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Quantum Drinfeld Hecke Algebras
Viktor Levandovskyy and Anne V. Shepler

Abstract. We consider finite groups acting on quantum (or skew) polynomial rings. Deformations of
the semidirect product of the quantum polynomial ring with the acting group extend symplectic reflec-
tion algebras and graded Hecke algebras to the quantum setting over a field of arbitrary characteristic.
We give necessary and sufficient conditions for such algebras to satisfy a Poincaré–Birkhoff–Witt prop-
erty using the theory of noncommutative Gröbner bases. We include applications to the case of abelian
groups and the case of groups acting on coordinate rings of quantum planes. In addition, we classify
graded automorphisms of the coordinate ring of quantum 3-space. In characteristic zero, Hochschild
cohomology gives an elegant description of the Poincaré–Birkhoff–Witt conditions.

1 Introduction

Drinfeld Hecke algebras arise in a variety of settings: for example, as symplectic re-
flection algebras, rational Cherednik algebras, and Lusztig’s graded version of the
affine Hecke algebra. These algebras (also known as graded Hecke algebras) are natu-
ral deformations of the skew group algebra (the semi-direct product algebra) formed
by a finite group G acting on a polynomial ring over some vector space V . They re-
flect the geometry of orbifold theory by serving as a noncommutative substitute for
the coordinate ring (the ring of invariant polynomials S(V )G) of the orbifold V/G
(see Etingof and Ginzburg [13]). These algebras were also used to prove a version of
the n! conjecture for Weyl groups (see Gordon [14]).

In this article we explore analogous deformations of a finite group acting on a
quantum polynomial algebra over a field of arbitrary characteristic. Let V be a finite
dimensional vector space over a field K. The quantum polynomial algebra SQ(V )
of V (also called the skew polynomial ring, or the coordinate ring of multiparameter
quantum affine space) is the associative K-algebra generated by a K-basis {v1, . . . , vn}
of V subject to the relations v jvi = qi jviv j for i < j for some (quantum) parameters
qi j in K∗:

SQ(V ) := K〈v1, . . . , vn〉/〈v jvi − qi jviv j : 1 ≤ i < j ≤ n〉.

We augment the quantum polynomial algebra with a finite group G acting linearly
on the vector space V . We introduce relations on the natural semi-direct product
algebra T(V )oG (for T(V ) the tensor algebra of V ) that set q-commutators of vectors
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in V to elements in the group algebra. We call the resulting K-algebra a quantum
Drinfeld Hecke algebra if it satisfies a Poincaré-Birkhoff-Witt (PBW) property (see
Definition 2.1).

We appeal to the theory of noncommutative Gröbner bases to investigate PBW
properties. Explorations of related algebras often use Bergman’s Diamond Lemma,
a cornerstone of noncommutative Gröbner bases theory [5]. We use Gröbner bases
theory here as a rigorous and elegant refinement of Bergman’s ideas. This refinement
is well suited to investigating PBW-like properties in a variety of settings. Indeed,
the constructive nature of Gröbner bases theory often verifies a PBW-like property
by explicitly giving a PBW-like basis; the theory also illuminates the failure of such
properties to hold by supplying natural substitutes for PBW-like bases. Note that
Gröbner bases theory emphasizes a fixed total well ordering on monomials, provid-
ing an expedient approach to non-noetherian algebras. Indeed, a Gröbner basis for a
generating set of relations defining an algebra may be finite for one choice of mono-
mial ordering but infinite for another choice; see Example 6.5. Moreover, Gröbner
bases theory is algorithmic with several available implementations, providing com-
putational aid to algebraic questions (on, e.g., ideal membership, kernels of algebra
and module homomorphisms, and free and projective resolutions).

Although quantum Drinfeld Hecke algebras extend symplectic reflection algebras
and graded Hecke algebras to the setting of quantum polynomial rings, our analysis
requires tools previously unused in investigating the nonquantum setting. Since we
are working over a field of arbitrary characteristic, many methods from the tradi-
tional theory of graded Hecke algebras no longer apply. (Note that the original proof
of the technique of Braverman and Gaitsgory [7] does not automatically apply in our
setting, as the group algebra KG may fail to be semi-simple; see [34] for an adapta-
tion of the ideas of Braverman and Gaitsgory for arbitrary group algebras, including
the modular case when the characteristic of the field K divides the order of the act-
ing group G.) The set of quantum parameters also prevents us from regarding the
algebra parameters as linear functions giving a wide class of uniform relations (see
Remark 2.6), and thus we demote traditional linear algebra in favor of the analysis
using noncommutative Gröbner bases.

After giving definitions (and examples) in Section 2, we show that every quan-
tum Drinfeld Hecke algebra defines a quantum polynomial algebra upon which the
group acts by automorphisms in Section 3. Tools from the theory of noncommuta-
tive Gröbner bases theory are given in Sections 4 and 5. In Section 6, we recall how
a Gröbner basis may be used to find a monomial K-basis for any quotient of a free
algebra by one of its ideals. We also discuss general quotient algebras and associated
graded algebras. (Some elementary algebraic properties of quantum Drinfeld Hecke
algebras are also observed in this section.) We apply this theory in Section 7 to prove
necessary and sufficient conditions for a factor algebra to define a quantum Drinfeld
Hecke algebra. In Section 8, we describe all quantum Drinfeld Hecke algebras aris-
ing from an abelian group (acting diagonally). We relate the Poincaré–Birkhoff–Witt
condition for quantum Drinfeld Hecke algebras to results in Hochschild cohomology
and deformation theory by Naidu and Witherspoon [29] in Section 9.

In Section 10, we discuss groups that act as automorphisms on the coordinate
ring of a quantum plane and classify all quantum Drinfeld Hecke algebras in two di-
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mensions. We describe the automorphism group of the coordinate ring of quantum
3-space in Section 11. (We discuss the cases when quantum parameters are roots-of-
unity explicitly.) Lastly, in Section 12, we demonstrate how to determine the com-
plete set of quantum Drinfeld Hecke algebras associated with one fixed (nonabelian)
group with a robust example.

2 Quantum Drinfeld Hecke Algebras

Let Q = (qi j | 1 ≤ i, j ≤ n) be a collection of arbitrary nonzero scalars in K and
consider a finite group G ⊂ GL(V ). Let {tg | g ∈ G} be a basis of the group algebra
KG and {v1, . . . , vn} a K-basis of V . Define an associative K-algebra HQ,κ generated
by

{v1, . . . , vn} ∪ {tg | g ∈ G}

subject to the following relations:

(a) tgth = tgh for all g, h in G,
(b) tgv = g(v)tg for all g in G and v in V ,
(c) v jvi = qi j viv j + κ(vi , v j) for 1 ≤ i, j ≤ n ,

where each parameter κ(vi , v j) lies in KG. Write

κ(vi , v j) =
∑
g∈G

κg(vi , v j)tg

for κg(vi , v j) in K. We identify the identity e of G and te of KG with 1 in K throughout
this article and we set G∗ := G \ {1}. We assume that 0 lies in N and take all tensor
products over K.

Definition 2.1 We call HQ,κ a quantum Drinfeld Hecke algebra if

B = {vα1
1 · · · vαn

n tg | αi ∈ N, g ∈ G}

is a K-basis for HQ,κ. We call B the standard PBW basis in this case and its elements
quasi-standard monomials.

One might alternatively call such algebras “quantum graded Hecke algebras” or
“skew Drinfeld Hecke algebras”. We use the phrase “PBW basis” in analogy with a
Poincaré–Birkhoff–Witt basis for universal enveloping algebras of Lie algebras. Note
that HQ,κ is a quantum Drinfeld Hecke algebra if and only if its associated graded
algebra is isomorphic to a skew group algebra SQ(V )#G (see Sections 4 and 6).

The braided Cherednik algebras of Bazlov and Berenstein [4] are special cases of
quantum Drinfeld Hecke algebras. If we set each qi j = 1 in the above construc-
tion of HQ,κ (and work over a field K of characteristic zero), we recover the classical
(non-quantum) theory of graded Hecke algebras, also called Drinfeld Hecke algebras
(see [17], for example), which include symplectic reflection algebras and rational
Cherednik algebras. These algebras were first defined by Drinfeld [12] for arbitrary
finite groups G. They were independently discovered and explored by Lusztig around
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the same time (see [25,26]) as graded versions of the affine Hecke algebra in the spe-
cial case that G is a Weyl group. (See [31] for basic properties of these algebras and
an argument that Lusztig’s algebras can be realized using Drinfeld’s construction.)
Etingof and Ginzburg [13] later rediscovered these algebras (from a viewpoint of
symplectic geometry and orbifold theory) for G acting symplectically. We give some
other examples with fixed quantum system of parameters.

Definition 2.2 A matrix Q = (qi j | 1 ≤ i, j ≤ n) with entries in K∗ is a quantum
system of parameters if qi j = q−1

ji and qii = 1 for any i, j.

