994.
[25] Drozd, Y., Ovsienko, S. and Futornyj, V. On Gelfand-Zetlin modules. Geometry and

physics, Proc. Winter Sch., Srni/Czech. 1990, Suppl. Rend. Circ. Mat. Palermo, II.
Ser(26):143–147, 1991.

[26] Faugère, J.-C. A new Efficient Algorithm for Computing Gröbner Bases Without
Reduction to Zero (F5). In Proc. of the International Symposium on Symbolic and
Algebraic Computation (ISSAC’02), pages 75–83. ACM Press, 2002.

[27] Fulton, W. and Harris, J. Representation theory. A first course. Springer, 1991.
[28] Garćıa Román, M. and Garćıa Román, S. Gröbner bases and syzygies on bimodules.

arXiv. math. RA/0405550, 2004.
[29] Gerdt, V.P. Involutive Algorithms for Computing Groebner Bases. In Pfister G.,

Cojocaru S. and Ufnarovski, V., editor, Computational Commutative and Non-
Commutative Algebraic Geometry. IOS Press, 2005.

[30] Gómez–Torrecillas, J. and Lobillo, F.J. Global homological dimension of multifil-
tered rings and quantized enveloping algebras. J. Algebra, 225(2):522–533, 2000.

[31] Gómez–Torrecillas, J. and Lobillo, F.J. Auslander-regular and Cohen-Macaulay
quantum groups. arXiv. math. RA/0104283, 2001.

[32] Gräbe, H.-G. The SymbolicData Benchmark Problems Collection of Polynomial
Systems. In Calmet, J., Hausdorf, M. and Seiler, W., editor, Proceedings ”Workshop
on Under- and Overdetermined Systems of Algebraic or Differential Equations” in
Karlsruhe, 2002.

[33] Green, E. Noncommutative Groebner bases, and projective resolutions. In Draexler,
P., editor, Computational methods for representations of groups and algebras. Proc.
of the Euroconference in Essen, Germany, April, pages 29–60. Birkhaeuser, 1999.

[34] Green, E. Multiplicative Bases, Gröbner Bases, and Right Gröbner Bases. J. Sym-
bolic Computation, 29(4/5), 2000.

[35] Greuel, G.-M. and Pfister, G. with contributions by Bachmann, O., Lossen, C. and
Schönemann, H. A SINGULAR Introduction to Commutative Algebra. Springer,
2002.

[36] Havlicek, M. and Klimyk, A. and Posta, S. Central elements of the algebras U ′

q(som)
and U ′

q(isom). Czech. J. Phys. (also arXiv. math. QA/9911130), 50(1):79–84, 2000.
[37] Humphreys, J. Introduction to Lie algebras and representation theory. Springer,

1980.
[38] Iorgov, N. On the Center of q-Deformed Algebra U ′

q(so3) Related to Quantum Grav-
ity at q a Root of 1. In Proceedings of IV Int. Conf. ”Symmetry in Nonlinear Math-
ematical Physics”, Kyiv, Ukraine, 2001.

[39] Iorgov, N. and Klimyk, A. Nonclassical type representations of the q-deformed al-
gebra U ′

q(son). Czech. J. Phys., 50(1):85–90, 2000.
[40] Isaev, A., Pyatov, P. and Rittenberg, V. Diffusion algebras.

arXiv. math. QA/0103603, 2001.
[41] Kandri-Rody, A. and Weispfenning, V. Non–commutative Gröbner bases in algebras

of solvable type. J. Symbolic Computation, 9(1):1–26, 1990.
[42] Khomenko, A. On a structure of induced modules over semi-simple Lie algebras.

Master Thesis, Universität Kaiserslautern, 2000.
[43] Klimyk, A. and Schmüdgen, K. Quantum groups and their representations. Springer,

1997.
[44] Kobayashi, Yu. Gröbner bases of associative algebras and the Hochschild cohomol-

ogy. Trans. Am. Math. Soc., 2004.
[45] Kredel, H. MAS Modula-2 Algebra System. In Proc. DISCO 90 Capri, pages 270–

271. LNCS 429, 1990.
[46] Kredel, H. Solvable polynomial rings. Shaker, 1993.

BIBLIOGRAPHY 249

[47] Kubichka, O. Composition algebras for representations of finite type posets. Bulletin
of the University of Kyiv. Series: Physics and Mathematics, 4, 2002.

[48] Levandovskyy, V. Gröbner bases of a class of non–commutative algebras. Master
Thesis, Universität Kaiserslautern, 2000.

[49] Levandovskyy, V. On Gröbner bases for non–commutative G-algebras. In Kredel,
H. and Seiler, W.K., editor, Proceedings of the 8th Rhine Workshop on Computer
Algebra, 2002.

[50] Levandovskyy, V. A Singular 3.0 library for computing the central character de-
composition of a module ncdecomp.lib. 2004.

[51] Levandovskyy, V. and Motsak, O. A Singular 3.0 library for definitions of impor-
tant GR-algebras ncalg.lib. 2003.

[52] Levandovskyy, V. and Pfister G. An Introduction to the Commutative and Non–
commutative Computer Algebra: Gröbner bases as a Tool for Homological Alge-
bra. In Laudal O.A., editor, Advanced School and Conference on Non–commutative
Geometry. ICTP, Trieste, 2004.

[53] Levandovskyy, V. and Schönemann, H. Plural — a computer algebra system for
noncommutative polynomial algebras. In Proc. of the International Symposium on
Symbolic and Algebraic Computation (ISSAC’03). ACM Press, 2003.

[54] Levandovskyy, V., Lobillo, F.J. and Rabelo, C. A Singular 3.0 library, providing
general tools for noncommutative algebras nctools.lib. 2004.

