
Linear Algebra and its Applications 319 (2000) 193–209
www.elsevier.com/locate/laa

Computation of a specified root of a polynomial
system of equations using eigenvectorsø

Didier Bondyfalata,1, Bernard Mourraina, Victor Y. Panb,∗,2
aINRIA, SAGA, 2004 route des Lucioles, B.P. 93, 06902 Sophia Antipolis, France

bDepartment of Mathematics and Computer Science, Lehman College, City University of New York,
250 Bedford Park B’vard West, Bronx, NY 10468-1589, USA

Received 18 February 2000; accepted 26 May 2000

Submitted by R.A. Brualdi

Abstract

We propose new techniques and algorithms for the solution of a polynomial system of equa-
tions by matrix methods. For such a system, we seek its specified root, at which a fixed poly-
nomial takes its maximum or minimum absolute value on the set of roots. We unify several
known approaches and simplify the solution substantially, in particular in the case of an over-
constrained polynomial system having only a simple root or a few roots. We reduce the solution
to the computation of the eigenvector of an associated dense matrix, but we define this ma-
trix implicitly, as a Schur complement in a sparse and structured matrix, and then modify the
known methods for sparse eigenvector computation. This enables the acceleration of the solu-
tion by roughly factorD, the number of roots. Our experiments show that the computations can
be performed numerically, with no increase of the computational precision, and the iteration
converges to the specified root quite fast. © 2000 Elsevier Science Inc. All rights reserved.
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1. Introduction

The resolution of polynomial systems of equations is a major problem of comput-
er algebra with applications in areas such as Robotics, Computer Vision, Computa-
tional Geometry, and Signal Processing. Polynomial systems are usually defined by
a few monomials but may be hard to solve, both from the computational complexity
point of view and from the numerical stability point of view. In spite of long and
intensive study of this subject and substantial progress (see, e.g., [1,3,11,14–16]),
many theoretical and practical problems remain largely open, in particular the com-
putation of a specific root of a polynomial system, which maximizes or minimizes
the absolute value of a given functional.

Among a few available approaches, the most popular is the Gröbner basis method,
but it has a high arithmetic computational cost and requires exact or modular com-
putations, that is, it is prone to severe numerical stability problems and cannot be
applied safely with floating point arithmetic. Moreover, when the method is applied
to compute a single root, most of the computation applies to all roots, thus increasing
the overall arithmetic cost by a large extra factor of at leastD, the number of roots of
a given system. Other known methods have other deficiencies. For instance, Newton-
type iterative methods converge quickly to a root in some cases but provide no means
to converge to a selected root.

The most promising approach to overcoming these difficulties seems to be the
reduction of the solution of a polynomial system to linear algebra computations,
namely, either to the unsymmetric matrix eigenproblem or the generalized matrix
eigenproblem. Our paper explores this approach, which we divide into two stages:
1. of defining appropriate reduction to the matrix eigenvector problem and
2. of devising its effective solution algorithm.

Though the reduction of a polynomial system to the matrix eigenproblem is a well
known and well studied topic [1,16,25], there are several variations of this reduction
requiring various computational cost and leading to different frameworks, which
may facilitate or complicate the subsequent computation. In particular the reduction
stage based on the computation of a Gröbner basis has major deficiencies already
cited, furthermore; it leads to expensive computations with very large dense matrices.
Our contribution at this stage is a simple unifying approach, based on the study of
the associated maps, operators and functionals, which enables more effective control
over the structure and sparsity of the matrices involved (see Section 4). As a result,
we reduce the solution of a polynomial system to the eigenvector problem for the
transposed map of multiplication by an elementa in the associated quotient algebra
of multivariate polynomials. The matrixMt

a of this map is dense, and its computation
would be nearly as expensive as a Gröbner basis computation, as this matrix contains
essentially the same information as a Gröbner basis. We do not compute this matrix
explicitly, however, but define it as the Schur complement in a Sylvester-like matrix,
St, which is sparse and structured. This enables us to approximate the eigenvectors
of Mt

a by means of the known methods for sparse unsymmetric eigenproblem (such
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as the Arnoldi, the unsymmetric Lanczos and the power iterations), which we adjust
to apply them to a Schur complement (defined implicitly), rather than to the matrix
itself.

The resulting algorithms can be implemented with floating point arithmetic, and
their computational cost is defined by the number of monomials in the input equa-
tions and the dimensionN of the associated resultant matrix. More precisely, we
solve the polynomial system by an iterative process that converges linearly to the
solution and uses the order ofN2 flops (arithmetic operations) in each recursive
step, whereas the known approaches use the order ofN3 flops.