Example 2.3 Set κ ≡ 0, G = 1, and let Q be a quantum system of parameters.
Then the factor algebra HQ,κ is just the quantum polynomial algebra SQ(V ).

Example 2.4 Again, let κ ≡ 0, G = 1, and let Q be a quantum system of parame-
ters. Assume that char K 6= 2 and set −Q = (−qi j | 1 ≤ i, j ≤ n). Then the factor
algebra H−Q,κ coincides with the quantum exterior algebra

∧
Q(V ) of quantum affine

space (corresponding to the quantum polynomial algebra SQ(V )) generated over K
by all products vi1 ∧ · · · ∧ vik (for 1 ≤ k ≤ n) with multiplication

vi ∧ v j = −q ji v j ∧ vi .

Although SQ(V ) has the standard PBW basis (e.g., see [9, Example 5.1] or Proposi-
tion 6.4), the algebra

∧
Q(V ) does not (as each vi ∧ vi = 0). (In fact, it is easy to

see that any quantum Drinfeld Hecke algebra with κ ≡ 0 is a quantum polynomial
algebra; see Proposition 3.5.)

Example 2.5 Let q, ω be roots of unity in K and let G be the subgroup of GL4(K)
generated by the diagonal matrix

h := diag(q2, ω, ω−1, q−2).

The K-algebra H generated by v1, v2, v3, v4, and th with relations

tgvi = g(vi)tg for 1 ≤ i ≤ n and g in G,

viv j = q v jvi for (i, j) 6= (2, 3),

v2v3 = q v3v2 + th

is a quantum Drinfeld Hecke algebra.

In Section 8, we describe all quantum Drinfeld Hecke algebras arising from abelian
groups acting diagonally. We classify all 2-dimensional quantum Drinfeld Hecke al-
gebras in Section 10. Section 12 gives examples of quantum Drinfeld Hecke algebras
arising from a nondiagonal group action.

Remark 2.6 (Bilinear Inextendability) We define parameters q, κ just on pairs of
basis elements vi , v j , but we could (artificially) extend to functions q : V × V → K
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and κ : V ×V → KG. This approach is generally not useful for constructing factor
algebras like those examined here (although it is helpful in translating results to the
setting of cohomology; see Section 9).

For example, suppose we were to extend relation (c) defining the algebra HQ,κ to
all pairs v,w in V using a bilinear function κ and some function q : V × V → K.
Then in HQ,κ, for any distinct i, j, k,

(vi + v j)vk = vivk + v jvk = q(vk, vi)vkvi + q(vk, v j)vkv j + κ(vk, vi + v j)

on one hand, while

(vi + v j)vk = q(vk, vi + v j)vk(vi + v j) + κ(vk, vi + v j)

on the other hand, forcing

q(vk, vi)vkvi + q(vk, v j)vkv j = q(vk, vi + v j)vkvi + q(vk, vi + v j)vkv j .

If HQ,κ has the standard PBW basis, we may equate coefficients:

q(vk, vi) = q(vk, vi + v j) = q(vk, v j).

This forces q to be constant on basis vectors, i.e., qi j = c for all i, j, for fixed c in K.
Note that q bilinear would generally imply that q is the zero function.

3 Quantum Polynomial Algebras, Quantum Determinants, and Skew
Group Algebras

We show in this section that every quantum Drinfeld Hecke algebra defines a quan-
tum polynomial algebra carrying an action of the group by automorphisms. We first
give an easy lemma describing automorphisms of quantum polynomial algebras in
terms of quantum minor determinants. Any automorphism h of the quantum exte-
rior algebra

∧
Q(V ) will act on the top degree piece K-span{v1 ∧ · · · ∧ vn} by a scalar

detQ(h) that one might call the quantum determinant of h. We extend this idea: If
a 2 × 2 matrix with entries a, b, c, d in K has determinant ad − bc, then we define
its quantum determinant to be ad − qbc, where q is the quantum parameter of a
2-dimensional quantum polynomial ring. We define a quantum minor analogously.

Definition 3.1 For a linear transformation h acting on V via h(v j) =
∑

i h j
i vi , we

define the quantum (i, j, k, l)-minor determinant of h as

deti jkl(h) := hi
kh j
` − qi jh

i
`h

j
k.

Lemma 3.2 A transformation h in GL(V ) acts as an automorphism on the quantum
polynomial algebra (with quantum system of parameters Q)

SQ(V ) := K〈v1, . . . , vn〉/〈v jvi = qi jviv j : 1 ≤ i, j ≤ n〉

if and only if

deti jk`(h) = −q`k deti j`k(h) for all 1 ≤ i, j, k, ` ≤ n .
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Proof We write h(v j)h(vi) − qi jh(vi)h(v j) =
∑

k,` deti j`k(h) vkv` and express as a
sum of standard monomials:

∑
k≤`

deti j`k(h) vkv` +
∑
k>`

deti j`k(h) vkv` =

∑
k<`

(deti j`k(h) + deti jk`(h) qk`) vkv` +
∑

k

deti jkk(h) vkvk.

Since the set of standard monomials {vα1
1 · · · vαn

n : αi ∈ N} is a K-basis of SQ(V )
(see, e.g., [9, Example 5.1] or Corollary 6.4), the last expression vanishes in SQ(V )
exactly when the coefficient of each vkv` (for k < `) and of each v2

k is zero, yielding
the result.

As an easy consequence (needed later), we observe the following corollary.

Corollary 3.3 A matrix h in GL(V ) acts as an automorphism on SQ(V ) if and only if
its transpose acts as an automorphism on SQ(V ).

Definition 3.4 We say that a parameter κ is a quantum 2-form if κ extends to an
element of HomK(

∧
Q(V ),KG), i.e., each κg defines an element of

(∧
Q(V )

)∗ ∼= ∧Q−1 (V ∗)

where Q−1 = (q−1
i j : 1 ≤ i, j ≤ n). In other words, κ is a quantum 2-form exactly

when κ(vi , vi) = 0 and κ(v j , vi) = −q−1
i j κ(vi , v j) for all i, j.

A PBW property on HQ,κ implies an underlying quantum polynomial algebra.

Proposition 3.5 Let HQ,κ be a quantum Drinfeld Hecke algebra. Then

• the parameter κ is a quantum 2-form,
• the matrix Q is a quantum system of parameters, and
• the group G acts upon the quantum polynomial algebra SQ(V ) by automorphisms.

Proof Since HQ,κ exhibits the standard PBW basis, each qii = 1 and each κ(vi , vi) =
0 as v2

i = qiiv2
i + κ(vi , vi). In fact, for all i and j,

v jvi = qi jviv j + κ(vi , v j) = qi j

(
q jiv jvi + κ(v j , vi)

)
+ κ(vi , v j)

= qi jq jiv jvi + qi jκ(v j , vi) + κ(vi , v j),

and hence qi j 6= 0, qi j = q−1
ji , and κ(v j , vi) = −q−1

i j κ(vi , v j). Thus κ is a quantum
2-form and Q defines a quantum system of parameters.
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Additionally, for all h in G and i 6= j,

0 = (thv j)vith−1 − th(v jvi)th−1

= h(v j)(thvi)th−1 − th

(
qi jviv j +

∑
g∈G

κg(vi , v j)tg

)
th−1

= h(v j)h(vi)− qi jh(vi)h(v j)−
∑
g∈G

κg(vi , v j)thgh−1

=
∑
k,`

deti j`k(h) vkv` −
∑
g∈G

κh−1gh(vi , v j)tg .

(3.1)

We separate the sum of deti j`k(h) vkv` over k > ` and exchange v` and vk to express
Equation (3.1) using only quasi-standard monomials:

0 =
∑
k<`

(
qk` deti jk`(h) + deti j`k(h)

)
vkv` +

∑
k

deti jkk(h) v2
k

−
∑
g∈G

(∑
k<`

deti jk`(h) κg(vk, v`)− κh−1gh(vi , v j)
)

tg .

Since HQ,κ has the standard PBW basis, the coefficient of each monomial vkv` and
v2

k in the above sum must be zero. Lemma 3.2 then implies that the action of G on V
extends to an action of G on SQ(V ) by automorphisms.

Recall that a matrix in GLn(K) is monomial if each column and each row has ex-
actly one nonzero entry. A subgroup G ≤ GL(V ) is called monomial with respect to
a fixed basis of V if it acts by monomial matrices.

Corollary 3.6 Suppose HQ,κ is a quantum Drinfeld Hecke algebra. If each qi j 6= 1
with i 6= j, then G is a monomial group.

Proof Fix h in G and write h(va) =
∑

b ha
bvb for each 1 ≤ a ≤ n. The previous

proposition and lemma imply that 0 = deti jkk(h) = (1−qi j)hi
kh j

k and hence hi
kh j

k = 0
for all i < j and all k.

