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The success of the symbolic mathematical computation discipline is striking. The theo-
retical advances have been continuous and significant: Grobner bases, the Risch integra-
tion algorithm, integer lattice basis reduction, hypergeometric summation algorithms,
etc. From the beginning in the early 1960s, it has been the tradition of our discipline to
create software that makes our ideas readily available to scientists, engineers, and edu-
cators: SAC-1, Reduce, Macsyma, etc. The commercial viability of our system products
is proven by Maple and Mathematica.

Today’s user communities of symbolic computation systems are diverse: educators,
engineers, stock market analysts, etc. The mathematics and computer science in the
design and implementation of our algorithms are sophisticated. The research challenges
in symbolic computation at the close of the twentieth century are formidable.

I state my favorite eight open problems in symbolic computation. They range from
problems in symbolic/numeric computing, symbolic algorithm synthesis, to system com-
ponent construction. I have worked on seven of my problems and borrowed one from
George Collins. I present background to each of my problems and a clear-cut test that
evaluates whether a proposed attack has solved one of my problems. An additional ninth
open problem by Rob Corless and David Jeffrey on complex function semantics is given
in an appendix.

(© 2000 Academic Press

Introduction

At the Fifth FEast Coast Computer Algebra Day, which was held at the Unites States
Naval Academy in Annapolis, Maryland, on April 25, 1998, I gave a 1 hour lecture of
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the same title. I repeated this lecture at the IMACS Conference on Applications of Com-
puter Algebra, which was held in Prague, Czech Republic, on August 9-11, 1998. In this
companion paper I have written up my favorite open problems of symbolic computation
and provided a more in-depth discussion with references to the literature. The selection
of open problems is my personal one and is not intended to be comprehensive of the
field. I am leaving out major areas of investigation, among them differential and dif-
ference equations, types of domains in symbolic programming languages, computational
group theory, or mathematics on the Internet. In an appendix to this paper, R. Corless
and D. Jeffrey state an additional open problem, which was presented by Corless in his
lecture at the same Fifth East Coast Computer Algebra Day in April 1998.

A BRIEF HISTORY OF SYMBOLIC MATHEMATICAL COMPUTATION

It is dangerous to stereotype historical development into periods. The following high-
lights during the decades of symbolic computation, as I perceive them, should simply be
taken as a guideline.

1960s: pioneering years: polynomial arithmetic, integration

1970s: Macsyma and Reduce; abstract domains: Scratchpad /11

1980s: polynomial-time methods: factorization; Maple; user interfaces: Mathematica
1990s: teaching of calculus; math on the web; black box symbolic objects

2000s: merging of symbolic, numeric, geometric, combinatoric, and logic paradigm (?)

In the past 40 years or so the discipline of symbolic computation has made major
contributions to science. Collins (1960) pioneered the process of automatic garbage col-
lection by reference counts. New efficient multivariate polynomial greatest common di-
visor algorithms (see Brown, 1971, and the references given there) are crucial for the
implementation of symbolic algebra. Risch (1969) showed that the problem of finding
integrals of mathematical functions in closed form is decidable. Randomization was used
by Berlekamp (1970) to efficiently factor polynomials modulo large prime numbers be-
fore the now well-known randomized primality tests. Generic programming was invented
in the first half of the 1970s as a means to reuse the code of algebraic algorithms over
abstract domains, such as Gaussian elimination (see Section 7). Gosper in 1978 invented
an ingenious algorithm for indefinite hypergeometric summation (see Petkovsek et al.,
1996). Lovdsz’s lattice reduction algorithm, a far-reaching generalization of the Euclidean
algorithm, appeared first as a substep for polynomial factorization (Lenstra et al., 1982).
Interpolation algorithms for sparse multivariate polynomials, some of which are based
on error-correcting coding, revise a numerical computation subject that is over 100 years
old (see Grigoriev and Lakshman, 1995, and the references given there) and have become
instrumental in the calculus of black box polynomials (Kaltofen and Trager, 1990). To-
day, the mathematical markup for Internet documents exposes several new issues, such
as the structuring of compound objects for display and selection.t Last, but not least,
we must mention the breakthrough algorithms for computing a Grébner basis, which are
discussed further in Section 5, and for solving a sparse linear system over abstract fields,
which are discussed in more detail in Section 3.

fOral communication by R. S. Sutor.
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81zt + 16y* — 64821 + 722%y? — 64822 — 288y* + 1296 =
(922 + 4y° + 18v/2 2% — 36)(92% + 4y* — 18V/2 22 — 36) = 0

Figure 1. Surface represented by a trivariate polynomial.

Our community of world-wide researchers is relatively small, between 150-300 active
full-time researchers. I am sure, however, that we will continue to contribute in a signifi-
cant way to science, and I hope that one or the other of the following nine problems will
attract attention.

1. Symbolic/Numeric Computation

A surface that is defined implicitly by all real roots (z,y, z) of a trivariate polynomial
is displayed in Figure 1. The picture indicates that there are two components, an ellipsoid
and a hyperboloid, which the factorization of the polynomial over the complex numbers
C verifies.

Now we take the two factors, approximate v/2 numerically by 1.41422 in one factor
and 1.41421 in the other, and multiply the product out rounded to three decimal places.
We obtain the numerical trivariate polynomial equation

81zt 4+ 16y* — 648.0012* 4 7222y? + 0.0022%2% + 0.001y%2>
— 648z2 — 288y? — 0.007z% + 1296 = 0.

Due to continuity the numerical perturbations do not change the picture of Figure 1 by
much. The two now deformed components are still present. However, the polynomial has
become absolutely irreducible over C. My first open problem concerns the factorization
of nearby polynomials over the complex numbers.

OPEN PROBLEM 1. Given is a polynomial f(z,y) € Q[z,y] and ¢ € Q. Decide in poly-
nomial time in the degree and coefficient size if there is a factorizable f(z,y) € Clz,y]
with ||f — f|| < e, for a reasonable coefficient vector norm || - ||.

This problem was first posed in my survey article (Kaltofen, 1992). Efficient algorithms
for performing the factorization of a multivariate polynomial over the complex numbers
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exactly were described and cited in Kaltofen (1995). Galligo and Watt (1997) presented
heuristics for computing complex numerical factors. Since then, I have learned of sev-
eral related problems and their solution. They are described next. The constrained root
problem described below solves Problem 1 if one looks for the nearest polynomial with
a complex factor of degree no more than a given constant bound (Hitz et al., 1999).

SENSITIVITY ANALYSIS: APPROXIMATE CONSISTENT LINEAR SYSTEM

Suppose the linear system Ax = b, where A is an m X n matrix over a field and b is a
vector in an inner product space, is unsolvable. A classical problem is to find b “nearest
to” b that makes it solvable.