[55] Levasseur, T. Krull dimension of the enveloping algebra of a semisimple lie algebra.
Proc. Am. Math. Soc., 130(12):3519–3523, 2002.

[56] Li, H. Noncommutative Gröbner bases and filtered-graded transfer. Springer, 2002.
[57] Lobillo, F.J. and Rabelo, C. A Singular 3.0 library for calculating the Gelfand-

Kirillov dimension of modules gkdim.lib. 2004.
[58] Lobillo, F.J. and Rabelo, C. A Singular 3.0 library for computations with quantum

matrices, quantum minors and symmetric groups qmatrix.lib. 2004.
[59] McConnell, J.C. and Robson, J.C. Noncommutative Noetherian rings. With the co-

operation of L. W. Small. Graduate Studies in Mathematics. 30. Providence, RI:
American Mathematical Society (AMS), 2001.

[60] Mora, T. Groebner bases in non-commutative algebras. In Proc. of the International
Symposium on Symbolic and Algebraic Computation (ISSAC’02), pages 150–161.
LNCS 358, 1989.

[61] Mora, T. An introduction to commutative and non-commutative Groebner bases.
Theor. Comp. Sci., 134:131–173 , 1994.

[62] Motsak, O. A Singular 3.0 library for computing centers of GR-algebras
center.lib. 2004.

[63] Nüßler, T. and Schönemann, H. Gröbner bases in algebras with zero–divisors.
Preprint 244, Universität Kaiserslautern, 1993.

[64] Oaku, T. and Takayama, N. An algorithm for de Rham cohomology groups of the
complement of an affine variety via D-module computation. Journal of Pure and
Applied Algebra, 139(1–3):201–233, 1999.

[65] Ovsienko, S. Strongly nilpotent matrices and Gelfand–Zetlin modules. Linear Alge-
bra Appl., 365:349–367, 2003.

[66] PÃloski, A. Algebraic dependence of polynomials after O. Perron and some applica-
tions. In Pfister G., Cojocaru S. and Ufnarovski, V., editor, Computational Com-
mutative and Non-Commutative Algebraic Geometry. IOS Press, 2005.

[67] Ringel, C. M. PBW-bases of quantum groups. J. Reine Angew. Math., 470:51–88,
1996.

[68] Rosenkranz, M., Buchberger, B. and Engl, H.W. Solving linear boundary value
problems via non-commutative gröbner bases. Appl. Anal., 82(7):665–675, 2003.

[69] Rudakov, A.N. and Shafarevich, I.R. Irreducible representations of a simple three-
dimensional lie algebra over a field of finite characteristic. Math. Notes of Acad. Sci.
USSR, 2:760–767, 1967.

[70] Schönemann, H. Algorithms in Singular. In Reports On Computer Algebra No.
2. Centre for Computer Algebra, University of Kaiserslautern, 1996. Available at
http://www.mathematik.uni-kl.de/∼zca.

[71] Schönemann, H. Singular in a Framework for Polynomial Computations. In Joswig,
M. and Takayama, N., editor, Algebra, Geometry and Software Systems, pages 163–
176. Springer, 2003.

[72] Seiler, W. Involution, the formal theory of differential equations and its applica-
tions in computer algebra and numerical analysis. Habilitation thesis, Universität
Mannheim, 2002.

[73] Stafford, J.T. and Van den Bergh, M. Noncommutative curves and noncommutative
surfaces. arXiv. math. RA/9910082, 1999.

[74] The SymbolicData Project, 2000–2002. see http://www.SymbolicData.org.
[75] Takayama, N. A benchmark test for Gröbner basis systems of differential operators

I, 1995. Available from http://www.math.sci.kobe-u.ac.jp/∼taka/.
[76] Vogan, D. A. Gelfand-Kirillov dimension for Harish-Chandra modules. Invent.

Math., 48:75–98, 1978.
[77] Yan, T. The Geobucket Data Structure for Polynomials. J. Symbolic Computation,

25(3):285–294, March 1998.

Wissenschaftlicher Werdegang

Name: Viktor Levandovskyy

Geburtstag, -ort: 22. August 1976 in Kiew, Ukraine

1983–1993 Besuch und Abschluss der Schule in Kiew, Ukraine

1993–1998 Studium der Mathematik an der Kiewer Staatlichen

Taras Schewtchenko Universität

1998 Diplom in Mathematik (Universität Kiew)

1997–2000 Studium der Mathematik mit Nebenfach Informatik

an der Universität Kaiserslautern, in Rahmen des

Studiengangs ”Mathematics International”.

2000 Diplom in Mathematik (Universität Kaiserslautern)

2000–2005 wissenschaftlicher Mitarbeiter in der AG AG

(Algebraische Geometrie) des Fachbereiches Mathematik

der Universität Kaiserslautern.

ab 2005 wissenschaftlicher Mitarbeiter im RISC (Research Institute

for Symbolic Computation) der Universität Linz, Österreich.

Scientific Career

Name: Viktor Levandovskyy

Date/Place of Birth: 22 of August 1976 in Kyiv, Ukraine

1983–1993 School in Kyiv, Ukraine

1993–1998 Study of Mathematics at the Kyiv State Taras

Shevchenko University

1998 Diploma in Mathematics (Kyiv State University)

1997–2000 Study of Mathematics with Computer Science

as secondary subject at the University of Kaiserslautern,

participation in the ”Mathematics International” program.

2000 Diploma in Mathematics (University of Kaiserslautern)

2000–2005 research scientist at the Algebraic Geometry Group

(Faculty of Mathematics, University of Kaiserslautern).

from 2005 research scientist at the RISC (Research Institute

for Symbolic Computation), University of Linz, Austria.