For any K-algebra A upon which G acts via automorphisms, the skew group algebra
(sometimes called the crossed product algebra or smash product algebra) A#G is the
K-vector space A⊗ KG with multiplication given by

(a⊗ g)(b⊗ h) = ag(b)⊗ gh

for all a, b in A and g, h in G. We write atg for a⊗ g so that the relation in A#G (or in
HQ,κ) is simply (atg)(bth) = a g(b) tgh.

We may extend the action of G on V to a diagonal action on the tensor algebra
T(V ) (so that G acts as automorphisms). Then the algebra HQ,κ is just the factor
algebra

HQ,κ = T(V )#G/〈v jvi − qi jviv j − κ(vi , v j) : 1 ≤ i, j ≤ n〉,
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where we write ab for the product a ⊗ b in T(V ). Hence, relation (b) defining HQ,κ

extends to all of T(V ).
If HQ,κ is a quantum Drinfeld Hecke algebra, then Proposition 3.5 implies that G

acts as automorphisms on the underlying quantum polynomial algebra SQ(V ), and
thus one may form a skew group algebra SQ(V )#G. The existence of the standard
PBW basis here implies that the graded algebra associated with HQ,κ is isomorphic
to SQ(V )#G.

4 Noncommutative Gröbner Bases Theory

In this section, we recall the use of Gröbner bases in the theory of free associative
algebras. Definitions and formulations used in noncommutative Gröbner bases the-
ory often vary. Unfortunately, they differ widely among authors whose work we
wish to combine, so we give a concise, self-contained account in this section (and
the next) of just those facts necessary for our main results. Standard references in-
clude [16, 28, 35].

Let 〈X〉 = 〈x1, . . . , xn〉 be the free monoid in symbols xi . Its elements are the
neutral element (empty word) and nonempty words in the alphabet x1, . . . , xn called
monomials. Let K〈X〉 = K〈x1, . . . , xn〉 be the corresponding monoid algebra over
the field K (i.e., the free associative algebra over K). We call its elements polynomials.
Identify the empty word in 〈X〉 with 1 in K so that K〈X〉 is spanned by monomials as
a K-vector space. Elements of the form xα1

1 xα2
2 · · · xαn

n with αi in N are called standard
monomials.

A monomial ordering on K〈X〉 is a total ordering� on 〈X〉 compatible with mono-
mial multiplication (wu � wv and uw � vw whenever u � v for all u, v,w in 〈X〉)
that is a well-ordering. We use the standard definition of leading monomial lm( f )
and leading coefficient lc( f ) of a polynomial f in K〈X〉. We say that a monomial v
divides a monomial w if v is a proper subword of w, i.e., if there exist monomials
m1,m2 in 〈X〉 such that w = m1v m2. For a subset S ⊂ K〈X〉, the leading ideal of S is
the two-sided ideal L(S) = 〈lm(s) | s ∈ S \ {0}〉 in K〈X〉. Recall that a subset S ⊂ I
is a (two-sided) Gröbner basis of the ideal I with respect to � if L(S) = L(I). In other
words, for any nonzero f in I, there exists s in S with lm(s) dividing lm( f ).

We are interested in reduced Gröbner bases. We say that f in K〈X〉 is reduced with
respect to S ⊂ A if no monomial of f is contained in L(S). A subset S ⊂ K〈X〉 is called
reduced if for any s in S, lm(s) does not divide any monomial of any polynomial from
S except s itself.

In Lemma 4.2, we will see that a monic reduced Gröbner basis is unique. We first
define a normal form.

Definition 4.1 Let S be the set of all ordered subsets of K〈X〉 and let� be a mono-
mial ordering on K〈X〉. A map NF: K〈X〉 × S → K〈X〉, (p, S) 7→ NF(p, S) is called
a normal form on K〈X〉 (with respect to�) if for all f in K〈X〉 and S in S,

(i) NF(0, S) = 0,
(ii) NF( f , S) 6= 0 implies that lm(NF( f , S)) 6∈ L(S), and
(iii) f −NF( f , S) ∈ 〈S〉 .
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A normal form NF is called a reduced normal form if NF( f , S) is reduced with
respect to S for all f . A reduced normal form always exists.

Lemma 4.2 Let I ⊂ K〈X〉 be an ideal,� a monomial ordering, S ⊂ I a Gröbner basis
of I with respect to�, and NF( · , S) a normal form on K〈X〉 with respect to S and�.

(i) A polynomial f in K〈X〉 lies in I if and only if NF( f , S) = 0.
(ii) If J ⊂ K〈X〉 is an ideal with I ⊂ J, then L(I) = L( J) implies I = J. In particular,

S generates I as an ideal of K〈X〉.
(iii) If NF( · , S) is a reduced normal form, then it is unique up to a nonzero constant

multiple.

5 Computation of Gröbner Bases

We now explain how a Gröbner basis arises from an explicit construction of a reduced
normal form and illustrate with group algebras. Fix an arbitrary monomial ordering
� on K〈X〉 throughout this section.

Definition 5.1 We say that f1 and f2 in K〈X〉 overlap if there exist monomials
m1,m2 in X such that

(a) lm( f1)m2 = m1 lm( f2),
(b) lm( f1) does not divide m1 and lm( f2) does not divide m2.

In this case, the overlap relation of f1, f2 by m1,m2 is the polynomial

o( f1, f2,m1,m2) = lc( f2) f1m2 − lc( f1)m1 f2.

The overlap relation is a generalization of the s-polynomial from the theory of
commutative Gröbner bases (see, e.g., [18]). Note that by construction,

lm
(

o( f1, f2,m1,m2)
)
≺ lm( f2)m2 = m1 lm( f2).

Moreover, there are only finitely many overlaps between a fixed f1 and f2. Note also
that a polynomial f can overlap itself.

We define reduction (also called “inclusion overlap” or “spoly”, see [16,28]) and the
reduction algorithm, which provides a desirable coset representative of a polynomial
modulo an ideal.

Definition 5.2 For any nonzero f , u in K〈X〉 with lm(u) dividing lm( f ), define

NF( f , u) := f − lc( f ) lc(u)−1 ·m1 u m2,

where lm( f ) = m1 lm(u) m2 for monomials m1,m2 in X.

By construction, lm(NF( f , u)) ≺ lm( f ).

Definition 5.3 Let S be a subset of K〈X〉 and fix f in K〈X〉. Define complete reduc-
tion of f with respect to S to be the output NF( f , S) of the following procedure NF
applied to f in K〈X〉:



Quantum Drinfeld Hecke Algebras 883

(a) If f = 0, return f and stop.
(b) If the set S ′ := {u ∈ S : lm(u) divides lm( f )} is empty, return

lc( f ) lm( f ) + NF
(

f − lc( f ) lm( f ) , S
)
.

(c) Otherwise, choose some u in S ′, replace f by NF( f , u), and go back to step (a).

The next two lemmas show that complete reduction defines an algorithm and that
this algorithm is essentially independent of choices: f 7→ NF( f , S) is a well-defined
function up to a nonzero constant.

Lemma 5.4 The procedure NF terminates in a finite number of steps.

Proof The procedure NF applied to a nonzero polynomial f produces a (non-
unique) sequence of nonzero polynomials f = f0, f1, f2, . . . with strictly decreas-
ing leading monomials: lm( f ) � lm( f1) � lm( f2) � · · · . (Indeed, we ei-
ther apply Step (b) and set fi+1 = fi − lc( fi) lm( fi) (in order to recursively call
NF) or we apply Step (c) and set fi+1 = NF( fi , u) for some monomial u. In ei-
ther case, lm( fi−1) � lm( fi).) But � is a well-ordering, and thus the sequence
lm( f ), lm( f1), lm( f2), . . . is finite. The procedure thus terminates.

Lemma 5.5 Let S ⊂ I be a Gröbner basis of an ideal I ⊂ K〈X〉. Then NF( · , S) is a
reduced normal form on K〈X〉.

Proof Recall that NF(0, S) = 0 (see Definition 5.2). Suppose h = NF( f , S) for some
nonzero polynomial f . Then the reduction algorithm gives

f =
∑
u∈S

lc( f ) lc(u)−1 · au u bu + h,

where au, bu are monomials in 〈X〉 for each u in S. Note that f − h lies in 〈S〉 by
construction, and the claim holds for h = 0. Now suppose that h 6= 0. Then no
monomial in h is divisible by lm(u) for any u in S. Hence, lm(h) 6∈ L(S) and h is
reduced with respect to S as required. Moreover, lm( f ) = max<(au lm(u)bu, lm(h)).
Thus lm(h) = lm( f ) if and only if f = c · h + g for c ∈ K \ {0} and g ∈ 〈S〉 with
lm(g) ≺ lm( f ). Otherwise lm(h) ≺ lm( f ).

The following theorem provides the foundation for the generalized Buchberger’s
algorithm for the computation of Gröbner bases. Note that the corresponding al-
gorithm belongs to the family of so-called “critical pair and completion” algorithms
(see [8]).