If nearness is measured in terms of the norm induced by the inner product, say if one
wishes to minimize the Euclidean distance, ming || A# — b||2, a solution is obtained by the
method of least squares. Another important case is when the component-wise distance is

minimized:
n
min| max b-—E a; il |-
& \1<i<m| @ 4 1 ©Id
j:

By introducing a new variable y we can derive the minimum by solving the linear program
due to Chebyshev.

minimize: y
linear constraints: 1y > b; — 22;1 a; jZ; (1<i<m)
n A .
y=—bi+d i qai;d; (1<i<m)

Component-wise minimization can account for round-off errors in the entries of b.
SENSITIVITY ANALYSIS: NEAREST SINGULAR MATRIX

There is no particular reason why one should not consider changes in A for finding
solvable systems that are nearby. In fact, there exists a theory of so-called total least
square methods (Golub and Van Loan, 1996). Related to it is the problem of finding
the numeric rank of a non-singular matrix. Both problems are numerically attacked by
computing the singular value decomposition of the matrix. Unfortunately, the results are
not always satisfactory, and the following may explain why this is.

Consider the following mathematical question. Given are 2n? rational numbers iy g -
Let A be the interval matrix

aii . Gn,n
A= 4 <ap;<a;;foralll<ij<n
an1 - Unn

Does A contain a singular matrix?

This problem has been shown to be NP-complete (Poljak and Rohn, 1993), i.e., it
is computationally as difficult as computing the shortest traveling salesperson route in
a complete graph. We mention Poljak’s and Rohn’s breakthrough reduction because it
establishes that floating point roundoff errors may not always be easy to undo. When
the distance is measured by a matriz norm, the problem of finding the nearest singular
matrix can be solved efficiently by a result of Eckart and Young (1936) for Euclidean
norms and of Gastinel (see Kahan, 1966) for arbitrary matrix norms.



Challenges of Symbolic Computation 895

SENSITIVITY ANALYSIS: APPROXIMATE GREATEST COMMON DIVISOR

Suppose f = 2™ 4+ ayp_12™ P+ -+ ag and g = 2" + by_12" 1 4+ -+ 4 by have no
common divisor. A problem in the same spirit as above is to efficiently compute f, g
“nearest to” f, g that have a common root.

Karmarkar and Lakshaman (1996) described an algorithm that solves this problem in
polynomial time when the Euclidean distance between the combined coefficient vectors,

\/|am—1 — 1|24+ ao — ao|? + [bu_1 — by_1]2 + -+ |bo — bo?

is minimized. The nearest GCD problem can be formulated in matrix form: compute the
nearest singular Sylvester matrixz to the Sylvester matrix

radm Am—1 «----. ao ]
Ay e ai Qo
[0 PN ap
by bno1 e bo
by .. by by
L b o by J

The Sylvester matrix is a block Toeplitz matriz of a special form. We note that the more
general problem, namely, efficiently computing the nearest singular Toeplitz matrix to a
given Toeplitz matrix, remains open.

There is a substantial body of work on variations on the problem formulation, which
is cited in passing (Schonhage, 1985; Corless et al., 1995; Emiris et al., 1997).

SENSITIVITY ANALYSIS: KHARITONOV THEOREM

An amazing result was obtained by Kharitonov in 1979 (see Minnichelli et al., 1989),
which concerns the stability of roots of polynomials when the coefficients are individually
perturbed. We state his theorem. Given are 2n rational numbers g;,a;. Let P be the
interval polynomial

P:{x”+an_1x”*1+~~+a0\gigaigéi for all 0 <i < n}.

Then every polynomial in P is Hurwitz (all roots have negative real parts), if and only if
the four “corner” polynomials
gk (z) + hy(x) € P, where k=1,2 and [ = 1,2,
with
hi(z) = ayx + azx® + aza® + -+,

ho(x) = ayx + azx® + asa® 4 - --

91(z) = gy + Gp2” + a2’ + -+,
g2(x) = ag +gzx2 +agxt -,
are Hurwitz.

The corner polynomials are easily tested for the Hurwitz condition, for example by a
variant of Sturm sequences, and the condition constitutes the stability criterion for the
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corresponding differential equations (see Gantmacher, 1960, Chapter XV). There now
exist many generalizations of Kharitonov’s theorem.

SENSITIVITY ANALYSIS: CONSTRAINED ROOT PROBLEM

Kharitonov’s theorem inspires new problem formulations in root stability. Given is a
real or complex polynomial

f(Z) =a,2" + anflzn_1 +---+aiz+ao

and a root a € C that may be given explicitly or that may be constrained to a certain
subset of C. Compute f “nearest to” f such that f(a) =0.

We (Hitz and Kaltofen, 1998) can solve this problem efficiently, i.e., in polynomial time
for the usual coefficient fields, and for:

(1) a parametric « (root stability) and Euclidean distance,
(2) explicit roots a1, ag,... and coefficient-wise distance (infinity norm), and
(3) with linear coefficient constraints, e.g. a, = 1.

A theorem provable by our methods is the following (Hitz et al., 1999). Given is the real
polynomial

f(x) = apx" + an—lxnil + -+ a1z + ao, a; € R,
with no real root. Then one can compute in polynomial time in n and the size of the
coefficients a; the following quantity (Hitz et al., 1999)

ao,...,an such that 0<i<n
Ja€R: ana™+an_1a" 4 Fag=0

A related result appears in Zhi and Wu (1998).

min ( max |a; —di|> = ‘%

2. Quantifier Elimination (QE)

What makes the approximation theoretic minimax problems of Section 1 decidable in
the first place? The well-known process of quantifier elimination in the theory of real
closed fields, first published by Tarski in 1948, delineates a substantial mathematical
theory where all theorems are decidable and that has no Goedel-like undecidabilities. We
illustrate the principle of QE on the simple example of minimizing a quadratic function.

for a > 0: Ir%n(an—i—ba:—i-c)(:)Vy:a>0anday2+by—|—cza$2+bx+c

<:>a>0andx:f£.

2a
The minimizing problem can be rewritten as a quantified expression. The principle of QE
allows the removal of the quantified variables—our equivalent third form. All values of
the variables that satisfy any quantifier-free expression define a so-called semi-algebraic
set. By QE those specializations of the free variables of a quantified expression that
yield theorems, i.e., true formulas, form a semi-algebraic set. The algorithmic aspects
of QE have been studied extensively by G. Collins, D. Grigoriev, J. Renegar, H. Hong,
and others (see Caviness and Johnson, 1998). In general, the process is computationally
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hard, although several of the examples in Section 1 have efficient algorithms. Collins
has suggested another minimax problem as a challenge benchmark problem for QE soft-
ware with the intent to demonstrate the abilities of the different algorithms and their
implementations.

OPEN PROBLEM 2. (ZOLOTAREV’S PROBLEM BY COLLINS, 1992) Eliminate the quan-
tifiers and solve for n > 6 on a computer:

for r > 0: min max _|z" +r2z"" ' — B(2)| ).
B=bg+--+bp_2zn—2 \ —1<z<1

The best approximation of a polynomial of degree n by a polynomial of lower degree
on the interval {z | —1 < x < 1} is accomplished via Chebyshev polynomials. Zolotarev
sought best approximations by polynomials whose degree is at least 2 less. Note that
mathematical expressions for explicit solutions are known (see Achiezer, 1956, Addendum
E) and we give the one for » < 1 and n = 3, again in the form of a formula in Tarski’s
theory.

