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GRÖBNER BASES, LOCAL COHOMOLOGY
AND REDUCTION NUMBER

NGÔ VIÊT TRUNG

(Communicated by Wolmer V. Vasconcelos)

Abstract. D. Bayer and M. Stillman showed that Gröbner bases can be used

to compute the Castelnuovo-Mumford regularity which is a measure for the
vanishing of graded local cohomology modules. The aim of this paper is to show
that the same method can be applied to study other cohomological invariants
as well as the reduction number.

Introduction

Let S = k[x1, . . . , xn] be a polynomial ring over a field k of arbitrary character-
istic. Let M be the maximal graded ideal of S. For any finitely generated graded
S-module M we will denote by Hi

M(M) the ith local cohomology of M with respect
to M. Since Hi

M(M) is an artinian graded module, we may consider the largest
non-vanishing degree

ai(M) = max{n|Hi
M(M)n 6= 0}

with the convention ai(M) = −∞ if Hi
M

(M) = 0. Note that Hi
M

(M) = 0 for
i > dimM . The Castelnuovo-Mumford regularity of M is defined as

reg(M) = max{ai(M) + i| i ≥ 0}.
This invariant carries important information on the structure of M [EG], [O]. Sim-
ilarly, we define

a∗(M) = max{ai(M)| i ≥ 0}.
It is known that a∗(M) + 1 gives an upper bound for the regularity of the Hilbert
function of M . Moreover, a∗(M) can be used to estimate −ad(M), d = dimM ,
which is equal to the least non-vanishing degree of the canonical module of M
[GW]. The Castelnuovo-Mumford regularity reg(M) and the largest non-vanishing
degree a∗(M) of local cohomology modules can be viewed as special cases of the
more general invariants:

regt(M) = max{ai(M) + i| i ≤ t},
a∗t (M) = max{ai(M)| i ≤ t},

where t = 0, . . . , d. These invariants have been studied in [T1], [T2], [T3].
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For any homogeneous ideal I 6= 0 in S we have regt(S/I) = regt(I) − 1 and
a∗t (S/I) = a∗t (I). Let Gin(I) denote the generic initial ideal of I with respect to
a given term order in generic coordinates. Bayer and Stillman [BS2] proved that
reg(I) = reg(Gin(I)) with respect to the reverse lexicographic term order and that
if char(k) = 0, then reg(Gin(I)) is the maximum degree of the minimal generators
of Gin(I). We will use their method to prove the following similar statements on
regt(I) and a∗t (I).

Corollary 1.4. Let Gin(I) denote the generic initial ideal of I with respect to the
reverse lexicographic order. Then

(i) regt(I) = regt(Gin(I)),
(ii) a∗t (I) = a∗t (Gin(I)).

Corollary 2.5. Assume that char(k) = 0. For any monomial xA let m(xA) denote
the largest i such that xi divides xA. Then

(i) regt(Gin(I)) is the maximum degree of the minimal generators xA of Gin(I)
with m(xA) ≥ n− t,

(ii) a∗t (Gin(I)) is the maximum of deg(xA)+m(xA)−n of the minimal generators
xA of Gin(I) with m(xA) ≥ n− t.

The equality regt(I) = regt(Gin(I)) was already proved by D. Bayer, H. Char-
alambous, and S. Popescu [BCP] from a different point of view. Let

0 −→ Fs −→ . . . −→ F1 −→ F0 −→M

be a minimal free resolution of M over S. Write bi for the maximum degree of the
generators of Fi. Then the Castelnuovo-Mumford regularity reg(M) can be also
defined by the formula reg(M) = max{bi − i|i ≥ 0}. Motivated by this definition
Bayer, Charalambous, and Popescu introduced the l-regularity of M as

l- reg(M) = max{bi − i|i ≥ l}
and showed that l-reg(I) = l-reg(Gin(I)) for the reverse lexicographic order. We
shall see that

regt(M) = max{bi − i| i ≥ n− t},
a∗t (M) = max{bi| i ≥ n− t}.