Theorem 5.6 (e.g., [15]) Let S be a subset of K〈X〉. Then S is a Gröbner basis of the
ideal 〈S〉 if and only if for any nonzero f1, f2 in S and any overlap relation o of f1, f2

with some monomials m1,m2 in X,

NF
(

o( f1, f2,m1,m2), S
)
= 0.
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We will apply this theorem to determine necessary and sufficient conditions for
the set of relations defining HQ,κ to be a Gröbner basis of the ideal it generates in the
appropriate free algebra. In the meantime, we illustrate a computation of a Gröbner
basis on the group algebra of a finite group.

Proposition 5.7 Let G be a finite group. Then

KG ∼= K〈xg : g ∈ G〉/〈xe − 1, xgxh − xgh : g, h ∈ G〉
∼= K〈xg : g ∈ G∗〉/〈S〉

for S = {xgxh − xgh, x f x f−1 − 1 : f , g, h ∈ G∗, gh 6= e}. Let � be any monomial
ordering on K〈xg : g ∈ G∗〉 with xgxh � xgh for all g, h ∈ G∗. Then S is a reduced
Gröbner basis with respect to� of the ideal 〈S〉.

Proof We apply Theorem 5.6. Consider the polynomial p = xgxh − xgh for fixed
g, h ∈ G∗. Then lm(p) = xgxh has overlaps with leading monomials of the following
four types of polynomials from S:

(a) xhx f − xh f for any f ∈ G∗; the overlap relation

o = (xgxh − xgh)x f − xg(xhx f − xh f ) = xgxh f − xghx f

reduces to NF(o) = xgh f − xgh f = 0.
(b) x f xg − x f g for any f ∈ G∗; the overlap relation

o = x f (xgxh − xgh)− (x f xg − x f g)xh = x f gxh − x f xgh

reduces to NF(o) = x f gh − x f gh = 0.
(c) xhxh−1 − 1 for any h ∈ G∗; the overlap relation reduces to zero as in part (a).
(d) xg−1 xg − 1 for any g ∈ G∗; the overlap relation reduces to zero as in part (b).

Note that there are several modern computer algebra systems implementing
the theory of noncommutative Gröbner bases over free algebras: BERGMAN [3],
MAGMA [6], GBNP [10] (a package for GAP4), NCGB [19] (a package for
MATHEMATICA, partially written in C) and also SINGULAR:LETTERPLACE [21, 22].

6 Poincaré–Birkhoff–Witt Bases

A natural question arises when working with factor algebras: What properties must
a set of relations exhibit to guarantee a PBW basis? In this section, we recall how one
may establish a PBW property using Gröbner bases and construct a basis for the as-
sociated graded algebra. We encourage the reader to compare Huishi Li’s interesting
and well-written text [24] on noncommutative Gröbner bases and associated graded
algebras (which appeared in print after this article was completed). Some of the ideas
are similar, although we are working in a different context (free algebras over group
algebras).

Let I be an arbitrary ideal in the free algebra K〈X〉. We say that a set M of mono-
mials in 〈X〉 is a monomial K-basis of a factor algebra K〈X〉/I if the cosets m + I for m
in M form a K-vector space basis of K〈X〉/I. We begin by constructing a monomial
K-basis.
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Definition 6.1 Let I be a two-sided ideal of K〈X〉 and � any monomial ordering
on K〈X〉. Define B� as the complement of the leading ideal L(I):

B(�) := {monomials m ∈ 〈X〉 : m /∈ L(I)} .

We call B� the Gröbner coset basis of K〈X〉/I.

The term Gröbner coset basis is justified by the following (folklore) proposition
and the fact that B(�) is explicitly constructed from a Gröbner basis.

Proposition 6.2 Let I be a two-sided ideal of K〈X〉 and let� be any monomial order-
ing on K〈X〉. Then B(�) is a monomial K-basis of K〈X〉/I.

Proof Let B ⊂ 〈X〉 be any set of monomials. Since L(I) is a monomial ideal, B + L(I)
is a K-basis of K〈X〉/L(I) if and only if B = B(�). Any a in K〈X〉 is equivalent to the
normal form NF(a, S) modulo I, where S is a reduced Gröbner basis of I. But since
S and NF are reduced, every NF(a, S) lies in SpanKB(�) by definition. Hence, B(�)

spans K〈X〉/I as a K-vector space. The set B(�) is also K-independent modulo I: if
any finite linear combination of monomials in B(�) would lie in I, then its leading
monomial would lie in L(I) ∩ B(�) = ∅.

Gröbner technology allows one to describe the explicit shape of relations lending
themselves to a K-basis of standard monomials.

Proposition 6.3 Let I be a two-sided ideal of K〈X〉. Suppose there exists a monomial
ordering� with respect to which I has reduced Gröbner basis S of the form

S = {x jxi − pi j : 1 ≤ i < j ≤ n}

for some pi j in K〈X〉 with x jxi � lm(pi j) for each i < j. Then the factor algebra
K〈X〉/I has monomial basis {xα1

1 · · · xαn
n | αi ∈ N}.

Proof Let S be a reduced Gröbner basis of I with respect to any monomial ordering
�. Then the leading ideal L(S) consists of all non-standard monomials if and only if
L(S) is generated by x jxi for 1 ≤ i < j ≤ n (since L(S) is a monomial ideal). As S is
reduced, this is equivalent to S = {x jxi − pi j : x jxi � lm(pi j)}. Thus, B� is the set
of standard monomials if and only if S has the given form. The result then follows
from Proposition 6.2.

The last proposition gives an immediate proof of the well-known fact that quan-
tum polynomial algebras satisfy a PBW property.

Corollary 6.4 Let S = {v jvi − qi jviv j : 1 ≤ i < j ≤ n} ⊂ K〈v1, . . . , vn〉. Then
for any monomial ordering � on K〈v1, . . . , vn〉, S is a Gröbner basis of 〈S〉. Hence
{vα1

1 · · · vαn
n | αi ∈ N} is a monomial K-basis of SQ(V ) = K〈v1, . . . , vn〉/〈S〉.

Example 6.5 Consider A = K〈x, y〉/〈xy− y2〉. Suppose� is any monomial order-
ing of K〈x, y〉with x � y. Then xy � y2 and {xy− y2} is a Gröbner basis of the ideal
I it generates with respect to �. The Gröbner coset basis, B(�) = {yaxb : a, b ∈ N},



886 V. Levandovskyy and A. V. Shepler

is a monomial K-basis of K〈x, y〉/I, as Proposition 6.3 implies. On the other hand,
the set of standard monomials {xa yb : a, b ∈ N} does not form a monomial K-basis
of K〈x, y〉/I, since, e.g., xy + 〈xy − y2〉 = −y2 + 〈xy − y2〉.

Now consider instead a monomial ordering > on K〈x, y〉 with y > x. Then
y2 > xy, and the Gröbner basis S of 〈−y2 + xy〉 with respect to > is an infinite
set, S = {yxn y − xn+1 y : n ∈ N} (see [35]). Notice that x2, xy, yx all lie in the
Gröbner coset basis B(>), as they do not lie in the ideal of leading monomials of S. By
Proposition 6.2, the Gröbner coset basis B(>) is a monomial K-basis of K〈x, y〉/I, yet
it is not a Poincaré–Birkhoff–Witt basis (as it contains x2, xy, yx). Note that {xy−y2}
is not a Gröbner basis of the ideal it generates with respect to >.

The Poincaré–Birkhoff–Witt theorem for universal enveloping algebras of Lie al-
gebras has several possible analogs in the setting of finitely presented associative
K-algebras. Applying a fixed permutation to the indices in the set of standard mono-
mials xα1

1 · · · xαm
m may yield a monomial K-basis for K〈X〉/I for some permutations

but not others, as we saw in the last example. We appeal to the associated graded
algebra. Let A = K〈X〉/I be an arbitrary factor algebra (with I a two-sided ideal in
K〈X〉). Let A = {Ai : i ≥ −1} be an ascending N-filtration of A. Note that any
N-filtration on K〈X〉 (for example, by degree) induces an N-filtration on a factor al-
gebra of K〈X〉. Recall that the associated graded algebra GrA(A) of A with respect to
the filtration A is

Gr(A) = GrA(A) =
⊕
i∈N

Ai /Ai−1 .

One may choose any K-vector space (direct sum) complement to Ai−1 in Ai to obtain
a vector space isomorphism, A ∼= Gr(A).

We say that any f in K〈X〉 has A-degree d ≥ 0 in N whenever f + I ∈ Ad, but
f + I /∈ Ad−1, and we write degA( f ) = d in this case. Set degA( f ) = −∞ for any f
in I. We call a monomial ordering� on K〈X〉 compatible with the filtration A if

degA( f ) > degA( f ′) implies lm( f ) � lm( f ′)

for all f , f ′ in K〈X〉. Note that many compatible monomial orderings exist for a fixed
N-filtration on A. We say a set M of monomials in K〈X〉 is a monomial K-basis of the
associated graded algebra Gr(A) if the elements m + I + AdegA(m)−1 for m in M form
a K-basis of Gr(A), and we record a straightforward observation.

