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GRÖBNER BASES FOR PERFECT BINARY LINEAR CODES
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Abstract: There is a deep connection between linear codes and combinatorial
designs. Combinatorial designs can give rise to linear codes and vice versa. In
particular, perfect codes always hold combinatorial designs. Recently, linear
codes have been associated to binomial ideals by the so-called code ideal which
completely describes the code. It will be shown that for a perfect binary linear
code, the codewords of minimum Hamming weight are in one-to-one correspon-
dence with the elements of a reduced Gröbner basis for the code ideal with
respect to any graded order.
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1. Introduction

Digital data are exposed to disturbances when transmitted through a noisy
channel and thus errors can occur. Error-correcting codes provide an instrument
to detect and correct such errors by adding redundancy. The construction
of these codes and the study of their key properties such as the number of
codewords and the error-correcting capabilities are an active field of research,
see [12, 19].
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The first connection between linear codes and Gröbner bases was given
by the ”Cooper philosophy“, see [8]. Originating from commutative algebra,
Gröbner bases provide a uniform approach to tackling a wide range of problems
such as solving algebraic systems of equations, ideal membership decision, and
effective computation in residue class rings modulo polynomial ideals, see [1, 5,
9, 17].

A different connection between linear codes and ideals in polynomial rings
was presented in [6]. Here the authors introduced an ideal associated to a binary
linear code and proved that a Gröbner basis can be used for determining the
minimum distance.

Thereafter, this approach was generalized to linear codes over prime fields
in [15, 16]. In particular, it has been shown that a linear code can be described
by a binomial ideal over any field whose reduced Gröbner basis with respect to
the lexicographic order can easily be constructed from a systematic generator
matrix. In some applications, however, it is advantageous to have a Gröbner
basis with respect to a graded order.

There is a deep connection between linear codes and combinatorial designs
[4]. In particular, coding theory can be applied to the classification of designs
and the Assmus-Mattson theorem allows to uncover designs from linear codes
[2, 13]. Conversely, designs give rise to linear codes and can also become a
handy tool in proving properties of codes, see [3, 14].

In this paper, it will be shown that for each perfect binary linear code the re-
duced Gröbner basis for the corresponding code ideal with respect to any graded
order has a nice structure in the sense that the minimum weight codewords cor-
respond one-to-one with the elements of the Gröbner basis. This is proved by
exploiting a connection between codes and combinatorial designs. Furthermore,
in the general situation it will be proved that the reduced Gröbner basis for the
code ideal of a binary linear code will contain an element of minimum Ham-
ming weight and so will reveal the minimum distance of the code. Although
this result is not essentially new (see [6]), we regard it as worth mentioning
since it is proved in a more direct manner.

This paper is organized as follows. In the next two sections, linear codes,
Steiner systems, Gröbner bases, binomial ideals, and code ideals are introduced.
The Section 4 contains the main result about the structure of the reduced
Gröbner basis for perfect binary codes with respect to any graded monomial
order. The Section 5 provides a new proof of the fact that the reduced Gröbner
basis for the code ideal of a binary linear code with respect to any graded order
contains an element of minimum Hamming weight.
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2. Linear Codes and Combinatorial Designs

Throughout this paper, denote by K an arbitrary field and by N0 the set of
non-negative integers.

Let F be a finite field and let n and k be positive integers with n ≥ k. A
linear code of length n and dimension k over F is the image C of a one-to-one
linear mapping φ : Fk → F

n, i.e., C = {φ(a) | a ∈ F
k}. Such a code is denoted

as an [n, k] code and its elements are called codewords. In algebraic coding, the
codewords are always written as row vectors.