Veg,eVaedy: (O<r<land —1<z<land —1<y<1)=
2

3 r r roor? 3 \2
3 2 _ _ 2>(3 2 _ (2 N /T 777).
(y> +ry” —c1y —co)” > (2° +rw (4+2 4)95 (4+6 108)
by bo

3. Linear Algebra With Implicitly Represented Matrices

Several numerical methods for solving systems of linear equations with sparse coeffi-
cient matrices are based on the use of not too many matrix-times-vector products, which
in the sparse case can be performed quickly. Examples for such methods are the con-
jugate gradient, the Lanczos and the Krylov algorithms. These methods are sometimes
referred to as matrix-free, because no coefficient matrix needs to be explicitly constructed.
In 1990 we introduced the notions of black box polynomials, rational functions, and ma-
trices (Kaltofen and Trager, 1990). The black box model of a matrix requires as the
representation of a matrix a function that performs the matrix-times-vector product.

y € K? A-yeK”

B — _—

A e Kmxn
K an arbitrary, e.g. finite field

In the symbolic computation context we consider abstract coefficient fields, such as
finite fields. The main objective is to perform all linear algebra operations, e.g. A~'b
(Wiedemann, 1986) with

O(n) Dblack box calls and
n?(logn)®™  arithmetic operations in K and (3.1)
O(n) intermediate storage for field elements.
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Table 1. Flurry of recent results.

Lambert (1996), Teitelbaum (1998), relationship of the Wiedemann and

Eberly and Kaltofen (1997) Lanczos approach
Villard (1997a,b) analysis of the block Wiedemann algorithm
Giesbrecht (1997), computation of integral solutions

Mulders and Storjohann (1999)
Giesbrecht et al. (1998) certificates for inconsistency

We note that a black box matrix algorithm applies not only to sparse matrices but also
to structured matrices that have a fast matrix-times-vector function. Fast matrix-times-
vector products are often a consequence of the linearization of a given problem. Examples
are:

(1) Petr’s Q matrix in Berlekamp’s algorithm for factoring polynomials over finite fields
(Knuth, 1997; Kaltofen and Shoup, 1998).

(2) resultant matrices for non-linear algebraic equations (see Section 5 below).

(3) the linear systems in Kaltofen’s (1995) algorithm for factoring multivariate poly-
nomials over algebraically closed fields.

Linear algebra algorithms for black box matrices are an active subject of research. In
Table 1 we list several of them. Giesbrecht’s (1997) method for finding integral solutions
to sparse linear systems is based on computing rational solutions whose denominators
are relatively prime. For instance, if one obtains two rational solutions with common
denominator 2 and 3, respectively, one can easily construct an integer solution.

A(lﬂﬂ) =b, 21 ez A(lmm) =b,2% ez
2 b ) 3 ) )

ged(2,3) =1=2-2-1-3,  AQzY — 2y =4p - 30 =10.

Giesbrecht proceeds by proving that for a small algebraic extension of Z relative primeness
occurs with high probability. Recently, the need for small algebraic extension has been
removed (Mulders and Storjohann, 1999).

Since Wiedemann’s (1986) breakthrough paper, the following problem remains unre-
solved.

OPEN PrROBLEM 3. Within the resource limitations (3.1) stated above,’ compute the
characteristic polynomial of a black box matrix over an abstract field. Randomization is
allowed (of course!), as is a “Monte Carlo” solution.

Characteristic polynomials are needed, for example, for resultant computations (Canny
et al., 1989; Canny, 1990; Emiris and Pan, 1997). We conclude this section by remarks
on Monte Carlo vs. Las Vegas randomized algorithms.

tJoachim von zur Gathen has suggested relaxing the O(n) requirements for both the number of black
box calls and for intermediate auxiliary storage to n(log n)o(l)A
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CLASSES OF RANDOMIZED ALGORITHMS

The use of random bits, so-called coin flips, has turned out to be a powerful algorithm
design tool. Coin flips are employed for both speed, i.e., for locating the solution by
a random walk rather than by deterministic search, and for output correctness, where
unverifiable guesses about the solution are made. The latter comes from numerical inte-
gration: the frequency, with which a random point in space is below a function, is used
to approximate the integral of the function. The following notions have become popular:

Monte Carlo
Las Vegas
BPP

always fast, probably correct
always correct, probably fast
probably correct, probably fast

Here BPP stands for bounded probabilistic polynomial time and is a notion from
complexity theory (Boppana and Hirschfield, 1989). The complexity class R contains
all problems solvable in Las Vegas polynomial time. The term Las Vegas was coined
by Babai (1979). Clearly, as Gene Cooperman has pointed out to me, a BPP method
can be converted to a Monte Carlo method by returning garbage when the random
walk consumes too much time. It is unknown if BPP =R, or if R = P, the class of
problems solvable deterministically in polynomial time. Many theorists conjecture that
since randomized algorithms perform very well when implemented with pseudo-random
number generators (Knuth, 1997, Chapter 3), coin flips are inessential for polynomial-
time algorithmic solutions of problems. The practicality of such de-randomization is even
further remote.

Some of my colleagues have expressed to me that Las Vegas randomization is fine, but
Monte Carlo or BPP algorithms are suspicious as one cannot verify the guessed solution.
I believe that such arguments are questionable. A Monte Carlo algorithm can deliver
an answer that is correct with a probability that is as high as the user demands, e.g.
higher than 1 — 1/2199. Of course, the probability of correctness can only be guaranteed
if one uses a truly random process for the coin flips, say a quantum-physical effect.
However, deterministic algorithms can also fail due to momentary hardware faults and
programming bugs. Would the reader really trust a long number-theoretic proof together
with a 10000 line program more than the answer given by a single-page Monte Carlo
primality testing program (Knuth, 1997, Section 4.5.4)?

We have observed a further pitfall when trying to use Las Vegas algorithms. The
following scheme is often employed, which makes a Monte Carlo algorithm Las Vegas by
verifying its answer by alternative considerations.

repeat
pick random numbers
compute candidate answer
until a solution passes a test for it

The scheme has the flaw that a programming bug leads to an infinite loop, which
is indistinguishable from bad luck in the coin flips! I have been told by many of my
colleagues that such looping has also happened to them. Eventually, we give up in the



900 E. Kaltofen

belief that the coin flips keep on being unlucky and begin searching for the bug. In one
case, the problem turned out to be an invalid input.

A referee points out that even sequential schemes with unbounded iteration have this
flaw. For instance, in Brown’s (1971) modular GCD algorithm, the Chinese remaindering
is stopped if the division check by the GCD candidate succeeds. Due to our experience
(Kaltofen and Monagan, 1999) we now advocate avoiding such unbounded loops whenever
possible, even when adding a small extra cost.

4. Lattice Basis Reduction

The lattice basis reduction algorithm by Lenstra et al. (1982) is said to be the major
algorithmic breakthrough of symbolic computation in the 1980s (Odlyzko, 1996). The
first application of the method was to factoring polynomials over the rational numbers.
Since 1982 the algorithm had its impact on a variety of problems (see, e.g. Borwein and
Lisonék, 1997). Recently, the method was used to derive the following pretty formula
for 7.

1 [ 4 2 1 1
-3 - - - . 4.2
i ;161 <8i+1 8i+4 8it5h 8i+6) (42)

Following Bailey et al. (1997), one proceeds as follows. Each term under the sum (4.2)
can be expressed as an integral multiple of a rational integral.