Furthermore, our techniques enable us to direct the iterative process towards a
specified root of a polynomial system maximizing or minimizing the absolute value
of any selected polynomial.

This gives our approach some important advantages for practical solution of a
polynomial system, in particular, for the special but practically highly important case
where we deal with an overconstrained polynomial system, which has only a few
roots or only a single root. Moreover, our modification of the Gröbner basis approach
enables us to direct the computation towards the approximation of only a specified
root and to preserve the matrix structure and sparsity. This modification also has
a major advantage of avoiding the most expensive stage of the recomputation of
the Gröbner basis when the input parameters change. In both overconstrained and
Gröbner basis cases, we substantially decrease the computational cost, namely, by
the factorD (the number of roots), versus the known algorithms.

We organize our paper as follows. We elaborate the transition from a polyno-
mial system to an eigenvector problem in Section 2. We show the transition from
a Sylvester-like matrix to a multiplication map and outline iterative solution of the
eigenvector problem in Section 3. In Section 4, we specify three approaches to the
construction of these structured matrices and give a demonstration for a parameter-
ized polynomial system. The initial results of our experiments, performed for several
samples of practical problems and reported in Section 5, show the expected behavior
of the algorithms. Even for large input polynomial systems, the algorithms converge
sufficiently fast to a specified root minimizing or maximizing the absolute value of a
fixed polynomial.

2. Reduction of the solution of a polynomial system to matrix eigenproblem

In this section, we formalize the reduction of the solution of a polynomial system
to the matrix eigenproblem (cf. [1,5,19,22,25]).We denote byR = C[x1, . . . , xn] the
ring of polynomials in the variablesx = (x1, . . . , xn), with coefficients in the field
of complex numbersC. Many of our results are valid for any algebraically closed
field K. N will denote the set of nonnegative integers.

Let f1, . . . , fm bem polynomials ofR, defining the polynomial systemf1(x) =
0, . . . , fm(x) = 0. Let I be the ideal generated by these polynomials. We consider
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the case, where the quotient algebraA = R/I is of finite dimension D overC. This
implies that the set of roots or solutionsZ(I) = {ζ ∈ Cn; f1(ζ ) = · · · = fm(ζ ) =
0} is finite: Z(I) = {ζ1, . . . , ζd} with d 6 D. To this set of roots, we associate a
fundamental set of orthogonal idempotentse1, . . . , ed satisfying

e1 + · · · + ed ≡ 1 and ei ej ≡
{

0 if i /= j,

ei if i = j,

such that ifI = Q1 ∩ · · · ∩ Qd is the minimal primary decomposition ofI, we have
eiA ∼ R/Qi , whereAi = ei A is a local algebra, for the maximal idealmζi defin-
ing the root ζi . This also implies thatA = A1 ⊕ · · · ⊕ Ad (see [19,
p. 717; 29]).

We denote bŷR the dual space ofR, that is, the set of maps (linear forms) from
R to C and byÂ the dual space ofA, that is, the set of elementsK ∈ R̂ such that
K(I) = 0 (also denoted byI⊥).

For any elementa ∈ A, we denote by

Ma : A→A

b 7→a b

the map of multiplication bya in A, and we denote by

M t
a : Â→Â

K 7→a · K
its transposed map. By definition of the transposed operator, for anyK ∈ Â, we have
K(a b) = K(Ma(b)) = M t

a(K)(b) = (a · K)(b).

Theorem 2.1. There exists a basis ofA such that for alla ∈ A the matrixMa of
Ma in this basis is of the form

Ma =


Ma,1 0

. . .
0 Ma,d


 ,

whereMa,i of the form

Ma,i =



a(ζi) ∗
. . .

0 a(ζi)




is the matrix of multiplication by a inAi .

Proof. The block decomposition ofMa is induced by the decomposition ofA in the
direct sum of subalgebrasAi . The matricesMa,i , a ∈ A, are commuting and thus
have a triangular decomposition in a common basis [30]. See also [3].�
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In the case of a simple rootζi , we haveMa,i = diag(a(ζi)). If ζi is a multiple root,
it may happen thatMa,i has several Jordan blocks and its set of eigenvectors is not of
dimension 1.