The support of a vector x ∈ F
n, denoted by supp(x), is a subset of n =

{1, . . . , n} consisting of all indices i ∈ n such that xi 6= 0, and the Hamming
weight , denoted by wt(x), is the number of non-zero components and so equals
the cardinality of the codeword’s support. Note that for a binary code, each
codeword is completely determined by its support. The Hamming distance
between two vectors x, y ∈ F

n, written dist(x, y), is the number of positions
at which they differ and so is given by dist(x, y) = wt(x − y). The Hamming
distance defines a metric on F

n.

An important invariant of a linear code C is its minimum distance, written
dH(C), which is the minimum value of the Hamming distances over all pairs
of distinct codewords. For a linear code, the minimum distance equals the
minimum weight, which is the minimum value of the Hamming weights over all
non-zero codewords.

A linear code of length n, dimension k, and minimum distance d is called an
[n, k, d] code. Suppose the minimum distance of the code is d = 2e+1 for some
non-negative integer e. Consider the balls of radius e around the codewords,
i.e., Be(x) = {y ∈ Fn | dist(x, y) ≤ e}. Balls around distinct codewords are
disjoint and cover part of the ambient space F

n. It follows that the code can
detect 2e errors and correct e errors, see [12, 19]. In particular, if the balls
around the codewords cover the whole ambient space, i.e.,

F
n =

⋃

c∈C

Be(c),

the code is said to satisfy the sphere-packing bound and is called a perfect
code. Prominent examples of perfect linear codes are the one-error correcting
Hamming codes and the binary and ternary Golay codes, see [18].

Finally, a specific class of combinatorial block designs will be introduced,
see [4]. A Steiner system is an n-element set S together with a collection of
k-element subsets of S, called blocks, such that every t-element subset of S is
contained in exactly one block. A block design with this property is denoted
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by S(t, k, n). Perfect binary codes always hold designs. Indeed, the above
considerations show that if C is a perfect binary linear code of length n and
minimum distance d, the set of supports of all codewords with minimum weight
d naturally forms a Steiner system S(e + 1, d, n), where e = (d− 1)/2, see [14,
Thm. 4.4.5]. For instance, the binary Golay code is a [23, 12, 7] perfect code
whose codewords of minimal Hamming weight form an S(4, 7, 23) design, see
[12, 19].

3. Binomial Ideals and Gröbner Bases

Let K[x] =K[x1, . . . , xn] be the polynomial ring in n variables and denote the
monomials by xu = xu1

1 xu2

2 · · · xun
n , where u = (u1, . . . , un) ∈ N

n
0 . The total

degree of a monomial xu is given by the sum u1 + . . .+ un. A monomial order
on K[x] is a relation ≻ on the set of monomials in K[x] satisfying: (1) ≻ is a total
ordering, (2) the monomial x0 = 1 is the unique minimal element, and (3) xu ≻
xv implies xuxw ≻ xvxw for all u,v,w ∈ N

n
0 . A graded order is a monomial

order which orders first by the total degree. Familiar monomial orders are
the lexicographic order, the degree lexicographic order, and the degree reverse
lexicographic order.

Given a monomial order ≻ on K[x], each non-zero polynomial f ∈ K[x] has
a unique leading term, denoted by lt≻(f) or simply lt(f), which is given by the
largest involved term. The coefficient and the monomial of the leading term are
called the leading coefficient and the leading monomial, respectively. Monomial
orders are required to introduce the generalized division algorithm. For a fixed
monomial order and an ordered s-tuple of polynomials F = (f1, . . . , fs) in K[x],
each polynomial f ∈ K[x] can be written as

f =

s
∑

i=1

aifi + r, (1)

where a1, . . . , as ∈ K[x] with lt(f) � lt(aifi) if ai 6= 0 for 1 ≤ i ≤ s, and
r = 0 or r is a linear combination of monomials, none of which is divisible by
the leading term of any of the polynomials fi. The polynomial r is called the
remainder of f on division by F and one says that f is reduced to r by F , see
[9].