1 ykfl 1 o© . ys ( 1 1 A 00 1
dy = (L) gy = gl S
/0 e /0 ;y (16) Y ;161/0 Y Y ;16’(82'—1—1:)

The question is which integer linear combination of these integrals yields 7. Lattice basis
reduction is used to find the multipliers. First, we approximate 7 and the integrals,
multiplied by 10%°, via a Maple V procedure. Note that the global variable Digits in
Maple holds the number of decimal mantissa digits with which Maple performs its floating
point arithmetic.

> latt := proc(digits)

local k, j, v, saved_Digits, 1ltt;

saved_Digits := Digits; Digits := digits;

for k from 1 to 8 do
vkl := [1;
for j from 1 to 10 do v([k] := [op(v[k]), 0]; od;
vik][k] := 1;

v[k] [10] := trunc(10°digits *
evalf (Int(y~(k-1)/(1-y~8/16),
y=0..1, digits), digits));
od;
v[9] := [0,0,0,0,0,0,0,0,1,
trunc(evalf (Pix10"digits,digits+1))];
1tt = [1;
for k from 1 to 9 do ltt:=[op(ltt),evalm(v[k])];od;

vV VV V V VVV VYV YV VVYV

TA similar programming philosophy has also been expressed by Kurt Mechlhorn for building the LEDA
library.
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Digits := saved_Digits;
RETURN(1tt);

end:

L := latt(25);

vV V. V V

L:=[[1,0,0,0,0,0,0,0, 0, 10071844764146762286447600],
[0, 1,0,0,0,0,0, 0, 0, 5064768766674304809559394],
[0,0,1,0,0,0, 0,0, 0, 3392302452451990725155853],

[0, 0,0,1,0,0,0,0, 0, 2554128118829953416027570],
[0, 0,0,0,1,0,0,0, 0, 2050025576364235339441503],
[0,0,0,0,0,1,0,0,0, 1713170706664974589667328],
[0,0,0,0,0,0, 1,0, 0, 1472019346726350271955981],
[0, 0,0,0,0,0,0, 1, 0, 1290770422751423433458478],
[0, 0,0,0,0,0,0,0, 1, 31415926535897932384626434]].

If 7 is an integer linear combination of the integrals, the above lattice vectors must
sum to a short vector, which can be determined by lattice basis reduction (Hastad et al.,
1989) or the PSLQ algorithm (Ferguson and Bailey, 1996).

> readlib(lattice):
> lattice(L);

[—4,0,0,2,1,1,0,0,1,5],[0,-8,—4,—4,0,0,1,0,2, 5],

[—61, 582,697, —1253,453, —1003, —347, —396, 10, 559,

[—333, 966, 324, —1656, —56, 784, 1131, —351, —27, 255],
[429,714,—-1591, 778, —517, —1215, 598, 362, —87, 398],
[—1046, —259, —295, —260, 1286, 393, 851, 800, 252, —1120],
[494, 906, —380, —1389, 1120, 1845, —1454, —926, —218, 400],
[1001, —1099, 422, 1766, 1405, —376, 905, —1277, —394, —30],

[—1144,491, —637,—736, —1261, —680, —1062, —1257, 637, —360]].
The first short vector corresponds to (4.2). The second vector is another linearly inde-

pendent solution:

1/ 8 4 4 1
=3 - . 43
i ;161 (8i+2+8i+3+8i+4 8i+7> (43)

One may use Maple V.4 directly to complete the proof of (4.3) by carrying out the
corresponding integral symbolically.
> g = (8xy + 4xy~2 + 4xy~3 - y~6)/(1-y~8/16);

2.
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Formulas like (4.2) and (4.3) can be used to compute the binary digits of = at very
high position without keeping track of the intermediate expansion, the so-called spigot
algorithm. At this moment, no formula that allows the computation of decimal digits in
this space and time efficient manner is known.

THE GGH PUBLIC KEY CRYPTOSYSTEM

Recently, the properties of reduced lattice bases have been employed to design public
key cryptosystems. Here is a nutshell description of the one by Goldreich et al. (1997b).

Public key A lattice basis B (rows B; are basis vectors).

Private key A reduced basis C for lattice spanned by the rows of B.

Clear text Represent the message as a vector x with small integer entries.
Encoded message y = x + ZZ r; B; where Zl r; B; is a random vector in the lattice.

Decryption is based on one of Babai’s (1986) algorithms for nearest lattice point: write
y = > .5C; with s; € Q. Then ), nearest-integer(s;)C; is a near lattice point,
probably >, r;B;.

In the paper by Goldreich et al. (1997b), more details are given on how to choose B
and C and how to sample random lattice points so that the decryption method does not
produce an incorrect near lattice point. Nonetheless, Phong Nguyen has been able to
break this scheme in about 3 days on a 140 MHz Ultrasparc using NTL 1.7’s Schnorr-
FEuchner variant of the reduction algorithm for lattices of dimension 200. An alternative
cryptosystem is described in Ajtai and Dwork (1997) and Goldreich et al. (1997a) and
proven secure provided that computing a short non-zero lattice vector is hard.

OPEN PROBLEM 4. Devise a public key cryptosystem that is based on diophantine linear
algebra but that is safe from lattice basis reduction.

5. Grobner Bases

The classical tool for solving a system of non-linear algebraic equations is the u-
resultant. Consider the following simple example, due to Lazard (1981).
h=2+ay+2 + y—-1=0 (z,9)=(1,-1),(-3,1),(0,1)
fo=a? +3z -9y + 2y—1=0
f3= UL + vy +w.

By the theory of Macaulay (1916), the u-resultant can be expressed as the determinant
of a matrix whose rows represent the polynomials multiplied by certain terms and whose
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columns are labeled by certain terms whose coefficients are the entries.

@ 2ty 2wy oay oz oyt oyt oy 1
zfi| 1 1 2 0 1 =1 0 0 0 0
yiil 01 0 1 2 0 0 1 -1 0
filo0o 1 0 1 2 0 0 1 -1 B
xf20 1 0 3 -1 2 -1 0 0 0 O (.U(_g-i-j_u)—i_ )
yf2f 01 0 0 3 0 -1 2 -1 0 |= ’(sz)v W
fol OO 1 0 0 3 0 -1 2 -1 ol
zyfs| 0 v O w» w O O O O O
yfs| 0 0 0 0 w 0 0 v w 0 (u-resultant)
fs| 0 0 0 0 0 w 0 0 v w

The u-resultant has linear factors provided the system has a finite solution. Its coefficients
are the coordinates of the zeros of the system, including solutions at infinity.

BUCHBERGER’S ALGORITHM

The concept of a Grobner basis (Buchberger, 1965, 1970, 1985; Becker and Weispfen-
ning, 1993; Cox et al., 1996) has revolutionized commutative algebra. Buchberger’s al-
gorithm provides an alternative for solving non-linear algebraic systems. Within the
algorithm, some S-polynomial constructions and reductions can be interpreted as row
reduction in Macaulay’s matrices, like the one given for the u-resultant above. Faugere
(1998) has been able to make this correspondence more precise. In particular, his method
uses sparse so-called symbolic LU matrix decomposition for efficiently performing these
row reductions. His implementation may be the first major marriage of symbolic and nu-
meric methods. The symbolic sparse LU factorization is purely combinatorial and treats
the coefficient arithmetic abstractly. In Faugere’s implementation the rational coefficients
still become exceedingly large, and some computations can only be done modulo a prime
number. Many other numeric sparse solvers benefit from iterative approximation of the
solution, and my next problem suggests doing the same for Grobner basis computation.