It is also possible to characterize the eigenspace ofM t
a in terms of evaluations

and differentials at the rootsζi , which are defined as follows. At first, for any point
ζ ∈ C, let us write

1ζ : R→C

p 7→p(ζ )

and note that1ζ ∈ Â if and only if ζ ∈ Z(I). Furthermore, for any pair ofa, b ∈ A,
we have

M t
a(1ζi )(b) = 1ζi (a b) = a(ζi)b(ζi) = a(ζi)1ζi (b)

so that1ζi is an eigenvector ofM t
a for the eigenvaluea(ζi). In the case of the systems

of polynomial equations having multiple roots, a complete description of the eigen-
space involves higher order differential forms, specifically, the maps (linear forms)

da
ζ : R→C

p 7→ 1∏n
i=1 ai !

(
dx1

)a1 · · · (dxn

)an (p)(ζ ), (1)

wherea = (a1, . . . , an) ∈ Nn, dxi is the derivative with respect to the variablexi .
We writeda

ζ = (d1,ζ )
a1 · · · (dn,ζ )an . See [7,17,18] for further details.

Proposition 2.2. The eigenspace ofM t
a associated to the eigenvaluea(ζi) is gener-

ated by1ζi and by some linear combinations of the differentialsda
ζi

.

As for any pair ofa, b ∈ A, the multiplication mapsMa,Mb commute with each
other, it follows that they share common eigenvector spaces. Indeed, we have the
following property (see [19]):

Proposition 2.3. The common eigenvectors ofM t
a for all a ∈ A are the non-zero

multiples of1ζi for i = 1, . . . , d.

Remark 2.4. If the root ζi is simple, the eigenvector associated to the eigenvalue
a(ζi) is 1ζi (up to a scalar factor).

Remark 2.5. If (xα1, . . . , xαD ) is a basis ofA, then the coordinates of1ζi in its dual
basis are(ζ α1

i , . . . , ζ
αD

i ), by the definition of the dual basis.

Summarizing, we arrive at the following algorithm for the computation of the
simple roots.
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Algorithm 2.6. Computing the simple roots of a polynomial systemf1 = · · · =
fm = 0.
1. Compute the transposeMt

a of the matrix of multiplication bya ∈ A in a basis of
the form(1, x1, . . . , xn, . . .).

2. Compute its right eigenvectorsvi = (vi,1, vi,x1, . . . , vi,xn , . . .) or, equivalently,
the left eigenvectorsvt

i of the matrixMa for i = 1, . . . , d, so thatvt
i Ma = a(ξi) vt

for all i.
3. Fori = 1, . . . , d, compute and output

ζi =
(

vi,x1

vi,1
, . . . ,

vi,xn

vi,1

)
.

Stage 2 of Algorithm 2.6 amounts to the computation of the left eigenvectors of
the matrixMa . The known effective algorithms perform this stage by recursively pre-
and/or post-multiplying the matrixMa by vectors. Next, we will show how to perform
such multiplications efficiently.

3. Definition of multiplication maps and the approximation of their eigenvectors

Algorithm 2.6 reduces the solution of a polynomial system of equations to the
computation of the eigenvectors of the transposeMt

a of the matrix of a multiplication
map inA. Usually, however, the matricesMa andMt

a are not available directly from
the input polynomial system but in many interesting cases can be recovered from
Sylvester-like matricesS representing multiples of the input equations. We will show
the construction of the latter matricesS in Section 4. Now, we specify their desired
properties.

Hypothesis 3.1. The matrixS is a square matrix of the form

S =
(
A B
C D

)
(2)

such that
1. its rows are indexed by monomials(xα)α∈F for a fixed setF ⊂ Nn,
2. the set of monomialsB0 = (xα)α∈E0 indexing the rows of the block(A B) is a

basis ofA = R/(f1, . . . , fm),
3. the columns of

(A
C

)
represent the elementsxαf0 for a fixedf0 and forα ∈ E0,

expressed as linear combinations of the monomials(xβ)β∈F ,
4. the columns of

(B
D

)
represent some multiples of the polynomialsf1, . . . , fm, ex-

pressed as linear combinations of the monomials(xβ)β∈F ,
5. the blockD is invertible.
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For any matrixS satisfying these hypotheses, we may obtain the map of multipli-
cation byf0 modulof1, . . . , fn as follows (cf. [5,20]):

Proposition 3.2. Under Hypothesis3.1, the matrix of multiplication bya = f0 in
the basisB0 = (xα)α∈E0 of the quotient algebraA = R/(f1, . . . , fm) is the Schur
complement ofD in S:

Mf0 = A − B D−1 C. (3)