If I is an ideal in K[x] and ≻ is a monomial order on K[x], its leading ideal
is the monomial ideal generated by the leading monomials of its elements,

〈lt(I)〉 = 〈lt(f) | f ∈ I〉. (2)
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A finite subset G of an ideal I in K[x] is a Gröbner basis for I with respect to
≻ if the leading ideal of I is generated by the set of leading monomials in G;
i.e.,

〈lt(I)〉 = 〈lt(g) | g ∈ G〉. (3)

A Gröbner basis is minimal if no monomial in the basis is redundant, and it
is reduced if for any two distinct elements g, h ∈ G, no term of h is divisible
by lt(g). A reduced Gröbner basis is uniquely determined provided that the
generators are monic.

A Gröbner basis for an ideal I in K[x] with respect to a monomial order ≻
on K[x] can be calculated by Buchberger’s algorithm. A sufficient criterion for
a set of polynomials to be a Gröbner basis is given by Buchberger’s S-criterion.
Define the S-polynomial of two polynomials f and g in K[x] as

S(f, g) =
xγ

lt(f)
f −

xγ

lt(g)
g, (4)

where xγ is the least common multiple of the leadings monomials of f and g.
Then a finite set of polynomials G is a Gröbner basis for I if and only if the
S-polynomial of any two polynomials in G is reduced to zero by G, see [1, 5, 9].

A binomial is a polynomial given by the difference of two monomials and
a binomial ideal is an ideal generated by binomials. A Gröbner basis of such
an ideal always consists of binomials, see [11]. The following result will become
useful in the main section.

Lemma 1. Let f = xα − xβ and g = xγ − xδ be two binomials in

K[x] whose respective leading terms xα and xγ are relatively prime. Then the

S-polynomial S(f, g) is reduced to zero on division by the pair (f, g).

Proof. Since xα and xγ do not have a proper common divisor the S-poly-
nomial S(f, g) = xα+δ − xβ+γ can be written as

xα+δ − xβ+γ = xδ
(

xα − xβ
)

− xβ
(

xγ − xδ
)

= xδ · f − xγ · g.

Note that this result actually holds for arbitrary polynomials with possibly
more than two terms.

For a given [n, k] code C over a field Fp with p elements, define the associated
code ideal as (see [6, 7, 16])

IC =
〈

xc − xc′ | c− c′ ∈ C
〉

+ Ip(x), (5)
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where

Ip(x) = 〈xpi − 1 | 1 ≤ i ≤ n〉 . (6)

Note that Ip(x) allows to view the exponents of the monomials as vectors in
F
n
p . In this way, the codewords are encoded by the exponents and not by the

coefficients as in the ”Cooper Philosophy”, see [8]. Thus the code ideal IC can
be considered as a subset of K[x] for any field K. A binomial xc − xc′ as in
(5) is said to be associated to the codeword c − c′. It can be shown that the
S-polynomial of two binomials corresponding to codewords yields a binomial
which is also associated to a codeword, and that every binomial in a Gröbner
bases for IC is associated to a codeword in C.

4. Gröbner Bases for Perfect Binary Codes

The reduced Gröbner basis for the code ideal (5) with respect to the lexico-
graphical order can directly be read off from a standard generator matrix of
the code, see [16]. The lexicographical order is of importance in elimination
theory. For several applications, however, it is advantageous to have a graded
order instead of a lexicographical one such as for the homogenization of ideals
and the computation of affine Hilbert functions. In particular in the context
of binary codes, a graded order is required in many applications, see [6, 7].
Motivated by this, we examine the structure of Gröbner bases with respect to
a graded order for the special class of perfect codes.

Lemma 2. Let C be a perfect binary linear code with odd minimum

distance. Then every codeword of C can be written as a sum of minimum

weight codewords.

Proof. Write d = 2e+ 1 for the minimum distance of C. The assertion will
be proved using induction on the Hamming weight. A codeword with minimum
weight d has this property.