Therefore, regt(M) = (n− t)-reg(M). It should be pointed out that Bayer, Char-
alambous and Popescu proved more than the equality l-reg(I) = l-reg(Gin(I)),
namely that the extremal Betti numbers of I which correspond to the “jumps”
in the regularity of the successive syzygy modules do not change when passing
to a generic initial ideal of I. This result was extended to exterior algebras by
A. Aramova and J. Herzog [AH2].

We will also use the method of Bayer and Stillman to study the reduction number
of a graded algebra. Let m denote the maximal graded ideal of S/I. An ideal a

of S/I is called a reduction of m if mr+1 = amr for large r. The least number r
with this property is denoted by ra(S/I). A reduction of m is said to be minimal
if it does not contain any other reduction of m. The reduction number r(S/I) of
S/I is defined as the minimum ra(S/I) of all minimal reductions a of m. This
number may be used to estimate reg(S/I) and a∗(S/I) [T1], [T2], [T3]. One may
view r(S/I) as a measure for the complexity of S/I [V]. However, the relationship
between r(S/I) and r(S/ in(I)) is not well-understood. W. Vasconcelos conjectured
that r(S/I) ≤ r(S/ in(I)) [V, Conjecture 5.15]. Recently, Bresinsky and Hoa [BH]
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proved that r(S/I) ≤ r(S/Gin(I)). Inspired by their result we will show that
equality holds for the reverse lexicographic order.

Theorem 4.3. Let Gin(I) denote the generic initial ideal of I with respect to the
reverse lexicographic order. Assume that k is an infinite field. Then

r(S/I) = r(S/Gin(I)).

This theorem gives a practical way to compute r(S/I) by means of Gröbner
bases since r(S/Gin(I)) is the least number r for which xr+1

n−d ∈ Gin(I) [BH]. We
also give an example showing that Theorem 4.3 does not hold for an arbitrary term
order.

The paper is divided into four sections. Section 1 deals with the invariance
of regt(I) and a∗t (I) when passing to certain initial ideal of I. Section 2 gives
combinatorial descriptions of regt(I) and a∗t (I) when I is a Borel-fixed ideal. Section
3 investigates the relationships between the invariants regt(M) and a∗t (M) and the
syzygies of a graded module M . Section 4 is devoted to the study of the reduction
number of S/I. For unexplained terminology we refer to the book of Eisenbud [E].

1. Gröbner bases and cohomological invariants

Let I be an arbitrary homogeneous ideal in the polynomial ring S = k[X ]. Let
R denote the factor ring S/I. It is known that the cohomological invariants regt(R)
and a∗t (R) can be characterized in terms of a sequence z1, . . . , zt+1 of linear forms
in R.

Recall that a sequence z1, . . . , zs of homogeneous elements in R is called a
filter-regular sequence in R if zi 6∈ p for any associated prime ideal p 6= m of
(z1, . . . , zi−1), i = 1, . . . , s, where m denotes the maximal graded ideal of R. Note
that if (z1, . . . , zi−1) has no associated prime ideal p 6= m, then (z1, . . . , zi−1) is an
m-primary ideal and zi can be any homogeneous element of R. If k is an infinite
field, we may always assume that x1, . . . , xn is a filter-regular sequence in R by a
generic choice of variables.

Filter-regular sequences have their origin in the theory of Buchsbaum rings
[SCT]. Here we are mainly interested in the criterion that z1, . . . , zs is a filter-
regular sequence if and only if

[(z1, . . . , zi−1) : zi]m = (z1, . . . , zi−1)m, i = 1, . . . , s,

for large m [T1, Lemma 2.1]. Such a sequence of linear forms was named almost
regular in [AH2].

Theorem 1.1 ([BS2, Theorem (1.10)], [T1, Proposition 2.2], [T3, Corollary 2.6]).
Let z1, . . . , zt+1 be a filter-regular sequence of linear forms in R. Then

(i) regt(R) is the largest integer r for which there is an index i = 0, . . . , t such
that

[(z1, . . . , zi) : zi+1]r 6= (z1, . . . , zi)r;

(ii) a∗t (R) is the largest integer a for which there is an index i = 0, . . . , t such
that

[(z1, . . . , zi) : zi+1]a+i 6= (z1, . . . , zi)a+i.