The Sylvester-like matricesS that we will construct in the next section and, there-
fore, also their blocksA, B, C, D are structured matrices. They are also sparse—the
number of non-zero terms per columns is bounded by the number of monomials in
the polynomialsf0, . . . , fm, which is practically small compared to the size of these
matrices. The matrices also have a structure that generalizes the structure of Toep-
litz matrices to the multivariate case and can be exploited to simplify multiplication
of such a matrix by a vector (see [6,20–22,27]). Even without using this structure,
however, we may multiply such matrices by vectors fast, based solely on exploiting
their sparsity. In particular, theN × N matricesS are frequently sufficiently sparse
to allow their multiplication by a vector using the order ofN flops and words of
storage space, whereas explicit computation ofMa would have required the order of
N3 flops and the order ofN2 words of storage space. Thus, we will multiply the
matricesMa = A − B D−1 C and(Ma − σI)−1 by vectors efficiently by reducing these
operations to multiplication of the matrices

A, B, C, D−1 and S−1
σ =

(
A − σI B

C D

)−1

by vectors. To multiply the matricesD−1 andS−1
σ by vectors, we apply the conjugate

gradient (GC) method, which amounts to recursive multiplication ofsparsematrices
D, Dt, Sσ andSt

σ by vectors. The product(Ma − σI)−1v is obtained as the leading
subvector of the vectorS−1

σ

(v
0

)
because the matrixMa − σI is a leading principal

submatrix, that is, a north-western block, ofSσ . Similarly, the vectorvt (Ma − σ I)−1

is obtained as the leading subvector of the vector(v, 0)t S−1
σ .

Proposition 3.3. Let S be anN × N matrix satisfying Hypothesis3.1 and assume
that M flops suffice to multiply the matrixS by a vector. ThenO((M + N)N) flops
suffice to multiply the matricesMa = A − B D−1 C, (Ma − σI)−1 (for a scalarσ) and
their transposes by a vector.

Proof. The conjugate gradient (CG) algorithm enables multiplication ofD−1 by a
vector in O((M + N)N) flops, which dominates the cost of the multiplication of the
matrixMa and its transpose by a vector. Now, observe that(Ma − σ I)−1 is a leading
principal submatrix of the matrix
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S−1
σ =

(
A − σI B

C D

)−1

.

Therefore, the vector(Ma − σI)−1v is the leading subvector of the vectorS−1
σ (

v
0) and

similarly the vectorvt (Ma − σI)−1 is the leading subvector of the vector(v, 0)t S−1
σ .

The CG algorithm computes the latter vector in O((M + N) N) flops, and we may
similarly treat multiplication of the matrix(Ma − σI)t and its inverse by a vector
(cf. [24]). �

Remark 3.4. The computational cost bound of Proposition 3.3 relies on the
cost bound for the CG algorithm. In practice, this algorithm and various other
known iterative methods for sparse linear systems converge much faster
[12,13,24].

Due to the above proposition and remark, it seems most effective to approxi-
mate the eigenvectors of the matrixMt

a by the known algorithms that rely on repeat-
ed multiplication of the matricesMa, Mt

a for (Ma − σI)−1, (Mt
a − σI)−1 by vectors,

such as Arnoldi, the unsymmetric Lanczos, and the (shifted inverse) power algo-
rithms (cf. [12, pp. 362–364, 499–507]). In Section 5 we describe some results of
our preliminary experiments based on the shifted inverse power iteration. The al-
gorithms repeatedly multiplyMt

a (resp.(Mt
a − σI)−1) by a vector and converge to

the rootζ of the polynomial system which maximizes (resp. minimizes) the value
|a(ζ )|.

The usual analysis of these algorithms is immediately extended to our case. To set
a framework, let us next specify the application of the power and the inverse power
iterations and their convergence rate.

LetMa be the matrix of multiplication bya in a basisB of A and let us assume that
a(ζi) /= 0 for i = 1, . . . , d. Then, by Theorem 2.1,Ma is invertible anda is invertible
in A. Let v0 = w0 be the coordinate vector of an element ofÂ in the dual basis
of B. In our case, the power method and the inverse power method amount to the
inductive computation of the sequences:

wk = 1

‖wk−1‖M
t
awk−1 and vk = 1

‖vk−1‖ (Mt
a)

−1vk−1,

k = 1, 2, . . . , respectively.
Due to Remarks 2.4 and 2.5 and to the well-known convergence results for the

power and the inverse power methods [12], we have:

Proposition 3.5. Let ζ ∈ Z(I) be a simple root such that

|a(ζ ′)| < |a(ζ )| (resp.0 < |a(ζ )| < |a(ζ ′)|) for all ζ ′ ∈ Z(I), ζ ′ /= ζ.
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Let

ρ = max

{∣∣∣∣a(ζ ′)
a(ζ )

∣∣∣∣ , ζ ′ ∈ Z(I), ζ ′ /= ζ

}
< 1(

resp.ρ = max

{∣∣∣∣ a(ζ )

a(ζ ′)

∣∣∣∣ , ζ ′ ∈ Z(I), ζ ′ /= ζ

}
< 1

)
.