Therefore, let c ∈ C be a codeword with Hamming weight w > d and
support {i1, . . . , iw}. Since the codewords of minimum Hamming weight form
a Steiner system S(e + 1, d, n), there is a codeword c′ of minimal Hamming
weight and support {i1, i2, . . . , ie+1, j1, . . . , jd−(e+1)}. Thus the codeword c− c′

has Hamming weight wt(c−c′) ≤ w−(e+1)+d−(e+1) = w−1. By induction,
c − c′ can be written as a sum of minimum weight codewords and so c can be
expressed in the same way.
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Let c ∈ C be a non-zero codeword. If c has odd Hamming weight, write c =
c+ − c−, where c+ and c− have disjoint support and |supp(c+)| = |supp(c−)|+
1. Otherwise, write c = c+ − c−, where c+ and c− have disjoint support
and |supp(c+)| = |supp(c−)|. Note that for any non-zero codeword c of odd
Hamming weight and any graded monomial order, the binomial xc+ − xc− has
leading term xc+.

Theorem 3. Let IC be the code ideal of a perfect binary [n, k, d] code
C with odd minimum distance. A reduced Gröbner basis for the ideal IC with

respect to any graded monomial order is given by the following set of polyno-

mials,

G =
{

xc+−xc− | c = c+−c− ∈ C,wt(c) = d
}

∪
{

x2i − 1 | 1 ≤ i ≤ n
}

. (7)

Proof. Let d = 2e + 1 denote the minimum distance of C. For any set
J ⊆ n, write xJ =

∏

i∈J xi. In particular, for J = ∅, xJ = 1 and for J = n,
xJ = x1 · · · xn.

First, claim that the set G generates the ideal IC . Indeed, observe first
that if a binomial xc−c′ − 1 is contained in the ideal IC , then xc′(xc−c′ − 1) =
xc − xc′ mod I2(x) will also be in there. Therefore, we only need to show that
for each codeword c−c′ ∈ C, the binomial xc−c′−1 is generated by the binomials
in G. For this, note that in view of Prop. 2, each codeword can be written as a
sum of codewords of minimum Hamming weight. To this end, let c =

∑s
i=1 ci

be such a sum. Claim that

xc − 1 =
s

∑

k=1

∑

A⊆s
|A|=k

∏

i∈A

(xci − 1) mod I2(x). (8)

Indeed, we only need to consider the monomial xcj1+···+cjm on the right hand
side of this equation. For m = 0, the monomial x0 = 1 appears in

(

s
k

)

sets with
cardinality k and coefficient (−1)k, 1 ≤ k ≤ s. Thus, the monomial 1 has the
coefficient

s
∑

k=1

(

s

k

)

(−1)k = (1− 1)s − 1 = −1.

For 0 < m < s, the monomial xcj1+···+cjm appears in
(

s−m
k

)

sets with cardinality
m+ k and coefficient (−1)k, 0 ≤ k ≤ s−m, and so has the coefficient

s−m
∑

k=0

(

s−m

k

)

(−1)k = (1− 1)s−m = 0.
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The monomial xc1+···+cs = xc appears in exactly one subset, which has cardi-
nality s and coefficient 1. This establishes the above equation and proves the
first part.

Second, claim that the set G satisfies Buchberger’s criterion. Indeed, it has
to be checked that the S-polynomial of each pair of binomials in G gets reduced
to zero. However, due to Lemma 1 only those pairs need to be considered whose
leading terms have a proper common divisor. Three cases can occur:

1. Consider two binomials corresponding to the same codeword with support
{i1, i2, . . . , ie+1, . . . , i2e+1} and let 1 ≤ s ≤ e+ 1. Put

f = x{i1,i2,...,is,is+1,...,ie+1} − x{ie+2,...,i2e+1}

and

g = x{i1,i2,...,is,ie+2,...,i2e+2−s} − x{is+1,...,ie+1,i2e+3−s,...,i2e+1}.