OPEN PROBLEM 5. Compute Grobner bases approximately by iterative methods for
solving systems, such as Gauss-Seidel, conjugate gradient, Newton, ...

A solution plugs into numerical software and computes some bases faster than by exact
arithmetic; the structure of the bases may be determined, e.g. by modular arithmetic.

We note that related aspects of numerical error analysis are discussed in Shirayanagi
(1996) and Stetter (1996).

6. Transposed Matrix Products

The following phenomenon has been observed in a variety of settings. One has an
efficient algorithm for computing a linear map, but one actually needs the transposed
map. We shall begin with an example from field theory.

We first describe the overall approach. Let o € K(«, 3) where

g=y>—2€K[y, f=a"—y-1€Kz,yl,
p=(ymodg) €Klyl/(g), «a=(rmod/(f,g))€Klz,yl/(f9),
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with K[y]/(g) C K[z,y]/(f,g). Note that f(«,3) = 0 and g(8) = 0. For example, o =

V14+v2 -2 = a—f. In field theoretic terms, o is an algebraic element in a tower
of fields K ¢ K(8) C K(a, ). The tower is represented by a triangular set of minimum
polynomials for the extension elements o and 3: g € K[y] irreducible over K, f € K(3)[x]
irreducible over K(/3).

The computational task is to compute the minimum polynomial k(o) = 0:

h(x) = 2™ — 1™t — - —co €K[z], m < deg(f) - deg(g).
— .
The coefficient vectors ¢ of o mod (f(x,y), g(y)) satisfy the linear recurrence on vectors
Vi>0: o™ =cp_10™ M 4 o’

—
Any non-trivial linear projection map L£(c") preserves the linear recursion because h is
—

irreducible. An algorithm can proceed by computing the field elements a; = L(o*) for
0 <i<2m—1,ie., using a linear map into K, and from them the linear recurrence h,
the latter in m'T°() field operations in K by the Berlekamp/Massey algorithm (Massey,
1969; Brent et al., 1980). We now inspect the task of computing the linear projections of
the powers of ¢ in more detail.

POWER PROJECTIONS = TRANSPOSED MODULAR POLYNOMIAL COMPOSITION

The operator L is represented by a vector of field elements [uo UL .. un,l] , where
n = deg(f) deg(g). The power projections can be expressed by the following vector-times-
matrix product:

2% 2@ c@) =l w w6 ( = ‘ 0_2)‘ .y

A

The key observation is that the transposed linear map is modular polynomial compo-
sition:

'(U(Z) = wp + w12z + wQZQ R ’U}(O’) mod (f(xa y)ag(y))

wo
eI R = W B

A

We note that modular polynomial composition in the univariate case has been studied
extensively, as its complexity is closely related to factoring univariate polynomials over
finite fields efficiently (von zur Gathen and Shoup, 1992; Kaltofen and Shoup, 1997, 1998;
Bernstein, 1998; von zur Gathen and Gerhard, 1999).

The use of power projections for finding minimum polynomials of algebraic numbers
and its relation to modular polynomial composition is discussed in Shoup (1994, Sec-
tion 3). The special cases

c=axtfo=a-0,0=a/f with f, g € K[z],

i.e., arithmetic operations on roots of polynomials, can be handled alternatively by resul-
tant computations (Loos, 1982). These require the factorization of a polynomial of degree



Challenges of Symbolic Computation 905

deg(f) - deg(g) over K, while our approach requires the factorization of f over K(3) or
of g over K(«), which is performed similarly by either a factorization of a resultant over
K (Trager, 1976; Encarnacién, 1997), or by completely different and in some cases more
efficient algorithms (Weinberger and Rotchschild, 1976; Lenstra, 1987).

Nonetheless, we still have to compute the power projections. An algorithmic theorem,
which we call transposition principle, now states that any linear algorithm that computes
a matrix-times-vector product can be transformed into one that computes the transposed
matrix-times-vector product. One simply reverses the flow of the linear circuit that repre-
sents the algorithm. Such reversal of flow preserves the number of arithmetic operations,
but not the space needed to store intermediate results. Therefore, a fast modular poly-
nomial composition algorithm yields one for power projections, at least in theory. Shoup
(1995) proceeded differently and designed, for the case of a single algebraic extension, a
baby step/giant step algorithm based on modular polynomial multiplication. Again, he
needed the transposed map for which he synthesized the following algorithm (see Shoup,
1995, for more details).

TRANSPOSED MODULAR POLYNOMIAL MULTIPLICATION IN NTL

(1) Ty — FFT"(REDy(g))

(2) To « Ty - Sy

(3) UV — —CRTOn,Q(FFT(TQ))

(4) Ty «+ FFT Y(REDgy (2" - v))

(5) T2 — T2 . Sg

(6) T1 — T1 . S4

(7) Replace T by the 28T 1-point residue table whose jth column (0 < j < 28¥1)is 0
if j is odd, and is column number j/2 of T; if j is even.

(8) T — T+ T

The algorithm has no interpretation of its own.*

“we offer no other proof of correctness other than the validity of this transfor-
mation technique (and the fact that it does indeed work in practice)” (Shoup,
1995, Section 7.5)

It is, however, as time and space efficient as modular polynomial multiplication, and
one is left with the question of whether the transposition principle has this property in
general. Here then is our sixth open problem.

OPEN PROBLEM 6. With inputs A € K™*™ and y € K" you are given an algorithm for
A -y that uses T'(m,n) arithmetic field operations and S(m,n) auxiliary space. Show
how to construct an algorithm for AT - 2, where 2 € K™, that uses O(T(m,n)) time
and simultaneously O(S(m,n)) space. Your construction must be applicable to practical
problems.

TThe history of the principle is manifold. Biirgisser et al. (1997) traced it to circuit analysis (see
Antoniou, 1979, Section 4.7). Fiduccia derived the principle in his Ph.D. Thesis (1973) (see also Fiduccia,
1972) and Kaminski et al. (1988) published a paper on it.

fIn the meantime, Shoup (1999) has been able to derive an explicit fast algorithm for the transposed
modular polynomial multiplication problem. However, his algorithm is still by a constant factor slower
than the one based on the transposition principle.
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Figure 2. Component interaction in symbolic computation.

The transposition principle is a special case of automatic differentiation (Kaltofen and
Lakshman, 1988):

X1 8I1f
For f(z1,...,2n) =b" | A | : we have : = AT,
T Os, f

Therefore, the so-called reverse mode of automatic differentiation for computing the
gradient vector of a function applies. Griewank (1992) shows how to solve the above
problem with a factor of O(log(mn)) penalty in both time and space.

We conclude by noting that the Lanczos algorithms and certificates of inconsistency
of Table 1 all depend on efficient transposed matrix-times-vector products.