The above characterizations of regt(R) and a∗t (R) provide a link to Gröbner
bases by means of the following result of Bayer and Stillman.
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Lemma 1.2 ([BS2, Lemma (2.2)]). Let in(I) denote the initial ideal with respect
to the reverse lexicographic order of I. Let i = n, . . . , 1. For every integer m ≥ 0,

[(I, xn, . . . , xi+1) : xi]m = (I, xn, . . . , xi+1)m
if and only if

[(in(I), xn, . . . , xi+1) : xi]m = (in(I), xn, . . . , xi+1)m.

Theorem 1.3. Let I be an arbitrary homogeneous ideal. Let in(I) denote the initial
ideal of I with respect to the reverse lexicographic order. Assume that xn, . . . , x1 is
a filter-regular sequence in S/I. Then

(i) regt(I) = regt(in(I)),
ii) a∗t (I) = a∗t (in(I)).

Proof. For any graded S-module M let δ(M) denote the largest integer r such
that Mr 6= 0 with the convention δ(M) = −∞ if M = 0 and δ(M) = ∞ if M
is not of finite length. For i = n, . . . , 1, δ

(
(I, xn, . . . , xi+1) : xi/(I, xn, . . . , xi+1)

)
is just the largest integer r such that [(I, xn, . . . , xi+1) : xi]r 6= (I, xn, . . . , xi+1)r.
The assumption that xn, . . . , x1 is a filter-regular sequence in S/I implies that
δ
(
(I, xn, . . . , xi+1) : xi/(I, xn, . . . , xi+1)

)
<∞ for i = n, . . . , 1. By Lemma 1.2,

δ
(
(I, xn, . . . , xi+1) : xi/(I, xn, . . . , xi+1)

)
= δ
(
(in(I), xn, . . . , xi+1) : xi/(in(I), xn, . . . , xi+1)

)
.

Hence δ
(
(in(I), xn, . . . , xi+1) : xi/(in(I), xn, . . . , xi+1)

)
< ∞ for i = n, . . . , 1. So

xn, . . . , x1 is a filter-regular sequence in S/ in(I). Note that regt(I) = regt(R) + 1
and a∗t (I) = a∗t (R). Applying Theorem 1.1 we obtain

regt(I) = max
{
δ((I, xn, . . . , xi+1) : xi/(I, xn, . . . , xi+1))| i = n, . . . , n− t

}
+ 1

= max{δ
(
(in(I), xn, . . . , xi+1) : xi/(in(I), xn, . . . , xi+1)

)
|

i = n, . . . , n− t
}

+ 1
= regt(in(I)).

Similarly we have

a∗t (I) = max
{
δ
(
(I, xn, . . . , xi+1) : xi/(I, xn, . . . , xi+1)

)
− n+ i|
i = n, . . . , n− t

}
= max{δ

(
(in(I), xn, . . . , xi+1) : xi/(in(I), xn, . . . , xi+1)

)
− n+ i|

i = n, . . . , n− t
}

= a∗t (in(I)).

Let the general linear group GL(n, k) of invertible n×n matrices over k act as a
group of algebra automorphisms on S = k[x1, . . . , xn]. There exist a Zariski open
set U ⊂ GL(n, k) and a monomial ideal J ⊂ S such that for all g ∈ U we have
in(gI) = J (see e.g. [E, Theorem 15.18]). The ideal J is called a generic initial
ideal of I, denoted by Gin(I).

Corollary 1.4. Let Gin(I) denote the generic initial ideal with respect to the re-
verse lexicographic order. Then

(i) regt(I) = regt(Gin(I)),
(ii) a∗t (I) = a∗t (Gin(I)).
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Proof. For a generic choice of coordinates we may assume that xn, . . . , x1 is a
filter-regular sequence in S/I. Hence the conclusions follow from Theorem 1.3.

As mentioned in the introduction, the first statement of Corollary 1.4 can be
deduced from a recent result of Bayer, Charalambous, and Popescu [BCP]. This
will be discussed in Section 3.