Proposition 6.6 Let K〈X〉/I be an N-filtered algebra.

(i) Any monomial K-basis of Gr(K〈X〉/I) is also a monomial K-basis of K〈X〉/I.
(ii) The set B(�) is a monomial K-basis for both K〈X〉/I and Gr(K〈X〉/I), for any

monomial ordering� compatible with the N-filtration.

Proof One may check directly that the set of m + I for m in a monomial K-basis of
Gr(A) spans A = K〈X〉/I and is linearly independent. Now suppose some nonzero,
finite, K-linear combination of monomials mi in B(�) has degree d with respect to
the filtration. Then the compatibility of � and the filtration force each deg(mi) ≤
d. By Proposition 6.2, B(�) is a monomial K-basis of A. Hence for each d, the set
{m + I : m ∈ B(�), deg(m) ≤ d} spans Ad, and {m+I +Ad : m ∈ B(�), deg(m) = d}
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spans Ad/Ad−1 over K. This set is also K-linearly independent. If any nonzero finite
linear combination of monomials in B(<) of deg d defined the zero class in Ad/Ad−1,
the degrees of all the monomials in the combination would be d − 1 instead of d.
Thus B(�) is also a K-monomial basis for Gr(A).

In the special case that our factor algebra is H = HQ,κ, we may relate the PBW
property of the original algebra to that of the quantum polynomial algebra. Formally,
we filter the free associative algebra

F = K〈v1, . . . , vn, tg : g ∈ G∗〉 =
∞⊕
i=0

Fi

by assigning degree 0 to all tg (for g in G) and degree 1 to all v in V and consider the
associated graded algebra

Gr H :=
n⊕

i=0
Hi/Hi−1,

where Hi is the image of Fi under the projection F → H. Assuming that Q is a
quantum system of parameters, the graded algebra GrH is isomorphic to a quotient
of the quantum polynomial ring SQ(V )#G, and H has the standard PBW basis if and
only if GrH and SQ(V )#G are isomorphic (as graded algebras). In fact, Naidu and
Witherspoon [29] observe that every quantum Drinfeld Hecke algebra is isomorphic
to a formal deformation of SQ(V )#G.

We end this section by recording a few other facts about quantum Drinfeld Hecke
algebras.

Theorem 6.7 If HQ,κ is a quantum Drinfeld Hecke algebra, then

(i) HQ,κ is Noetherian;
(ii) HQ,κ is an integral domain if and only if G is trivial;
(iii) the Gel’fand–Kirillov dimension of HQ,κ is

GKdimHQ,κ = n + GKdim K;

(iv) if |G| is not divisible by char K, then the global homological dimension of HQ,κ is
at most n.

Proof
(i) Since SQ(V ) is Noetherian (e.g., see [9]), so is SQ(V )#G (see [30, Proposi-

tion 1.6]). Then as GrHQ,κ
∼= SQ(V )#G, the filtered algebra HQ,κ is as well (see,

e.g., [27]).
(ii) In KG, 0 = 1 − (tg)d = (1 − tg)(1 + tg + · · · + tgd−1 ) for any g ∈ G of order

d > 1.
(iii) Consider the filtration {Hk : k ≥ −1} of H = HQ,κ. Let d = |G|. Then

lim supk→∞ logk(kn d
n! + · · · ) = n, as the PBW property implies that

dimK Hk =

(
k + n

n

)
· d = kn d

n!
+ (lower order terms).
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(iv) In the non-modular case (see [27, Theorem 7.5.6]),

gl.dim(SQ(V )#G) = gl.dim(SQ(V )) = n .

Then gl.dim(HQ,κ) ≤ gl.dim(GrHQ,κ) = n (by [27, Theorem 7.6.18]), since
GrHQ,κ

∼= SQ(V )#G.

Remark 6.8 One might ask about the possibility of grading HQ,κ directly. The
group algebra KG is graded if and only if the graded degree (weight) of each tg is 0.
The relation tgvk = g(vk)tg in HQ,κ is graded if all vi have the same weight, say 1. But
the relation v jvi = qi jviv j + κ(vi , v j) is graded only in two cases: either the weight of
every vk is zero or each κ(vi , v j) is zero, since otherwise the graded degree of κ(vi , v j)
is zero while the graded degree of v jvi − qi jviv j is 2. In the first case, HQ,κ is trivially
graded (all weights zero). In the second case, HQ,κ = SQ(V )#G.

7 Conditions on Parameters

In this section, we deploy the theory of Gröbner bases to rigorously establish neces-
sary and sufficient conditions for HQ,κ to define a quantum Drinfeld Hecke algebra.
We write the factor algebra HQ,κ as F/〈R ′〉, where F is the free associative K-algebra

F = K〈v1, . . . , vn, tg | g ∈ G∗〉

and 〈R ′〉 is the ideal in F generated by relations defining HQ,κ,

R ′ =
{

tgth − tgh, tgvi − g(vi)tg , v jvi − qi jviv j − κ(vi , v j) |

g, h ∈ G∗, 1 ≤ i, j ≤ n
}
.

Moreover, let us define the smaller set of relations

R =
{

tgth − tgh, tgvi − g(vi)tg , v jvi − qi jviv j − κ(vi , v j) |

g, h ∈ G∗, 1 ≤ i < j ≤ n
}
.

Before expressing the PBW property of HQ,κ in terms of a Gröbner basis, we must
ensure that the given monomial ordering is compatible.

Definition 7.1 Consider a monomial ordering� on the free algebra F that satisfies
v1 � · · · � vn � tg for all g ∈ G∗. We say that � preserves the rewriting procedure of
relations of HQ,κ if

• tgth � tgh for all g, h ∈ G∗,
• v jvi � tg for all i, j and g ∈ G∗,
• v jvi � viv j for all i < j (“first misordering preference”), and
• tgvi � v jtg for all i, j and g ∈ G∗ (“second misordering preference”).
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Remark 7.2 A monomial ordering which preserves the rewriting procedure always
exists. One example can be constructed as follows. We assign degree 1 to each tg for
g in G∗ and to each vi for 1 ≤ i ≤ n. Two monomials in F are first compared by
their total degree. In the case of equal degrees, misordering preferences are applied.
If two monomials are of the same total degree and no misordering preference can be
applied, we compare monomials further with left lexicographical ordering.

Proposition 7.3 Suppose� is any monomial ordering on F with v1 � · · · � vn � tg

that preserves the rewriting procedure of HQ,κ. If R is a Gröbner basis of 〈R〉 with respect
to�, then F/〈R〉 has monomial K-basis

B = {vα1
1 · · · vαn

n tg | α ∈ Nn, g ∈ G} .

Proof The set of leading monomials of R in F is

L := {v jvi , tgvi , tgth | g, h ∈ G∗, 1 ≤ i < j ≤ n},

and B(�) = 〈X〉 \ (〈X〉 ∩ 〈L〉) = B. Thus if R is a Gröbner basis of 〈R〉, then 〈L〉 =
L(R) = L(〈R〉) and B is a monomial K-basis of F/〈R〉 by Proposition 6.2.

We now give conditions for R to be a Gröbner basis.

Theorem 7.4 Let � be any monomial ordering on F with v1 � · · · � vn � tg that
preserves the rewriting procedure of HQ,κ. Then R is a Gröbner basis of 〈R〉 with respect
to� if and only if for all g, h in G and 1 ≤ i < j < k ≤ n,

0 =
(

qikq jk hvk − vk

)
κh(vi , v j) +

(
q jkv j − qi j hv j

)
κh(vi , vk)(i)

+
(

hvi − qi jqikvi

)
κh(v j , vk),

g(v j)g(vi) = qi jg(vi)g(v j), and(ii)

κh−1gh(vi , v j) =
∑
k<`

deti jkl(h)κg(vk, v`).(iii)

Moreover, if R is a Gröbner basis, it is reduced.

Proof We derive necessary and sufficient conditions under which R is a Gröbner
basis of the ideal it generates in the free associative algebra F using Theorem 5.6. We
examine all overlap polynomials o = o( f1, f2,m1,m2) with f1, f2 in R and m1,m2

monomials in F. Setting the complete reduction NF(o,R) of each overlap to zero in
F gives a set of necessary and sufficient conditions for R to be a Gröbner basis of the
ideal 〈R〉 in F.

By Lemmas 5.5 and 4.2, the algorithm NF produces a reduced normal form and
hence its output is unique up to a nonzero constant. Thus the algorithm NF gives a
result independent (up to a nonzero scalar) of any choices in the algorithm. We forgo
the explicit computations and just record the results here.

Since the set of relations of the group algebra KG forms a Gröbner basis of the ideal
it generates in the free algebra K〈tg | g ∈ G∗〉 (by Proposition 5.7, for example), we
are left with only three kinds of possibly nonzero overlaps between elements from R:
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(a) There is an overlap relation between thtg − thg and tgv − g(v)tg for any v = vi

and g, h in G, namely,

o = (thtg − thg)v − th(tgv − g(v)tg) .