7. Plug-And-Play Components

The notion of plug-and-play components comes from the interaction between computer
hardware and the resident operating system. If new hardware is installed, the operating
system can probe the device and determine and configure its characteristics without hu-
man help. The device must respond to the probes in an agreed fashion and the operating
system must know of the possible different device characteristics. The question arises of
whether a plug-and-play approach can be realized for the purpose of arranging software
components in a customized fashion.

An example for the need of the plug-and-play methodology is given in Figure 2. A new
algorithm, say the solution to Problem 1, is to be made available to researchers outside
the discipline of symbolic computation. We assume that the users work on commercial
platforms such as Maple, Mathematica, or an Internet browser/Java engine. Clearly, it
is desirable to implement the brand-new algorithm in such a way that it is callable from
these common platforms. Loos (1974) recognized the need as vertical integration.

A second issue concerns the usage of existing libraries, say for polynomial arithmetic
or arbitrary precision floating point arithmetic. Computer algebra has pioneered what is
now called generic programming, where the underlying implementations are hidden and
multiple packages can be used, even at the same time. Generic programming was intro-
duced simply because it became unwieldy to write a Gaussian elimination procedure, for
example, for each of the different coefficient fields that arose. Now generic programming
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has become a means of technology transfer. When a new sparse symbolic LU factoriza-
tion algorithm is released in Linpack, that algorithm should be instantaneously called
from all programs that rely on sparse LU factorization.

The notion of problem-solving environments has been coined. We offer plug-and-play
and generic programming software design as a definition. With it an end-user can easily
custom-make symbolic software tools.

EXAMPLE: FoxBox (Diaz AND KALTOFEN, 1998)

One goal of our implementation of the algorithms for factoring polynomials in so-called
black box representation (Kaltofen and Trager, 1990) was a plug-and-play interface to
our FOXBoX system. Our Maple server makes the procedures in FOXB0OX accessible to
a Maple session. These are a Maple user’s commands.

Call FoxBox server from Maple

SymToeQ := BlackBoxSymToe( BBNET_Q, 4, -1, 1.0 ):

SymToeZP := BlackBoxSymToe( BBNET_ZP, 4, -1, 1.0 ):

FactorsQ := BlackBoxFactors( BBNET_Q, SymToeQ, Mod, 1.0, Seed ):
FactorsZP := BlackBoxHomomorphicMap( BBNET_FACS, FactorsQ, SymToeZP ):

V V V V ®

The server program is a generic one. Here we give a code fragment of the version that
uses SACLIB 1.1 rational number and polynomial arithmetic. The C++ constructor calls
get compiled from the FOXBOX template library.

// construct factors of a symmetric Toeplitz determinant in C++
typedef BlackBoxSymToeDet< SaclibQ], SaclibQX > BBSymToeDetQ;
typedef BlackBoxFactors< SaclibQ}, SaclibQX, BBSymToeDet( > BBFactorsQ;

BBSymToeDetQ SymToeDetQ( N );
BBFactorsQ  FactorsQ( SymToeDetQ, Probab, Seed, &MPCard );

SOFTWARE DESIGN ISSUES

We think it is useful to distinguish the plug-and-play interface from the generic pro-
gramming interface, although the two are somewhat similar. We have identified several
issues with both methodologies.

PLUG-AND-PLAY

(1) The software components create a standard serialized representation for exchanging
their data. For mathematical objects several standards have been proposed: MP
(Bachman et al., 1997), OpenMath (Dalmas et al., 1997), and MathML (Ion and
Miner, 1998). All standards use static representation of the objects.

(2) In FoxBox we could from the beginning transfer procedures for making or evalu-
ating polynomials and matrices. Our procedures were written in standard program-
ming languages, e.g. in C++, as security from illegal operations was not an issue.
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Following the Java paradigm, it will be useful to transfer byte code for constructing
objects in place of the parse trees for their canonical representation (cf. Norman and
Fitch, 1996). The matrix [1/(i* + j2)] 1 <i.5<100 surely should be communicated via
a procedure for constructing it. A standard for the mathematical byte code solves
the task.f

Problem-solving environments (PSEs) (Lakshman et al., 1998) are the end product
of the assembly of the different software components. Visual-programming environ-
ments for instantiation of generic and assembly of plug-and-play components can
become part of the user interface to symbolic computation systems, and assist the
end-user in making her/his PSE, who thus unwittingly turns into a very high-level
programmer.

A language that allows overloaded operators permits the wrapping of existing code
with new definitions for the operators. MITMatlab (Husbands et al., 1998) is an
example where parallelism is introduced in this manner without having to modify
sequential library functions.

GENERIC PROGRAMMING

(1)

The definition of common object interfaces has been studied extensively in the con-
text of computer algebra (Musser, 1975; Abdali et al., 1986; Jenks and Sutor, 1992;
Monagan, 1993; Watt et al., 1994). The Standard Template Library of C++ (Musser
and Saini, 1996) is an example from main-stream programming. STL has container
objects with a standardized format for manipulating them.* Such standards can
be created for mathematical objects such as polynomials, matrices, or combina-
torial graphs. Libraries are then accessed through so-called wrapper classes that
convert the standard calling interface to the internal organization. No efficiency is
lost, as the wrapper functions can be inlined on compilation. In FOXB0OX the wrap-
per classes provide streams of objects. For instance, K: :random_generator (500)
is a generic function object of the field class that provides random field elements
that are uniformly sampled from a set of 500 elements. Random field elements are
needed for randomized algebraic algorithms (cf. Section 3). Specification of the ob-
ject interfaces can be expressed in CORBA, the Common Object Request Broker
Architecture (Iglio and Attardi, 1998).

Several libraries, e.g. SACLIB, perform garbage collection, which complicates the
generic object interface. Explicit storage management remains a sticky issue even
in STL, as different C++ compilers implement different memory models.
Exceptions, such as division by zero or failure due to an unlucky selection of random
elements, must be handled in a generic fashion across the components.

Object interfaces sometimes become a barrier that disallows interaction between
the generic algorithm and the used generic arithmetic. For instance, a ring of poly-
nomials whose arithmetic is implemented by FFT-based methods, such as in NTL
(Shoup, 1998), has an efficient specialized evaluation/interpolation scheme. The
generic algorithms can use a shortcut into the specialized procedures when em-
ploying a homomorphic imaging strategy. The wrapper classes can facilitate these
shortcuts.

TThe OpenMath “programming content dictionary” proposed by Gaston Gonnet offers a possible so-
lution.
¥STL does not supply a standard for serializing its containers for transport across systems.
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Table 2. Successful applications.

Product “Killer application”
Macintosh Document preparation
Personal computer Spreadsheets
Supercomputers Weather forecasting
Mainframe computers  Social security system
Symbolic software Calculus teaching

(5) Parallel distribution of a symbolic computation over many different computers is
important as our computations tend to be large. Internet browsers can present a
familiar platform for managing the network of computers one utilizes. The algo-
rithms must be programmed with high-level parallelization that is built-in from
the beginning.

OPEN PROBLEM 7. Devise a plug-and-play and generic programming methodology for
symbolic mathematical computation that is widely adopted by the experts in algorithm
design, the commercial symbolic software producers, and the outsider users.