2. Cohomological invariants of Borel-fixed monomial ideals

Let B be the Borel subgroup of GL(n, k) consisting of the upper triangular
invertible matrices. A monomial ideal I is called Borel-fixed if for all g ∈ B,
g(I) = I.

Theorem 2.1 ([Ga, BS1]). Let I be an arbitrary homogeneous ideal. Then Gin(I)
is a Borel-fixed ideal.

Borel-fixed ideals can be characterized as follows.

Lemma 2.2 ([BS2, Proposition 2.7]). Let I be a monomial ideal. Assume that
char(k) = 0. Then I is Borel-fixed if and only if whenever xp1

1 · · ·xpnn ∈ I, then

xp1
1 · · ·x

pi+q
i · · ·xpj−qj · · ·xpnn ∈ I

for each 1 ≤ i < j ≤ n and 0 ≤ q ≤ pj.

In the following we will denote a monomial of S by xA and by m(xA) the largest
i such that xi divides xA.

Lemma 2.3. Let I be a Borel-fixed monomial ideal. Assume that char(k) = 0. For
i = 1, . . . , n, let ri denote the largest integer r such that

[(I, xn, . . . , xi+1) : xi]r 6= (I, xn, . . . , xi+1)r.

Then ri = max{deg(xA)| xA is a minimal generator of I with m(xA) = i} − 1.

Proof. Let r = max{deg(xA)| xA is a minimal generator of I with m(xA) = i}−1.
We fix a minimal generator xA of I of degree r + 1 with m(xA) = i. Write xA =
xBxi. Then xB ∈ [(I, xn, . . . , xi+1) : xi]r. Since xB 6∈ I and since xB is not
divisible by the variables xn, . . . , xi+1, xB 6∈ (I, xn, . . . , xi+1). Hence

[(I, xn, . . . , xi+1) : xi]r 6= (I, xn, . . . , xi+1)r.

To show that ri = r it suffices to show that

[(I, xn, . . . , xi+1) : xi]m = (I, xn, . . . , xi+1)m, for m ≥ r + 1.

Assume to the contrary that there is a monomial xC ∈ [(I, xn, . . . , xi+1) : xi]m but
xC 6∈ (I, xn, . . . , xi+1). Then xCxi ∈ (I, xn, . . . , xi+1) and xC is not divisible by
the variables xn, . . . , xi+1. Hence xCxi ∈ I and m(xCxi) = i. Since deg xCxi =
m + 1 ≥ r + 2, xCxi is not a minimal generator of I. Therefore we can find a
monomial xD ∈ I such that xCxi = xDxh for some h ≤ i. Since xC 6∈ I, xC 6= xD

so that h 6= i. Thus, xD is divisible by xi and we may write xD = xExi. It follows
that xC = xExh. By Lemma 2.2, this implies xC ∈ I, a contradiction.

Now we can describe the invariants regt(I) and a∗t (I) of a Borel-fixed ideal I in
terms of the minimal generators of I.
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Theorem 2.4. Let I be a Borel fixed monomial ideal. Assume that char(k) = 0.
For any monomial xA in S we denote by m(xA) the maximum of the index j such
that xA is divided by xj. Then

(i) regt(I) is the maximum degree of the minimal generators xA of I with m(xA)≥
n− t,

(ii) a∗t (I) is the maximum of deg(xA) +m(xA)−n of the minimal generators xA

of I with m(xA) ≥ n− t.

Proof. For i = n, . . . , 1, let ri denote the largest integer r such that

[(I, xn, . . . , xi+1) : xi]r 6= (I, x1, . . . , xi+1)r.

Then ri < ∞ by Lemma 2.3. Hence xn, . . . , x1 is a filter-regular sequence in S/I.
Note that regt(I) = regt(R) + 1 and a∗t (I) = a∗t (R). By Theorem 1.1 and Lemma
2.3 we obtain

regt(I) = max{ri + 1| i = n, . . . , n− t}
= max{deg(xA)| xA is a minimal generator of I with m(xA) ≥ n− t},

a∗t (I) = max{ri − n+ i+ 1| i = n, . . . , n− t}
= max{deg(xA) +m(xA)− n| xA is a minimal generator of I

with m(xA) ≥ n− t}.