Let w = (ζ α)α∈E (resp.v(ζ α)α∈E) be the monomial basis evaluated at the rootζ

and let

w∗ = w
‖w‖

(
resp.v∗ = v

‖v‖
)

.

Then for the generic choice of the vectorv0, we have

‖wk − w∗‖ 6 c ρk (resp.‖vk − v∗‖ 6 c ρk)

for wk andvk defined above and for some constantc ∈ R+.

The proposition enables us to approximate the eigenvector corresponding to a
root that minimizes or maximizes the modulus of the value ofa(x) at a root. If the
basisB contains 1, x1, . . . , xn, Algorithm 2.6 immediately computes the coordinates
of the rootζ , from the coordinates ofv∗ or w∗.

To compute the next root of the polynomial system, one may repeat the same pro-
cess with a new polynomiala(x), e.g., one may choose a polynomiala(x) ∈ A that
vanishes at all previously computed roots and then compute the root of the system
that maximizes|a(ζ )|.

4. Construction of the Sylvester-like matrices

In this section, we specify three constructions of matricesS satisfying Hypo-
thesis 3.1.

4.1. Resultant matrices

The first approach is related to the resultants ofn + 1 polynomialsf0, . . . , fn in n
variables. The vanishing of the resultant over a projective varietyX of these polyno-
mials is the necessary and sufficient condition on the coefficients of the polynomials
f0, . . . , fn to have a common root inX (see [9]). Our presentation unifies several
known approaches under the same terminology of Sylvester map. In particular, we
will cover the cases whereX = Pn is the projective space of dimensionn, which
yields the classical resultant (see [15,28]), and whereX is a toric variety, which
yields the so-called toric resultant (see [2,9,26]). The resultant can be computed as
a divisor of the determinant of a map, which generalizes the Sylvester map for two
polynomials in one variable. LetV0, . . . ,Vn be then + 1 vector spaces generated
by monomialsxEi = {xα, α ∈ Ei}, whereEi is the set of the exponents,
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Ei = {βi,1, βi,2, . . .}.
LetV be the vector space generated by all the monomials of the polynomialsfi xβi ,
for βi ∈ Ei . This set of monomials is denoted byxF = (xβ)β∈F . We define the fol-
lowing map:

S : V0 × · · · × Vn →V

(q0, . . . , qn) 7→
n∑

i=0

fi qi. (4)

The matrixS of S in the monomial basis ofV0 × · · · × Vn andV is of the form
V0︷ ︸︸ ︷ Vn︷ ︸︸ ︷

V




xα1

·
·
·

xαN




· ·
· ·

xβ0,1f0 · · · · · · · · · · · · xβn,1fn · · ·
· ·
· ·


 .

It is decomposed intoS = [S0, . . . , Sn], whereSi represents the monomial multiples
of the polynomialfi . The rows of this matrix are indexed by the monomialsxF , so
that Hypothesis 3.1(1) is satisfied. The columns are indexed by the monomials in
xEi , the matrix is filled with the coefficients off0, . . . , fn so that the entry indexed
by xα ∈ xF andxβ ∈ xEi is filled by the coefficient ofxα in xβ fi (in particular the
entry is 0 ifxα does not belong toxβfi ).

In the classical case, we consider the construction due to Macaulay (see [15]).
Let d0, . . . , dn be the degree of the polynomialsf0, . . . , fn and letν = d0 + · · · +
dn − n. The setxF will be the set of all monomials of degree6 ν in the variables
x1, . . . , xn, andEi will be a subset of the monomials of degreeν − di so that the
mapS is well-defined.