Then the monomial with support {i1, i2, . . . , is} is the greatest common
divisor of the leading terms of f and g and so gives

S(f, g) =
(

(x{is+1,...,ie+1})
2 − (x{ie+2,...,i2e+2−s})

2
)

x{i2e+3−s ,...,i2e+1}.

This binomial gets reduced to zero by the elements of I2(x).

2. Take a binomial associated to a codeword with support {i1,. . ., i2e+1} and
a binomial from I2(x), say x2i1 − 1, such that they have a proper common
divisor. Then

S(x{i1,i2,...,ie+1} − x{ie+2,...,i2e+1}, x
2
i1
− 1) =

x{i2,...,ie+1} − x{i1,ie+2,...,i2e+1}.

This binomial corresponds to the same codeword up to a sign change and
so is being reduced to zero.

3. Pick two binomials corresponding to different minimum weight codewords
with respective supports J and K, whose intersection has cardinality
s ≥ 1; the case s = 0 is covered by Lemma, see 1. Since the codewords of
minimum Hamming weight form a Steiner system S(e+1, d, n), it follows
that s < e+ 1. Thus we may assume that

J = {1, . . . , s, i1, i2, . . . , id−s} and K = {1, . . . , s, j1, j2, . . . , jd−s},
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where {i1, i2, . . . , id−s} ∩ {j1, j2, . . . , jd−s} = ∅. Put

f = x{1,...,s,i1,i2,...,ie+1−s} − x{ie+2−s,...,id−s}

and
g = x{1,...,s,j1,j2,...,je+1−s} − x{je+2−s,...,jd−s}.

Then

S(f, g) = x{i1,...,ie+1−s,je+2−s,...,jd−s} − x{j1,...,je+1−s,ie+2−s,...,id−s}.

Note that both monomials in S(f, g) have total degree d− s.

Two cases can occur. First, let d − s = e + 1, i.e., s = e. Since the
codewords of minimum Hamming weight form a Steiner system S(e +
1, d, n), there are minimum weight codewords with respective supports

{i1, i2, . . . , ie+1−s, je+2−s, . . . , je+1, s1, s2, . . . , se}

and
{j1, j2, . . . , je+1−s, ie+2−s, . . . , ie+1, t1, t2, . . . , te}.

By adding these two codewords and the two codewords which have respec-
tive supports J and K, one obtains a non-zero codeword with support

{s1, s2, . . . , se, t1, t2, . . . , te}

and Hamming weight 2e < d contradicting the assumption that the min-
imum distance is d. Thus {s1, s2, . . . , se} = {t1, t2, . . . , te} and hence the
S-polynomial gets reduced to zero.

Second, let d−s 6= e+1 and so s < e. Take the S-polynomial h(0) = S(f, g)
and reduce it by the binomials used in the first case, i.e., the binomials
corresponding to codewords with supports

{i1, i2, . . . , ie+1−s, je+2−s, . . . , je+1, s11, s12, . . . , s1e}

and
{j1, j2, . . . , je+1−s, ie+2−s, . . . , ie+1, t11, t12, . . . , t1e}.

This gives the binomial

h(1) = x{je+2,...,jd−s,s11,...,s1e} − x{ie+2,...,id−s,t11,...,t1e}.

Note that both monomials in this binomial have total degree d − s − 1.
This process can be repeated until the monomials in the resulting binomial
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have total degree e+ 1 which happens after m = e− s steps. In the kth
step, a binomial of the form

h(k) = x{a1,...,ae+1,...,ad−s−k} − x{b1,...,be+1,...,bd−s−k}

is reduced to the binomial

h(k+1) = x{ae+2,...,ad−s−k,sk1,...,ske} − x{be+2,...,bd−s−k,tk1,...,tke}

using binomials corresponding to minimum weight codewords with sup-
ports

{a1, . . . , ae+1, sk1, sk2, . . . , ske} and {b1, . . . , be+1, tk1, tk2, . . . , tke}.