The complete reduction algorithm applied to o = −thgv + thg(v)tg yields zero:
NF(o,R) = 0 for this type of overlap.

(b) There is an overlap relation between elements vkv j − q jkv jvk − κ(v j , vk) and
v jvi − qi jviv j − κ(vi , v j) for distinct 1 ≤ i, j, k ≤ n obtained by multiplying the first
on the right by vi and the second on the left by vk. Applying the complete reduction
algorithm gives NF(o,R) as the non-degeneracy expression (see [23])∑

g

(
qikq jkg(vk)− vk

)
ai j

g tg +
(

q jkv j − qi jg(v j)
)

aik
g tg +

(
g(vi)− qi jqikvi

)
a jk

g tg

(where we abbreviate ai j
g := κg(vi , v j)), which is zero in F if and only if

0 = (qikq jkgvk − vk)κg(vi , v j) + (q jkv j − qi jgv j)κg(vi , vk)

+ (gvi − q(i, j)qikvi)κg(v j , vk)

for each g in G. This is precisely condition (i) of the theorem.
(c) For all h in G and i 6= j, there is an overlap relation o between thv j − h(v j)th

and v jvi − qi jviv j − κ(vi , v j) obtained by multiplying the first on the right by vi and
the second on the left by th:

o = th

(
v jvi − qi jviv j − κ(vi , v j)

)
−
(

thv j − h(v j)th

)
vi

= −qi jthviv j − thκ(vi , v j) + h(v j)thvi .

The complete reduction algorithm reduces o to

NF(o,R) =
∑
k<`

(
qk` deti jk`(h) + deti j`k(h)

)
vkv` th +

∑
k

deti jkk v2
k th

+
∑
g∈G

(∑
k<`

deti jk`(h) κg(vk, v`) − κh−1gh(vi , v j)
)

tgh.

(7.1)

But NF(o,R) vanishes in F exactly when the coefficient of each monomial in Equa-
tion (7.1) vanishes. Lemma 3.2 implies that the coefficient of each vkv`tgh and each
v2

mtgh vanish in Equation (7.1) if and only if condition (ii) of the theorem holds. The
coefficient of each tgh in Equation (7.1) vanishes for all i 6= j exactly when condition
(iii) of the theorem holds.

Remark 7.5 Observe that if HQ,κ has the standard PBW basis, then conditions (i),
(ii), (iii) for i < j < k in the above theorem are equivalent to conditions (i), (ii), (iii)
with arbitrary indices i, j, k. Indeed, from the definition of quantum minor,

det jikl(h) = −q ji deti jkl(h)
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for all h in G. If HQ,κ has the standard PBW basis, then Proposition 3.5 implies in
addition that κ(v j , vi) = q−1

i j κ(vi , v j). These two facts allow us to replace increasing
indices by arbitrary indices in the conditions of the theorem when it might be helpful.

We now use the last theorem and the connection between Gröbner bases and stan-
dard bases in the last section to show that HQ,κ = F/〈R ′〉 has the standard PBW basis
if and only if the conditions of the last theorem hold. (We will see in Section 9 that
these conditions have a natural interpretation in terms of Hochschild cocycles.)

Theorem 7.6 The factor algebra HQ,κ is a quantum Drinfeld Hecke algebra if and
only if the following four conditions hold:

(i) the matrix Q is a quantum system of parameters and G acts on the quantum poly-
nomial algebra SQ(V ) as automorphisms;

(ii) the parameter κ defines a quantum 2-form:

κ(vi , v j) = −q−1
ji κ(v j , vi) for distinct i, j;

(iii) for all h in G and 1 ≤ i < j < k ≤ n,

0 =
(

qikq jk hvk − vk

)
κh(vi , v j) +

(
q jkv j − qi j hv j

)
κh(vi , vk)

+
(

hvi − qi jqikvi

)
κh(v j , vk);

(iv) for all g, h in G and all 1 ≤ i < j ≤ n,

κh−1gh(vi , v j) =
∑
k<`

deti jkl(h)κg(vk, v`).

Proof Fix any monomial ordering � on F which satisfies the rewriting procedure
with v1 � v2 � · · · vn � tg (see Remark 7.2 for an explicit choice). By Theorem 7.4,
the conditions of the theorem imply that R is a Gröbner basis of the ideal it generates
and that HQ,κ = F/〈R ′〉 = F/〈R〉. Thus HQ,κ has the standard PBW basis by
Proposition 7.3.

Conversely, assume that HQ,κ has the standard PBW basis. Proposition 3.5 implies
conditions (i) and (ii) and thus HQ,κ = F/〈R ′〉 = F/〈R〉. We saw in the proof of
Theorem 7.4 that the overlap polynomial o of any elements in R has normal form
NF(o) lying in spanK(B). But each NF(o) lies in 〈R〉 as well (since each overlap o
does). Thus each NF(o) gives a linear dependence modulo 〈R〉 among elements of
B. As B is a standard PBW basis, each NF(o) must then be zero in the free algebra F.
Thus R is a Gröbner basis of the ideal it generates by Theorem 5.6. The result then
follows from Theorem 7.4.

Theorem 7.6 immediately implies (set κ ≡ 0) the following corollary.

Corollary 7.7 Suppose G acts as automorphisms on a quantum polynomial algebra
SQ(V ). Then B = {vα1

1 · · · vαn
n tg | αi ∈ N, g ∈ G} is a monomial K-basis for SQ(V )#G.
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Remark 7.8 Fix some q in K and suppose qi j = q for all 1 ≤ i < j ≤ n. Then for
all i, j, k, the first part of condition (iii) of Theorem 7.6 is equivalent to

0 = (q2gvk − vk)κg(vi , v j) + q(v j − gv j)κg(vi , vk) + (gvi − q2vi)κg(v j , vk).

Remark 7.9 Condition (iii) from Theorem 7.6 can be written explicitly in terms of
the entries of any matrix h in G. Again, fix scalars ha

b in K with h(va) =
∑

b ha
bvb and

abbreviate ai j
g for κg(vi , v j). Then condition (iii) holds exactly when

• 0 = (qikq jkhk
k − 1)ai j

g − qi jh
j
kaik

g + hi
ka jk

g ,

• 0 = qikq jkhk
ja

i j
g + (q jk − qi jh

j
j)aik

g + hi
ja

jk
g ,

• 0 = qikq jkhk
i ai j

g − qi jh
j
i aik

g + (hi
i − qi jqik)a jk

g , and

• 0 = qikq jkhk
`a

i j
g − qi jh

j
`a

ik
g + hi

`a
jk
g

for all g in G, all i < j < k, and any ` not in {i, j, k}.

8 Abelian Groups

In this section, we assume G in GLn(K) is abelian, acting diagonally on v1, . . . , vn.
Let χi : G → K∗ be the linear character recording the i-th diagonal entry, i.e., gvi =
χi(g)vi for all g in G and 1 ≤ i ≤ n. We deform the skew group algebra SQ(V )#G by
setting each q-commutator viv j − q jiv jvi to a group element g whose i-th and j-th
entries are inverse and whose k-th entry is the scalar that arises upon interchanging
viv j and vk in the quantum algebra SQ(V )#G:

(viv j)vk = (qkiqk j) vk(viv j).

In fact, we will take linear combinations of such group elements g and also insist that
every element in G has inverse i, j entries: χi = χ−1

j . Indeed, we apply Theorem 7.6
carefully for diagonal actions to deduce the following corollary.

Corollary 8.1 Suppose G is abelian acting diagonally. Then HQ,κ is a quantum Drin-
feld Hecke algebra if and only if the following hold:

• Q is a quantum system of parameters;
• κ is a quantum 2-form;
• for all g in G and i 6= j, κg(vi , v j) 6= 0 implies that χi = χ−1

j and χk(g) = qki qk j

for all k 6= i, j.

The next proposition gives a complete description of quantum Drinfeld Hecke
algebra in the abelian setting.

Proposition 8.2 Suppose G is an abelian group acting diagonally on the basis
v1, . . . , vn. Then the set of quantum Drinfeld Hecke algebras comprises all factor al-
gebras of the form

K〈v1, . . . , vn〉#G
/〈

v jvi − qi jviv j −
∑

g∈Gi j

c i j
g g : 1 ≤ i < j ≤ n with χi = χ−1

j

〉
where Gi j = {g ∈ G : χk(g) = qkiqk j for all k 6= i, j} and the c i j

g are arbitrary scalars
in K.
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Remark 8.3 Suppose HQ,κ is a quantum Drinfeld Hecke algebra with G acting

diagonally on v1, . . . , vn. Fix q in K and suppose qi j = q for all i < j. Then if c ji
g 6= 0

in the last corollary, g is a diagonal matrix

g = diag(q2, . . . , q2, c, 1, . . . , 1, c−1, q−2, . . . , q−2)

with entries c and c−1 at i-th and j-th locations, respectively, for some c ∈ K.