From our FOXBOX experience I observed that designing a system that simultaneously
plugs into several others is difficult. H. Hong, a co-author of SACLIB, noted that the
reverse is also true, namely, that designing a system that someone else can plug-in is
difficult. However, our symbolic software is becoming very complex and a solution to
Problem 7 is crucial.

8. Killer Applications

The commercial success of a computer product is, according to Stephen Jobs, depen-
dent on a so-called “killer” application that everyone wants but only the one product
has. In Table 2 I attempt to list the killer app’s for several products, including symbolic
software.

Certainly, the students learning calculus with the help of a computer algebra system
constitute the most numerous users of our software. At North Carolina State University
alone they number about 8000 per year. Such proliferation of use makes a discipline
important to society, but it also influences the direction of its future development. I
am told that much of the MathML Internet standard is geared towards mathematics
education. My last problem, admittedly non-scientific, addresses this situation.

OPEN PROBLEM 8. Besides mathematics education, find another so-called “killer” ap-
plication for symbolic computation.

The problem is solved when the new application makes the software written for it a
commercial success.

Summary, Acknowledgement and Note Added in March 2000

These are my open problems.

(1) Nearby multivariate polynomials that factor over C.
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(2) Zolotarev’s problem on a computer.

(3) Characteristic polynomial of a black box matrix.

(4) Lattice basis reduction-safe GGH-like cryptosystems.

(5) Grobner bases via iterative numerical methods.

(6) Space and time efficient transposition principle.

(7) Plug-and-play and generic programming methodology for symbolic computation.
(8) Another “killer” application besides education.

I would like to thank Laurent Bernardin, Bob Caviness, George Nakos, and Peter
Turner for giving me the forum to present them and Victor Shoup for his comments on
Problem 6. I appreciate the suggestions for improvement made by George Collins and by
P. Borwein, P. Lisonék and M. Monagan during my visit to Simon Fraser University in
July 1998. Rob Corless carefully read my manuscript and made several helpful sugges-
tions. All three referees of the paper corrected several errors and made many valuable
suggestions, for which I am grateful.

The above problems were posed in April 1998. To my knowledge, none has been re-
solved as of March 2000. However, there has been significant progress on several of them,
which I would like to mention. Problem 1 has been tackled by several authors using
numerical techniques. While the resulting algorithms do not resolve the problem in its
entirety, the solutions are nonetheless useful in many cases, similarly to complex root
finding procedures that do not converge for all inputs. Good progress can be reported
on problem 3. Gilles Villard has found an algorithm that is within a factor of n!/2+o(1)
of the required complexity. The algorithm does not rely on fast matrix multiplication
algorithms and therefore is more practical than those methods, which are still asymp-
totically faster. Important research is being conducted on problem 7, but I shall only
provide some references (Bernardin et al., 1999; Le and Howlett, 1999; Wang, 1999). The
solution of problem 8 may lie in the past. The Nobel Prize in physics was awarded in
1999 to Gerardus 't Hooft and Martinus J. G. Veltman, and as the citation of the No-
bel Foundation reads [www.nobel.se/announcement-99/physics99.html] “At the end
of the 1960s ... Veltman had developed the Schoonschip computer program which, us-
ing symbols, performed algebraic simplifications of the complicated expressions that all
quantum field theories result in when quantitative calculations are performed. ... With
the help of Veltman’s computer program 't Hooft’s partial results were now verified and
together they worked out a calculation method in detail.”
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Appendix A. Complex Variables in Computer Algebra
(by R. M. Corless and D. J. Jeffrey)

By now, many users and most developers of computer algebra systems (CAS) are
familiar with a set of problems known generically for many years as “the square root
bug.” What was meant by this expression was that CAS would sometimes transform
complex-valued expressions incorrectly. The example that gave the bug its name was
the transformation of V22 to z, which is not even valid for all real z, much less for
complex x. Squarely at the root of the difficulty is multivaluedness, which does happen
with real variables, but is much more common with complex variables.

A concise and elegant description of the problem can be found in Stoutemyer (1991).
More discussion can be found in the papers by Aslaksen, by Patton, by Fateman, by Rich
and Jeffrey, and by Corless and Jeffrey in Issue 116 (June 1996) of the ACM SiGsaM
BULLETIN (Communications in Computer Algebra).

One of the fundamental difficulties in dealing with “the square root bug” is that because
of multivaluedness, some cherished algebraic identities, such as

Inzizo =Inz; +Inzs, (A1)

no longer hold—they are not true for all specializations of the variables. People have been
willing to try to keep these identities, at almost any cost. For example, in Carathéodory
(1964), even Carathéodory was willing to change the meaning of equality in order to
keep equation (Al). He changed the interpretation of the symbols in the formula in two
ways. First, he interpreted each side as a set. Second, he interpreted the equals sign to
mean that the set represented on the left-hand side of the equals sign had a non-empty
intersection with the set represented on the right-hand side. T In a discussion at ECCAD

fNote added in proof: Unlike the English translation, Carathéodory’s original German version of this
passage does not lend itself to this interpretation, but rather to set equality (observation courtesy A. Dav-
enport). However, even so, set equality of In 2122 and Inz; + In 22 does not imply set equality of In 22
and 21n z, because of correlations (observation courtesy J. H. Davenport).
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'98, Dana Scott observed that Carathéodory’s notion of equality is not transitive, and
hence is not an equivalence relation.

Other approaches, such as Riemann surfaces, are also not satisfactory (chiefly because
algebra on them seems so difficult).

One of the main consequences of these mathematical difficulties is that there have been
persistent bugs in many computer algebra systems, particularly in integration, where
changing interpretations of square roots or the like have resulted in absurdities such
as positive integrands giving negative (definite) integrals. It is a firmly held conviction
in CAS that the proper setting for the integration problem is the complex plane. One
consequence is that it is quite possible to integrate f’ to obtain f+c¢ where ¢ is a complex
piecewise constant; indeed the discontinuities in ¢ may be complex.

While we would like to pose the general problem of correct simplification of complex-
valued transcendental functions as our “open problem”, we feel that this is both too
vague and too difficult. On the other hand, “fixing all the bugs in CAS” does not have
the right tone either. Instead, we focus on a smaller subproblem in this area.

Recent progress on “the square root bug” includes the removal by all major computer
algebra systems of automatic simplifications that are not always true on specialization
over the complex numbers (except possibly on sets of measure zero). Progress has also
been made on integration, particularly with the papers of Jeffrey (1993, 1994, 1997) and
Jeffrey and Rich (1994). The main contribution of these papers is that it is better to
return an integral that is continuous on a domain of maximum extent, rather than trying
to fix up spurious singularities and branch cuts later. See also a discussion of Rioboo’s
algorithm, such as the one in Bronstein (1997).

However, these papers address only the simplest sorts of integrals. One of the central
pillars of computer algebra is the Risch integration algorithm and its extensions (see,
for example, Bronstein, 1997). The algorithm, which is algebraic and not analytic in
its essentials, does not always produce integrals continuous on domains of maximum
extent. Further, it often forces computation into the complex plane. For a simple example,
consider the following Maple session.