Remark. J. Herzog has informed the author that Theorem 2.4 can be derived from
Eliahou-Kervaire’s resolution for a stable monomial ideal [EK] (see also [AH1]).

Corollary 2.5. Let I be an arbitrary homogeneous ideal. Let Gin(I) denote the
generic initial ideal of I. Assume that char(k) = 0. Then

(i) regt(Gin(I)) is the maximum degree of the minimal generators xA of Gin(I)
with m(xA) ≥ n− t,

(ii) a∗t (Gin(I)) is the maximum of deg(xA)+m(xA)−n of the minimal generators
xA of Gin(I) with m(xA) ≥ n− t.

Proof. By Theorem 2.1, Gin(I) is a Borel-fixed ideal. Hence the conclusions follow
from Theorem 2.4.

3. Syzygies and cohomological invariants

LetM be an arbitrary graded module over the polynomial ring S = k[x1, . . . , xn].
Let

0 −→ Fs −→ . . . −→ F1 −→ F0 −→M

be a minimal free resolution of M over S. Write bi for the maximum degree of the
generators of Fi. Motivated by the well-known formula reg(M) = max{bi−i| i ≥ 0}
Bayer, Charalambous and Popescu [BCP] introduced the l-regularity

l- reg(M) = max{bi − i| i ≥ l}
and proved that l-reg(I) = l-reg(Gin(I)) for the reverse lexicographic order. Follow-
ing an argument of Eisenbud in [E] we obtain the following relationships between
the degree bi and the invariants regt(M) and a∗t (M). From this one can see that
regt(M) = (n − t)- reg(M). Hence the equality regt(I) = regt(Gin(I)) is only a
consequence of the result of Bayer, Charalambous, and Popescu.
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Theorem 3.1. Let M be an arbitrary graded S-module of finite type. Then
(i) regt(M) = max{bi − i| i ≥ n− t},
(ii) a∗t (M) = max{bi| i ≥ n− t} − n.

Proof. By local duality (see e.g. [E, Theorem A4.2]) we have

Hi
M(M) = Extn−iS (M,S(n))∨,

where ∨ denotes the Matlis duality. From this it follows that

ai(M) = max{m| Extn−iS (M,S)−m−n 6= 0}.
Hence

regt(M) = max{m| Extn−iS (M,S)−m−n+i 6= 0 for some i ≤ t}
= max{m| ExtiS(M,S)−m−i 6= 0 for some i ≥ n− t},

a∗t (M) = max{m| Extn−iS (M,S)−m−n 6= 0 for some i ≤ t}
= max{m| ExtiS(M,S)−m−n 6= 0 for some i ≥ n− t}.

On the other hand, by [BCP, Proposition 1.2] (which is based on [E, Proposition
20.16]) we know that

max{m| ExtiS(M,S)−m−i 6= 0 for some i ≥ n− t} = max{bi − i| i ≥ n− t}.
Hence (i) is immediate.

To prove (ii) we have to modify the proof of [E, Proposition 20.16] as follows.
Put

m′ = max{bi| i ≥ n− t} − n.
Let i be any index ≥ n − t. Then Fi has no generators of degree ≥ m′ + n + 1,
so F ∗i = HomS(Fi, S) must be zero in degree ≤ −m′ − n − 1. Since ExtiS(M,S)
is the homology of the dual of the resolution of M at F ∗i , ExtiS(M,S)r = 0 for
r ≥ −m′ − n − 1. Now let i be the largest integer ≤ n− t such that bi − n = m′.
Then F ∗i has S(m′+ n) as a summand, whereas F ∗i+1 has no summand of the form
S(r) with r ≥ m′+n. By the minimality of the resolution, the summand S(m′+n)
of F ∗i must map to zero in F ∗i+1. Moreover, nothing in F ∗i−1 can map onto the
generator of S(m′ + n) in F ∗i , so it gives a nonzero class in ExtiS(M,S) of degree
−m′ − n. Thus,

max{m| ExtiS(M,S)−m−n 6= 0 for some i ≥ n− t} = m′ = max{bi| i ≥ n− t} − n,
which implies (ii).