In the toric case, we consider the support of the polynomialsfi , that is, the set of
monomials with non-zero coefficients infi , and we denote byCi the convex hull of
the exponents of these monomials (also called the Newton polytope offi ). In order
to construct the mapS that yields the toric resultant, we fix (at random) a direction
δ ∈ Qn. For any polytopeC, letCδ denote the polytope obtained fromC by removing
its facets whose normals have positive inner products withδ. Taking

Ei =

∑

j /=i

Cj


δ

and F =

∑

j

Cj


δ

allows us to define the desired mapS. We refer the reader to [2,9,26] for further
details.

Now, let us check, step by step, that Hypothesis 3.1 are satisfied. In the experi-
ments (cf. Section 5), we choose a linear form forf0. Here, we only assume thatf0
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contains a constant term. As all the monomials off0 xE0 are inV, this implies that
the set of the monomialsxF that index the rows contains the setxE0. Therefore, we
can partition the matrixS according to (2), so that

S0 =
(
A
C

)
and [S1, . . . , Sn] =

(
B
D

)
and Hypotheses 3.1(3) and 3.1(4) are satisfied.

In the classical case overPn, the setE0 is E0 = {(a1, . . . , an); 0 6 ai 6 di −
1}. For generic polynomialsf1, . . . , fn of degreen, this set is a basis ofA =
R/(f1, . . . , fn) (see [15]). In the toric case, the setE0 is a set of points in the
mixed cell of a subdivision of the (Minkowski) sum of the polytopesC1, . . . , Cn.
For generic polynomialsf1, . . . , fn with support inC1, . . . , Cn, this is a monomial
basis ofA = R/(f1, . . . , fn) (see [5,23]), and Hypothesis 3.1(2) is also satisfied.

To check if Hypothesis 3.1(5) holds, it is possible to specialize the coefficients of
the polynomialsf1, . . . , fn in such a way that the matrixD has a dominant diagonal.
Thus the determinant ofD, as a polynomial in the coefficients off1, . . . , fn, is not
identically zero. Consequently, it is not zero for generic values of these coefficients.

Since Hypothesis 3.1 are satisfied, we can apply the forward or implicit inverse
power iteration, for generic systems of equations of fixed degree or fixed support.
These resultant constructions take into account only the monomial structure of the
input polynomials, but not the values of their coefficients. It may happen, of course,
that for specific values of these coefficients, the matrixD would become singular.
In this case, we may use the construction described in Section 4.3, requiring a little
higher computational cost.

4.2. Overconstrained systems

The method for constructingS admits a natural generalization to overconstrained
but consistent polynomial systems, that is, to the systems of equationsf1 = 0, . . . , fm

= 0, with m > n, defining a finite number of roots. We obtain a substantial simplifi-
cation in the cases where such a system has only one or only a few roots (or pseudo
roots, see below). We still consider a map of the form

S : V0 × · · · × Vm →V

(q0, . . . , qm) 7→
m∑

i=0

fi qi,

such that the matrix of this map satisfies Hypothesis 3.1. Such a map can be con-
structed by using the techniques of the previous section and by adding new columns
corresponding to the multiples of the polynomialsfn+1, . . . , fm. This yields a rect-
angular matrix̃S1, from which we extract a submatrixR1, having as many rows, and
whose number of columns is exactly its rank. LetL be the list of polynomials corre-
sponding to these columns. Let us next choose a minimal cardinality subsetE0 ⊂ F
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of the exponents of the monomials such that〈xF 〉 = 〈xE0〉 ⊕ 〈L〉, (cf. [10,14]). This
yields a square matrixS, which satisfies Hypothesis 3.1.

A case of special interest is the case whereA is of dimension 1, so that there
is only one simple root,χ = (χ1, . . . , χn). A basis ofA is 1, and the matrix of
multiplication byxi is [χi]. Then for any matrixS satisfying Hypothesis 3.1 with
f0 = xi , A is a one-by-one matrix and we have[χi] = A − B D−1C. In this case, only
one solution of a linear system is required.

This occurs, for instance, in problems of reconstruction in Computer Vision,
where any pair of points, in correspondence to the images, gives a polynomial equa-
tion (see [8]). This is also the case for kinematic problems where more sensors
than needed are used, and in computational biology where the distances from an
atom to more than three other atoms are known. Furthermore, due to truncation
and round-off errors of the coefficients of the input polynomials, they define an
overconstrained system, which has no roots, but only pseudo roots, at which the
values off1(x), . . . , fm(x) are not equal to but close to zero. Even in this case, our
techniques yield an approximation to the solution of the exact equations.