> infolevell[int] := 5;

infolevel,,, 1= 5.
We force Maple to skip its inexpensive heuristics and go to the Risch algorithm, nor-
mally a last resort.
> ah := ‘int/risch_like‘(1/(2+sin(z)),z);

int/risch: enter Risch integration

int/risch/algebraicl: RootOfs should be algebraic numbers and
functions

int/risch: the field extensions are

2
2, o(RootOf (-2 +1)z)]
int/risch: Introduce the namings:

{_thl _ e(RootOf(_Z2+1) z)}

unknown: integrand is
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1

1 ) 1
2 — 5 ROOtOf(_Z + ].) <_th1 — E)

unknown: integrand expressed as

RootOf(_Z?% 4 1) _th,
4RootOf (_Z% 4 1) _thy + _thy* — 1

int/risch/ratpart: integrating

RootOf(_Z% 4 1) _th,
4RootOf (_Z% 4 1) _thy + _thy* — 1

int/risch/ratpart: Hermite reduction yields
/ ) RootOf (_Z?% + 1) _th,
4RootOf (_LZ% 4 1) _thy + _thy* — 1
int/risch/ratpart: Rothstein’s method - factored resultant is
32241
int/risch/ratpart: result is

% IV31In(_thy + IV3 + 2RootOf(-Z* + 1))

—é IV31In(_thy — I V3 + 2RootOf(-Z* + 1))

int/risch: exit Risch integration

1 1
ah := g1r\/§1n(e<“> +IV3+21)— 51\/3111(@(“) —1v3+21).

We see by the following plot that the Risch algorithm applied to this simple problem
does not produce a continuous antiderivative.
> plot([evalc(Re(ah)),evalc(Im(ah))],z=-5..5);
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OpPEN PROBLEM 9. Modify (or replace) the Risch algorithm so as to produce integrals
continuous on domains of maximum extent, or else clearly describe the largest class
of functions (elementary or other) for which continuous antidifferentiation can be done
efficiently.

This problem will be known to be solved when a proof of the algorithm’s correctness
appears in a good journal, or more preferably when the algorithm is implemented in a
major CAS and thus made available for general use and scrutiny.

Since, even for the integration of rational functions over a complex field, we can have
branch cuts consisting of any algebraic curve whatsoever, this seems difficult. For rational
functions over a real field, Rioboo’s algorithm can be used (Bronstein, 1997). Some related
issues include the following.

APPENDIX A.1. DOMAINS OF COMPUTATION

We feel that the default domain of computation should match the user’s expectations
(and be modifiable at the user’s will). If the computer algebra system begins its computa-
tions in the real domain, assuming all variables are real and all functions are real-valued,
then if at any time during the computation the system decides to move into the com-
plex domain, as it did in our Risch example, then the user should be warned somehow;
B. F. Caviness has suggested that the background colour of the screen could change, for
example.

Automatic simplifications should only perform transformations valid for all specializa-
tions of the variables in the domain in question (possibly using dynamic evaluation, or
provisos). The user, of course, should be allowed to perform any manipulation she or he
desires.

APPENDIX A.2. INTEGRATION OF SPECIAL FUNCTIONS

There are several classes of complex-valued special functions which are of great value
to the scientist, not all of which are supported equally well by the major computer
algebra systems. Examples include the Jacobian elliptic functions and elliptic integrals,
and the hypergeometric or even Meijer G functions or still more generally the so-called
“H-functions”. The Jacobian elliptic functions are very rich in algebraic identities, occur
very often in applications (see the beautiful book Lawden, 1989), and being doubly-
periodic in the complex plane have multivalued inverses. Therefore, all the difficulties
talked about earlier are inherited here as well.

As an example, consider

/ en(u, k) du . (A2)

We will use the substitution ¢ = am(u), where am(u) is Jacobi’s amplitude function and
satisfies
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This gives that du = d¢/+/1 — k? sin® ¢, on using the identity
k%sn?(u, k) + dn*(u, k) = 1.

Therefore, we may express any integrand rational in sn, cn, and dn as an algebraic integral
in sin(¢) and cos(¢) by a simple change of variables. Our simple example gives

B cos(¢) do
/cn(u7 k) du = /1 o) . (A3)

It is an easy exercise (Lawden, 1989, p. 40) to show that this is in fact equal to
Jen(u, k) du = sin~!(ksn(u, k))/k, up to a constant. More interestingly, Maple gives a
non-trivial discontinuous integral for the following continuous integrand (with explicit
use of changevar, because otherwise Maple does not know how to integrate the Jacobian
elliptic functions as yet):

du do
= . A.4
/ 2+ cn(u, k) / (24 cos ¢)y/1 — k2sin? ¢ (A4)

We leave the verification of this as an exercise for the reader.

Integration of all these functions would be very useful; integration valid on domains
of maximum extent would be more useful. Although the simplification of expressions
containing these functions and a few transcendental constants is impossible in general
(even recognizing zero is undecidable),’ one can still ask packages to do as much as is
possible.

APPENDIX A.3. BRANCHES AND THE UNWINDING NUMBER

Many people have tried to automate symbolic computations with multivalued func-
tions; see, for example, Dingle and Fateman (1994) or Corless and Jeffrey (1996). It now
appears, at least for the logarithm and hence for simple elementary functions, that com-
plex analysis can be turned into computer algebra. Once you replace the (false) identity
Inexp z = z with the true identity

Ine® =z —2mik(2), (A5)

where C is the so-called “unwinding number”, then computer algebra systems can ma-
nipulate some complex formulae correctly. The geometric information about the branch
cuts is encoded in the arguments to the unwinding number (which makes this approach
similar, in fact, to that of Dingle and Fateman, 1994). There are simple theorems one
can use to simplify some unwinding numbers, and other algebraic identities that can be

TAs a point of clarification, it is useful to emphasize the distinction between the undecidability of
algebraic simplification in general and the decidability of integration once the model for the field of
extensions is known, as shown by Risch. See Bronstein (1997) for a detailed discussion.
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implemented, such as

K(z) = Pm(zi ”1

Inzi2o =Inzy +1nze — 2mik(In 2y + In 25)
wlnz =Inz" 4 2mik(wn 2)
K(z +2min) =K(2) +n
K(lnz)=0
2128 = (z122)" exp(2miwK(In 21 + In 23))

2" = (2")" exp(2miwk(vin z)) .

A prototype implementation in Maple is under construction, by Gurjeet Litt (a Masters’

student at the University of Western Ontario at this time of writing).

The talk from which the material of this appendix was extracted can be found at
http://www.apmaths.uwo.ca/ rmc/papers/symbolic/index.html under the heading

“East Coast Computer Algebra Day 1998.”

Originally Received 1 July 1998
Accepted 17 November 1999


http://www.apmaths.uwo.ca/~rmc/papers/symbolic/index.html

	Symbolic/Numeric Computation
	Fig. 1

	Quantifier Elimination (QE)
	Linear Algebra With Implicitly Represented Matrices
	Table 1

	Lattice Basis Reduction
	Grobner Bases
	Transposed Matrix Products
	Plug-And-Play Components
	Fig. 2

	Killer Applications
	Table 2

	References
	Complex Variables in Computer Algebra\ (by R. M. Corless and D. J. Jeffrey)