Let Syzt(E) denote the t-th syzygy module of M which is defined as the ker-
nel of the map Ft → Ft−1. There exist the following relationships between the
cohomological invariants of M and those of its syzygy modules.

Corollary 3.2. Let M be an arbitrary graded S-module of finite type. Then
(i) regt(M) = reg(Syzn−t(M)) + n− t,
(ii) a∗t (M) = a∗(Syzn−t(M)).

Proof. Note that 0 −→ Fr −→ . . . −→ Fn−t+1 −→ Fn−t −→ Syzn−t(M) is a
minimal free resolution of Syzn−t(M). Then applying Theorem 3.1 twice we get

regt(M) = max{bi − i| i ≥ n− t} = reg(Syzn−t(M)) + n− t,
a∗t (M) = max{bi| i ≥ n− t} − n = a∗(Syzn−t(M)).
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Corollary 3.3. Let I be an arbitrary homogeneous ideal of S. Then
(i) reg(Syzt(I)) = reg(Syzt(Gin(I)),
(ii) a∗(Syzt(I)) = a∗(Syzt(Gin(I)).

Proof. This follows from Corollary 1.4 and Corollary 3.2.

Assume that Fi =
⊕

j S(−j)βi,j . Then βi,j are called the Betti numbers of M .
If m = l-reg(M) ≥ (l + 1)-reg(M), then βl,m+l is called an extremal Betti number
of M . This amounts to saying that βl,m+l 6= 0 and βi,j+i = 0 for all i ≥ l and
j ≥ m. Hence, the extremal Betti numbers pinpoint “jumps” in the regularity of
the successive syzygy modules. Bayer, Charalambous and Popescu [BCP, Theorem
1.6] proved that the extremal Betti numbers of a homogeneous ideal I do not
change when passing to a generic initial ideal of I. See also an alternate proof by
Aramova and Herzog in [AH2] where they extended this result to exterior algebras.
Viewed in terms of local cohomology modules, an extremal Betti number of M is the
dimension of a graded piece of a local cohomology module of M which corresponds
to a “jump” of the regularity regt(M).

4. Gröbner bases and reduction number

Let I be an arbitrary homogeneous ideal of the polynomial ring S=k[x1, . . . , xn].
Let m be the maximal graded ideal of the factor ring S/I. Let J be an ideal of
S which contains I. Then a = J/I is a reduction of m if S/J is of finite length,
and ra(S/I) is the largest non-vanishing degree of S/J . If k is an infinite field,
a reduction of m is minimal if and only if it is generated by d elements, where
d = dimS/I.

Vasconcelos conjectured that r(S/I) ≤ r(S/ in(I)) [V, Conjecture 5.15]. Re-
cently, Bresinsky and Hoa [BH, Theorem 12] proved this inequality for generic
initial ideals. Inspired by their paper, we will show that equality holds for the
reverse lexicographic order. This will follow from the following observation.

Lemma 4.1. Let in(I) denote the initial ideal of I with respect to the reverse lex-
icographic term order. Assume that a = (I, xn, . . . , xn−d+1)/I is a minimal reduc-
tion of m. Then b = (in(I), xn, . . . , xn−d+1)/ in(I) is a minimal reduction of the
maximal graded ideal of S/ in(I) and

ra(S/I) = rb(S/ in(I)).

Proof. Put ra(S/I) = r. Then r is the largest non-vanishing degree of the fac-
tor ring S/(I, xn, . . . , xn−d+1) and therefore of S/ in(I, xn, . . . , xn−d+1) since these
graded rings share the same Hilbert function. By [BS2, Lemma (2.2)] we have

in(I, xn, . . . , xn−d+1) = (in(I), xn, . . . , xn−d+1).

Hence r is also the largest non-vanishing degree of S/(in(I), xn, . . . , xn−d+1). Note
that dimS/ in(I) = d. Then we can conclude that b is a minimal reduction of the
maximal graded ideal of S/ in(I) and that rb(S/ in(I)) = r.

The following result shows that generic minimal reductions always have the
smallest reduction number.