Example 8.4 Let q be a primitive odd k-th root-of-unity in K and let G be the group
of order k generated by the diagonal matrix

g = diag(q2, 1, q−2).

Then the K-algebra H generated by symbols v1, v2, v3, tg with relations

tk
g = 1, tgv1 = q2 v1tg , tgv2 = v2tg , tgv3 = q−2 v3tg ,

v2v1 = q v1v2, v3v2 = q v2v3, v3v1 = q v1v3 +
k∑

i=1

cit
i
g ,

for arbitrary constants ci in K, is a quantum Drinfeld Hecke algebra.

See Naidu and Witherspoon [29] for an explicit description of the related Hochs-
child cohomology (and the cocycles defining these algebras) for groups acting diag-
onally in characteristic zero.

9 Hochschild Cohomology

Using results of Naidu and Witherspoon [29], one may interpret the conditions of
Theorem 7.6 in terms of the Hochschild cohomology of the associated skew group
algebra, HH

r
(SQ(V )#G). We assume K = C (the complex numbers) in this section

and fix a quantum system of parameters Q = (qi j | 1 ≤ i, j ≤ n) defining a quantum
polynomial algebra SQ(V ). Recall that Hochschild cohomology is a generalization of
group cohomology to a bimodule setting: For a K-algebra C , HH

r
(C) = Ext

r
Ce (C,C)

where Ce is the enveloping algebra C ⊗Cop.
We may regard the quantum exterior algebra

∧
Q(V ) (see Example 2.4) as a factor

algebra of a quantum polynomial algebra with respect to a nearly opposite set of
scalars: ∧

Q
(V ) = SQ ′(V )/〈v2

1, . . . , v
2
n〉,

where Q ′ = (q ′i j | 1 ≤ i, j ≤ n) is the quantum system of parameters with q ′i j = −qi j

for i 6= j and q ′ii = 1 for each i. Proposition 3.2 (together with Corollary 3.3)
applied to SQ ′(V ) then easily implies the following two observations (where ht is the
transpose of h).
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Corollary 9.1 The group G acts as automorphisms on
∧

Q(V ) if and only if for all h
in G,

(i) deti jk`(h) = q`k deti j`k(h) for all 1 ≤ i, j, k, ` ≤ n, and
(ii) deti jkk(ht ) = 0, for all k and i < j.

Corollary 9.2 G acts on as automorphisms on both SQ(V ) and on
∧

Q(V ) if and only
if for all h in G,

(i) deti jkl(h) = 0 for all i, j, k, l, and
(ii) deti jkk(ht ) = 0 for all k and i < j.

As in Shepler and Witherspoon [32, 33] (in the nonquantum setting), Naidu and
Witherspoon recommend associating a Hochschild cocycle with the parameters Q, κ
defining a factor algebra HQ,κ. Any quantum 2-form κ (see Proposition 3.5) extends
to an element of

HomK

( 2∧
Q

(V ), SQ(V )#G
)
∼= HomSQ(V )e

(
SQ(V )e ⊗

2∧
Q

V, SQ(V )#G
)
,

and thus defines a 2-cochain in the theory of Hochschild cohomology

HH
r
(SQ(V ), SQ(V )#G)

computed using a quantum Koszul resolution on SQ(V ) (see [29]). But (see [29,
Theorem 3.5])

HH
r(

SQ(V ), SQ(V )#G
)G ∼= HH

r
(SQ(V )#G).

Thus, one wonders: When does κ define a class in the Hochschild cohomology
HH

r
(SQ(V )#G), the cohomology theory detecting all algebraic deformations of

SQ(V )#G? Results of Naidu and Witherspoon [29] imply the following proposition.

Proposition 9.3 Assume G acts as automorphisms on both
∧

Q(V ) and SQ(V ) and κ
is a quantum 2-form.

• Condition (iii) of Theorem 7.6 holds if and only if κ is a cocycle.
• Condition (iv) of Theorem 7.6 holds if and only if κ is invariant.

Theorem 7.6 and Proposition 9.3 together with [29, Theorem 3.5] therefore give
another interpretation of the necessary and sufficient PBW conditions:

Theorem 9.4 Assume G acts on both the quantum polynomial algebra SQ(V ) and the
quantum exterior algebra

∧
Q(V ) as automorphisms. Let κ be a quantum 2-form. Then

the factor algebra HQ,κ is a quantum Drinfeld Hecke algebra if and only if κ induces a
Hochschild cocycle for SQ(V )#G .

Naidu and Witherspoon [29, Theorem 4.4] in fact show that every “constant”
Hochschild 2-cocycle gives rise to a quantum Drinfeld Hecke algebra (extending a
theorem from the nonquantum setting; see [33]).
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10 Automorphisms of Coordinate Rings of Quantum Planes

In this section, we consider automorphisms of quantum polynomial algebras and
quantum Drinfeld Hecke algebras over any 2-dimensional vector space V . Recall
that every quantum Drinfeld Hecke algebra Hκ,Q arises from a group acting as auto-
morphisms on some quantum polynomial algebra SQ(V ) (by Proposition 3.5). Every
graded K-automorphism of a quantum polynomial algebra SQ(V ) restricts to a linear
map on V and thus defines an element of GLn(K). Conversely, a transformation in
GLn(K) extends to a graded K-automorphism of SQ(V ) when it satisfies the condi-
tion of Lemma 3.2.

We write q for the parameter q12. Recall that the monomial matrices in GL2(K)
are simply those that are either diagonal or anti-diagonal. For n = 2, it is not difficult
to determine the group AutK SQ(V ) of graded K-automorphisms of SQ(V ) explicitly
(see, e.g., Alev-Chamarie [1]).

Proposition 10.1 If n = 2, then AutK SQ(V ) is

• GL2(K) when q = 1,
• (K∗)2 (the torus) when q 6= ±1, and
• the subgroup of monomial matrices of GL2(K) when q = −1.

We describe the set of quantum Drinfeld Hecke algebra in each of the above three
cases by applying Theorem 7.6.

Remark 10.2 Condition (iv) of Theorem 7.6 for n = 2 implies that for any com-
muting g and h in G, κg(v1, v2) = detQ(h)κg(v1, v2), where detQ is the quantum
determinant, defined by

detQ

(
a b
c d

)
:= ad− q bc .

Thus, for any quantum Drinfeld Hecke algebra Hκ,Q and for any g in G, the parame-
ter κg is identically zero unless the centralizer subgroup ZG(g) of g in G lies in the set
of quantum-determinant-one matrices,

{M ∈ GL2(K) : detQ(M) = 1}.

In particular, every quantum Drinfeld Hecke algebra is supported on group elements
of quantum determinant one.

10.1 Coordinate Ring of Nonquantum Plane (n = 2, q = 1)

When q = 1, the set of quantum Drinfeld Hecke algebras comprises all quotients of
the form

K〈x, y〉#G/
〈

xy − yx −
∑
g∈G,

det(g)=1

cgtg

〉
,

where the scalars cg in K are arbitrary for g in a set of determinant-one conjugacy class
representatives of G ≤ GL2(K) and ch−1gh = det(h) cg for all h in G. Note that the
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coefficient cg is zero or the centralizer ZG(g) is a subgroup of SL2(K). (In particular,
the coefficient of the identity group element is zero unless G ≤ SL2(K).) These
nonquantum algebras are called graded Hecke algebras (see [13, 31], for example).
(In fact, Remark 10.2 is an quantum analogue of an aspect of the characteristic zero
theory of graded Hecke algebras.)

10.2 Coordinate Ring of Transcendental Quantum Plane (n = 2, q 6= ±1)

Quantum Drinfeld Hecke algebras in two dimensions for q 6= ±1 (including the case
of q transcendental over a subfield) all arise from an abelian group G acting diago-
nally and are described in Section 8. If each element of G has quantum determinant
1 (detQ(g) = 1 for all g in G), then the set of quantum Drinfeld Hecke algebras
comprises all quotients of the form

K〈x, y〉#G
/〈

xy − q yx −
∑
g∈G

cgtg

〉
,

where the scalars cg in K are arbitrary. If some element of G has non-unity quan-
tum determinant, then κ is identically zero (by Remark 10.2), and Hκ,Q is just the
quantum polynomial algebra SQ(V ) = Sq(V ) on two variables.

10.3 Coordinate Ring of Skew Quantum Plane (n = 2, q = −1)

The set of quantum Drinfeld Hecke algebras in two dimensions when q = −1 com-
prises all quotients of the form

K〈x, y〉#G
/〈

xy + yx −
∑
g∈G

cgtg

〉
,

where the scalars cg in K are arbitrary for g in a set of conjugacy class representatives
of a monomial group G ≤ GL2(K) and ch−1gh = detQ(h) cg for all h in G. In par-
ticular, cg = 0 if some element h of the centralizer ZG(g) has non-unity quantum
determinant (detQ(h) 6= 1).