4.3. Computing Sylvester matrices by using Gröbner basis

In this section, we assume that a reduced Gröbner basis(g1, . . . , gs) of I, for some
monomial order, refining the degree order, is available. For anyp ∈ R, letL(p) be
its leading monomial. We also assume that we know a decomposition of eachgi in
terms of the input polynomials

gi = λi,1mi,1fi,1 + λi,2mi,2fi,2 + · · · + λi,ki mi,ki fi,ki 1,

whereλi,j ∈ C, fi,j ∈ {f1, . . . , fm} andmi,j is a monomial ofR. We order these
terms in such a way thatL(mi,j fi,j ) > L(mi,j+1fi,j+1).

Let us denote byB0 = xE0 = (xα1, . . . , xαD) the set of all monomials that are not
in the ideal generated by(L(g1), . . . ,L(gs)). This set is a basis ofA = R/(f1, . . . ,

fm) = R/I (see [4]) and contains 1 ifZ(I) /= ∅.
We describe how to construct a Sylvester-type matrixS, satisfying Hypothesis 3.1,

with f0 = u0 + u1x1 + · · · + unxn. The set of monomialsF and a list of multiples
of the polynomialsf1, . . . , fm will be defined by induction as follows:

LetF0 = B0, L0 = ∅ and letF1 = F0 ∪ x1F0 ∪ · · · ∪ xnF0, L1 = ∅. Assume that
F0, . . . , Fn have been defined and note that they containB0. Then any monomial
xα in Fn − Fn−1 is a multiple of the initial monomialL(gc(α)) of gc(α) for some
c(α) ∈ {1, . . . ,m}: xα = nαL(gc(α)). Let

Ln+1,α = {nαmc(α),jfc(α),j ; j = 1, . . . , kc(α)}
and letFn+1,α be the set of all monomials of the polynomials of this set. Then we
define

Fn+1=
⋃

α∈Fn−Fn−1

Fn+1,α ∪ Fn,
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Ln+1=
⋃

α∈Fn−Fn−1

Ln+1,α ∪ Ln.

Lemma 4.1. There exists someK > 1 such that∀n > K, Fn = FK .

Proof. By construction, for alln in N, the set of monomialsFn is included into the
set of monomials, which precedes the monomialsximj,1 (andmj,1), for i = 1, . . . , n

andj = 1, . . . , s, according to the fixed ordering. By the hypotheses about the mo-
nomial ordering, this set is finite, so that the increasing sequenceFn is stationary, for
n > K. �

By construction, any polynomial inL := LK can be decomposed as a linear com-
bination of the monomials inF := FK . Let S̃1 be the coefficient matrix of the poly-
nomials inL, in this monomial basisxF .

By definition, any monomial ofxFn+1−Fn can be reduced by monomial multiples
of the polynomialsg1, . . . , gs (that is, by linear combinations of the polynomials in
Ln+1) to a linear combination of monomials inxFn . By induction, this shows that any
monomial inF can be reduced modulo the polynomials ofL to a linear combination
of monomials inB0. In other words,〈xF 〉 = 〈B0〉 ⊕ 〈L〉.

If we divide the matrix̃S1 into blocks as̃S1 = (R1
R′

1

)
, according to whether the rows

are indexed by the monomials inB0 or not, the decomposition〈xF 〉 = 〈B0〉 ⊕ 〈L〉
implies thatR′

1 is of maximal rank. LetS1 be the submatrix of̃S such that the corre-
sponding submatrix ofR′

1 is invertible. It is of the formS1 = (B
D

)
with D invertible.

Let S0 be the coefficient matrix of the polynomials(f0xα)α∈E0 in the monomial
basisF and letS = [S0, S1].

We easily check that Hypothesis 3.1 are satisfied.
This method is most interesting when we have to solve a polynomial system de-

pending on parameters, for various values of these parameters. The classical Gröbner
approach requires to recompute a Gröbner basis for each value of these parameters.
Moreover, it cannot be applied safely with floating point coefficients. With the ap-
proach we propose, it is sufficient to compute numerically a single Gröbner basis,
and the matrixS is used for the other values of the parameters, assuming that the geo-
metric properties of these systems do not change. Let us summarize our procedure.