The binomial h(m) obtained in the last step has the shape

x{a1,...,ae+1} − x{b1,...,be+1}.

Then the first case applies and the binomial gets reduced to zero.

This proves the second part and the assertion is established.

Example 1. The binary [23, 12, 7] Golay code is a perfect linear code with
253 codewords of minimum weight 7 [12, 19]. In view of Thm. 3, the reduced
Gröbner basis for its code ideal with respect to any graded order consists of
253·

(7
4

)

+23 = 8878 binomials. Indeed, this has been confirmed by computations
with the computer algebra system Singular, see [10].

The class of known perfect binary linear codes is rather small consisting of
the trivial codes, the repetition codes, the Hamming codes, and the Golay code,
see [19].

5. Minimum Weight Codewords and Gröbner Bases

For non-perfect linear codes it cannot be guaranteed that all minimum weight
codewords appear in the reduced Gröbner basis for the associated code ideal.
However, we have the following result which can also be found in [6, Prop. 5].
Our proof is more straightforward.

Proposition 4. Let C be a binary linear code and let G be the reduced

Gröbner basis for the code ideal IC with respect to any graded monomial order.

Then G contains a binomial that corresponds to a codeword of C with minimum

Hamming weight.
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Proof. Let d = 2e + 1 (or d = 2e + 2) denote the minimum distance of C
and let G be the reduced Gröbner basis for the code ideal IC with respect to
any graded monomial order. Divide any codeword c ∈ C of minimum Hamming
weight by G. Claim that this reduction process will terminate only if G contains
a codeword of minimum Hamming weight.

Indeed, using the notation as in the proof of Thm. 3, take f = xc+ −xc− ∈
IC . Then f must be reduced to zero by G. Note that as IC is a binomial ideal the
reduced Gröbner basis G consists of binomials. Denote by gi ∈ G the binomial
used in the ith step of the reduction process.

In the first step, the leading term of g1 must divide xc+ . It follows that
lt(g1) = xc+ . Otherwise, g1 would correspond to a codeword with Hamming
weight less than 2e+1 = d (or 2e+2 = d), since by the graded order the second
monomial of g1 has degree equal to or less than that of the leading monomial.
Therefore, g1 = xc+ − xα1 for some α1 with Hamming weight ≤ e+ 1.

If d is even, then α1 must be of Hamming weight e + 1 and then g1 corre-
sponds to minimum weight codeword.

If d is odd and α1 has Hamming weight < e + 1, then g1 will correspond
to a codeword of minimum Hamming weight and we are done. Otherwise,
α1 has Hamming weight e + 1 and the reduction step is repeated using the
bionomial g2 = xα1 − xα2 ∈ G such that the Hamming weight of α2 is ≤ e+ 1.
But the reduction process must terminate and so there must be an element
gi = xαi−1 − xαi ∈ G such that the Hamming weight of αi is e. Hence, the
binomial gi corresponds to a codeword with minimum Hamming weight.

This result provides a direct method to calculate the minimum distance of
a binary linear code that requires computing the reduced Gröbner basis for the
associated code ideal with respect to some graded order, and then to search
for a binomial in the Gröbner basis, not lying in the subideal I2(x), whose
number of appearing indeterminates is minimal. This binomial will correspond
to a codeword of minimum Hamming weight. The performance of this method
heavily depends on the efficiency to compute a Gröbner basis. Nevertheless,
the underlying structure allows several improvements. The algorithm given in
[6] is adapted to this particular setting.

Finally, there is no direct generalization to perfect non-binary codes. The
reason is that in the binary case the Hamming weight of a codeword equals the
total degree of each binomial associated with the codeword. In the non-binary
case, however, a binomial of minimal total degree is not necessarily a codeword
of minimal Hamming weight since the Hamming weight only counts the number
of non-zero positions.
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