11 Automorphisms of the Coordinate Ring of Quantum 3-space

Various authors examine automorphisms and graded automorphisms of quantum
polynomial algebras and their generalizations (for example, see Kirkman, Kuzmano-
vich, and Zhang [20], Alev and Chamarie [1], and Artamonov and Wisbauer [2]).
The group (K∗)n of diagonal matrices is always a subgroup of the group of graded
automorphisms, AutK SQ(V ), of SQ(V ). When the parameters qi j are independent
over K∗, AutK SQ(V ) contains no other automorphisms. For arbitrary parameters,
the situation is more complicated to describe. In this section, we give AutK SQ(V ) for
n = 3 explicitly.

A careful analysis of Lemma 3.2 for n = 3 (with help from the computer algebra
system SINGULAR [11]) leads to the following theorem, whose proof we omit for the
sake of brevity.
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Theorem 11.1 Let k be a field and K = k(q12, q13, q23) an extension. Consider the
coordinate ring of the quantum affine 3-space

SQ(V ) = K〈v1, v2, v3 | v2v1 = q12v1v2, v3v1 = q13v1v3, v3v2 = q23v2v3〉.

Then AutK SQ(V ) is exactly one of the following groups:

(i) If all qi j = 1, then AutK SQ(V ) = GL3(k). (Here, K = k and tr.degk K = 0.)
(ii) If all qi j = −1, then AutK SQ(V ) is the subgroup of monomial matrices in GL3(k).

(See Corollary 3.6.) Also, K = k and tr.degk K = 0.
(iii) AutK SQ(V ) = (K∗)3 and tr.degk K ≤ 3 unless

• q12 = q−1
23 = q−1

31 , or
• {q12, q23, q31} = {±1, c, c−1} for some c in K∗.

(iv) If q12 = q−1
23 = q−1

31 6= ±1, then tr.degk K ≤ 1 and AutK SQ(V ) is generated by{  0 a12 0
0 0 a23

a31 0 0

 ,
 0 0 a13

a21 0 0
0 a32 0

} ⊂ GLn(K) .

(v) If {q12, q23, q31} = {1, c, c−1} for some c 6= 1, then1 tr.degk K ≤ 1 and three
cases arise:

(a) If q23 = 1 and q12 = q−1
13 6= 1, then

AutK SQ(V ) =

{ a11 0 0
0 a22 a23

0 a32 a33

} ≤ GLn(K).

(b) If q31 = 1 and q12 = q−1
23 6= 1, then

AutK SQ(V ) =

{ a11 0 a13

0 a22 0
a31 0 a33

} ≤ GLn(K).

(c) If q12 = 1 and q23 = q−1
31 6= 1, then

AutK SQ(V ) =

{ a11 a12 0
a21 a22 0
0 0 a33

} ≤ GLn(K).

(vi) If {q12, q23, q31} = {−1, c, c−1} for some c 6= −1 in K∗, then tr.degk K ≤ 1, and
AutK SQ(V ) is generated by (K∗)3 together with{ a11 0 0

0 0 a23

0 a32 0

} ⊂ GLn(K) if q23 = −1, q12 = q−1
31 ,

{  0 0 a13

0 a22 0
a31 0 0

} ⊂ GLn(K) if q31 = −1, q12 = q−1
23 ,

1We give upper bounds for tr.deg, allowing further evaluation of quantum parameters qi j in addition
to the given conditions on them.
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or {  0 a12 0
a21 0 0
0 0 a33

} ⊂ GLn(K) if q12 = −1, q−1
31 = q23.

In the next section, we will give an example using this theorem.

12 Example

In this section, we show how to use our results to work out the complete set of quan-
tum Drinfeld Hecke algebras arising from a fixed group. We assume the characteristic
of K is zero in this example.

Consider the subgroup G of GL3(K) generated by the two matrices

M =

0 0 1
0 −1 0
1 0 0

 and N =

1 0 0
0 −1 0
0 0 −1

 ,
and note that G is isomorphic to the dihedral group D8 of order 8. Set g1 = e, g2 =
M, g3 = N,

g4 = MN =

0 0 −1
0 1 0
1 0 0

 , g5 = NM =

 0 0 1
0 1 0
−1 0 0

 ,
g6 = MNM =

−1 0 0
0 −1 0
0 0 1

 , g7 = NMN =

 0 0 −1
0 −1 0
−1 0 0

 , and

g8 = MNMN =

−1 0 0
0 1 0
0 0 −1

 .
We use Theorems 7.6 and 11.1 and the computer algebra system SINGULAR [11] to
determine parameters qi j and κ(vi , v j) such that HQ,κ is a quantum Drinfeld Hecke
algebra. Condition (i) is satisfied when q12q23 = 1 and q13 = ±1. Conditions
(ii), (iii), and (iv) provide us with a linear system in terms of the κg(vi , v j). We
abbreviate notation and write κk(i, j) for κgk (vi , v j). Computing minimal associated
prime ideals from a primary decomposition in the affine space of parameters, we
arrive at seven possibilities yielding a factor algebra H := HQ,κ that is a quantum
Drinfeld Hecke algebra:

(a) q13 = 1, q12q23 = 1 and κg(vi , v j) = 0 for all g in G and for all i, j. Then H is
the coordinate ring of 1-parameter quantum 3-space:

H = K〈v1, v2, v3〉#G/〈 v2v1 − q12v1v2, v3v1 − v1v3, v3v2 − q−1
12 v2v3〉.
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(b) q13 = 1, q12 = q23 = −1 and κ1(1, 3), κ4(1, 3), κ5(1, 3), κ8(1, 3) can be cho-
sen freely. Then H is K〈v1, v2, v3〉#G modulo the three relations

v2v1 + v1v2 = 0, v3v2 + v2v3 = 0,

v3v1 − v1v3 = κ1(1, 3) + κ4(1, 3)tg4 + κ5(1, 3)tg5 + κ8(1, 3)tg8 .

(c) q13 = q12 = q23 = 1 and κ7(1, 2) = −κ7(2, 3), κ2(1, 2) = κ2(2, 3).
Moreover,

κ1(1, 2), κ1(1, 3), κ1(2, 3), κ2(2, 3), κ3(2, 3),

κ4(1, 3), κ5(1, 3), κ6(1, 2), κ7(2, 3), κ8(1, 3)

are arbitrary. Then H is K〈v1, v2, v3〉#G modulo the relations

v2v1 − v1v2 = κ1(1, 2) + κ2(2, 3)tg2 + κ6(1, 2)tg6 − κ7(2, 3)tg7 ,

v3v1 − v1v3 = κ1(1, 3) + κ4(1, 3)tg4 + κ5(1, 3)tg5 + κ8(1, 3)tg8 ,

v3v2 − v2v3 = κ1(2, 3) + κ2(2, 3)tg2 + κ3(2, 3)tg3 + κ7(2, 3)tg7 .

(d) q13 = −1, q12q23 = 1, and κg(vi , v j) = 0 for all g ∈ G and for all i, j. Then
H is again a quantum polynomial algebra:

H = K〈v1, v2, v3〉#G/〈 v2v1 − q12v1v2, v3v1 − q−1
12 v1v3, v3v2 + v2v3〉.

(e) q13 = −1, q12 = −q23, q2
23 = −1. Moreover, all κk(i, j) are zero except for

κ2(1, 3) and κ7(1, 3), which can be chosen freely. Then H is K〈v1, v2, v3〉#G modulo
the three relations

v2v1 + q23v1v2 = 0, v3v2 − q23v2v3 = 0,

v3v1 + v1v3 = κ2(1, 3)tg2 + κ7(1, 3)tg7 .

(f) q13 = q12 = q23 = −1 and κ1(1, 2), κ1(1, 3), κ1(2, 3), κ3(2, 3), κ6(1, 2),
κ8(1, 3) are arbitrary. Then H is K〈v1, v2, v3〉#G modulo the relations

v2v1 + v1v2 = κ1(1, 2) + κ6(1, 2)tg6 ,

v3v1 + v1v3 = κ1(1, 3) + κ8(1, 3)tg8 ,

v3v2 + v2v3 = κ1(2, 3) + κ3(2, 3)tg3 .

(g) q13 = −1, q12 = q23 = 1, κ7(1, 2) = −κ7(2, 3), κ2(1, 2) = κ2(2, 3) and
κ1(1, 3), κ2(2, 3), κ7(2, 3), κ8(1, 3) are arbitrary. Then H is K〈v1, v2, v3〉#G modulo
the relations

v2v1 − v1v2 = κ2(2, 3)tg2 − κ7(2, 3)tg7 ,

v3v1 + v1v3 = κ1(1, 3) + κ8(1, 3)tg8 ,

v3v2 − v2v3 = κ2(2, 3)tg2 + κ7(2, 3)tg7 .
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