Algorithm 4.2. Solution of a parameterized polynomial system under the variation
of the parameters.
1. Over a prime fieldZp for a fixed primep, compute a Gröbner basis of the given

polynomial system, for rational values of the parameters.
2. Construct the matrixS associated to the input system (and depending on the

parameters).
3. Substitute the value of the parameters inS.
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Table 1

N S D n k T (s)

s44 36 138 16 2 7 0.050
s442 165 821 32 3 6 0.151
s4422 715 3704 64 4 8 1.179
s455 364 1664 100 3 6 2.331
s2445 1820 8795 160 4 8 4.323
s22445 8568 41942 320 5 8 28.213

sq4 126 585 16 4 5 0.313
sq5 462 2175 32 5 44 2.135
sq6 1716 7973 64 6 52 49.397

sing 210 4998 21 2 14 0.438

kruppa 792 15822 1 5 1 0.698

4. If the matrixD is singular, then stop. Otherwise approximate the eigenvectors of
the matrixMt

a defined by (2) and (3) (cf. Section 3).

All steps of this algorithm can be applied by using either modular or floating point
arithmetic. Here again, the matrixS is structured and sparse, so that the eigenvectors
of Mt

a can be computed efficiently.

5. Experimental tests

We report the initial results of our experimentation with the implicit shifted in-
verse power method, applied for computing a selected root of a polynomial system.
In our experiments we defined the shifts dynamically, as the iteration converged
to a root. For solving the sparse linear systemS x = b, we used the library TNT3

developed by R. Pozo; more precisely, we used the GMRES solver with an ILU-pre-
conditionner (see [24] for more details on these solvers). The matrices are generated
by the C+ + library ALP4, which implements Macaulay’s construction of resultant
matrices. We plan to perform similar experiments based on the implementation of
toric resultant matrices by Emiris [2]. The results of the experiments are shown in
Table 1.

In Table 1,N is the dimension of the matrixS (that is, the matrix has sizeN × N),
S the number of non-zero entries of the matrixS, D the dimension ofA, n the num-
ber of variables,k the number of iterations required for an error less thanε = 10−4,
andT is the total time of the computation. This time is the “user” time, obtained by

3 Seehttp://math.nist.gov/tnt/.
4 Seehttp://www.inria.fr/saga/logiciels/ALP/.
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the unix commandtime. This experimentation has been carried out on a Dec Alpha
500 AU workstation with 512M of local memory.

The exampless44, . . . , s22445 are examples with a few monomials, where
Macaulay construction can be applied. The number of solutions is the product of
the degree. The first example is a system of two equations in two variables, both of
degree 4, the second is a system of three equations in three variables of degree 2, 4,
4, and so on.

The examplessq4, . . . ,sq6 correspond to the intersection of quadrics in a space
of dimension 4, 5, 6, with no point at infinity (this problem came from Signal
Processing).

The examplesing, corresponds to the singular points of the plane curve defined
by

p := x8 − 8x7y + 28x6y2 − 56x5y3 + 70x4y4 − 56x3y5

+ 28x2y6 − 8xy7 + y8 − 128x7 + 448x6y − 672x5y2

+ 560x4y3 − 280x3y4 + 84x2y5 − 14xy6 + y7 − 8x6

+ 48x5y − 120x4y2 + 160x3y3 − 120x2y4 + 48xy5 − 8y6

+ 224x5 − 560x4y + 560x3y2 − 280x2y3 + 70xy4 − 7y5

+ 20x4 − 80x3y + 120x2y2 − 80xy3 + 20y4 − 112x3

+ 168x2y − 84xy2 + 14y3 − 16x2 + 32xy − 16y2 + 14x

− 7y + 2

(see [3]). Such singular points are defined byp = 0, dx(p) = 0, dy(p) = 0. This
leads to an overconstrained system whose associated matrixS is of size 210. We
construct this matrix from the Macaulay matrix ofp, dx(p), dy(p) + dx(p) (which
is of rank 189), by replacing the first 210− 189= 21 columns by multiples of the
linear form x − 4. Here is a picture of the structure of the Macaulay matrix, the
non-zero entries represented by a point (see Fig. 1).

Though the polynomialp has many monomials, only 11% of the coefficients of
the matrixS are not zero. There are 21 singular points on this curve (which are all

Fig. 1. The Macaulay matrix ofp, dx(p), dy(p).
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real), and by this method we are able to select the point whose first coordinate is the
nearest to 4. Note that the matrix of multiplication by this linear form inA can be
computed by solving 21 systems associated to the matrixS.

The systemkruppa corresponds to the Kruppa equations of a reconstruction prob-
lem in Computational Vision (see [8]) reduced to an overconstrained system of six
quadrics in a space of dimension 5. We construct the Macaulay matrix associated to
these six equations and replace its first column by a multiple of a linear form. By
solving one system of the formS x = b, we obtain one coordinate of the solution.
The time needed to compute this coordinate is reported in the table.
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