Lemma 4.2. Assume that k is an infinite field. For a generic choice of linear
forms y1, . . . , yd, a = (I, y1, . . . , yd)/I is a minimal reduction of m with

ra(S/I) = r(S/I).
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Proof. First observe that a is a minimal reduction of m if there is a number r
such that (I, y1, . . . , yd)r+1 = Sr+1 and ra(S/I) is the minimum of such numbers.
It is clear that (I, y1, . . . , yd)r+1 = Sr+1 if and only if dimk(I, y1, . . . , yd)r+1 =
dimk Sr+1. Let yi = αi1x1 + · · · + αinxn, i = 1, . . . , d, where α = (αij) ∈ kdn.
Then we can express the condition dimk(I, y1, . . . , yd)r+1 = dimk Sr+1 as the non-
vanishing of a certain polynomial fr(u) at α, where u = (uij) is a family of dn
variables. Let zi = ui1x1 + · · · + uinxn, i = 1, . . . , d. Put Su = k(u)[x1, . . . , xn]
and Iu = ISu. If r(S/I) = s and if a is any minimal reduction of m with ra(S/I) =
s , then fs(α) 6= 0. Hence fs(u) 6= 0. Therefore, b = (Iu, z1, . . . , zd)/Iu is a
minimal reduction of the maximal graded ideal of Su/Iu and rb(Su/Iu) ≤ s. Put
r = rb(Su/Iu). Then fr−1(u) = 0 and fr(u) 6= 0. Thus, there is a non-empty open
set of the space kdn such that if α ∈ U , then fr−1(α) = 0 and fr(α) 6= 0. Hence
ra(S/I) = r. So we obtain r ≥ r(S/I). Hence r = r(S/I).

Theorem 4.3. Let Gin(I) denote the generic initial ideal of I with repsect to the
reverse lexicographic order. Assume that k is an infinite field. Then

r(S/I) = r(S/Gin(I)).

Proof. By Lemma 4.2 we may assume that the ideal a = (I, xn, . . . , xn−d+1)/I,
d = dimS/I, is a minimal reduction of m with

r(S/I) = ra(S/I).

Let b = (Gin(I), xn, . . . , xn−d+1)/Gin(I). By Lemma 4.1, b is a minimal reduction
of the maximal graded ideal of S/Gin(I) and

ra(S/I) = rb(S/Gin(I)) ≥ r(S/Gin(I)).

By [BH, Theorem 12] we know that r(S/I) ≤ r(S/Gin(I)), hence the conclusion.

Remark. The reduction number r(S/Gin(I)) can be easily computed. Bresinsky
and Hoa [BH, Theorem 11] showed that r(S/Gin(I)) is the least number r for
which xr+1

n−d ∈ Gin(I). This fact can be also deduced from Lemma 2.3.

Now we will give an example showing that Theorem 4.3 does not hold for an
arbitrary term order.

Example. Let S = k[x1, x2, x3] and I = (x2
1, x1x3 − x2

2). The ideal a = (I, x3)/I
is a minimal reduction of the maximal graded ideal of S/I with

ra(S/I) = r(S/I) = 2.

It is not hard to check that Gin(I) = (x2
1, x1x2, x1x

2
3, x

4
2) with respect to the

lexicographic order. Let m denote the maximal graded ideal of S/Gin(I). It
is easy to verify that H0

m(S/Gin(I)) = (x1, x
4
2)/(x2

1, x1x
2
2, x

4
2, x1x3). Hence the

largest non-vanishing degree of H0
m(S/Gin(I)) is 2 (that is the degree of x1x3 ∈

Gin(I)). By [T1, Proposition 2.3 and Corollary 3.3] we have reg(S/Gin(I)) =
max{2, rb(S/Gin(I))} for any minimal reduction b of m. If b=(Gin(I), x3)/Gin(I),
then rb(S/Gin(I)) = 3. Thus, reg(S/Gin(I)) = 3. From this it follows that
rb(S/Gin(I)) = 3 for any minimal reduction b of m. Hence

r(S/Gin(I)) = 3 > r(S/I).
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