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Abstract

In this paper, we detail the use of symbolic methods in order to solve some advanced design
problems arising in signal processing. Our interest lies especially in the construction of wavelet filters
for which the usual spectral factorization approach (used for example to construct the well-known
Daubechies filters) is not applicable. In these problems, we show how the design equations can be
written as multivariate polynomial systems of equations and accordingly habr®r algorithms
offer an effective way to obtain solutions in some of these cases.
© 2003 Elsevier Ltd. All rights reserved.
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0. Introduction

Wavelets and filter banks have become useful in digital signal processing in part because
of their ability to represent piecewise smooth signals with relative efficiency. For such
signals, the discrete wavelet transform (DWT) of rapoint vector is again an-point
vector, but one for which the energy is compacted into fewer values. In as far as this is
true, the DWT is useful for signal compression (JPEG 2000), fast algorithms, and signal
estimation and modeling (noise suppression and image segmentation, etc). The DWT is
usually implemented as an iterated digital filter bank tree, so the design of a wavelet
transform amounts to the design of a filter bank.

While the spectral factorization approach is the most convenient method to construct
the classic waveletD@ubechies1992 (and the corresponding digital filters), it is not
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applicable to many of the other wavelet design problems where additional constraints are
imposed. However, for many of these design problems, the design equations can be written
as a multivariate polynomial system of equations. Accordinglgh®er basis algorithms

offer a way to obtain solutions in these cases. This paper describes the general wavelet
design problem from the perspective of filter banks and explains the derivation of the core
design equations. In addition, it is noted that the design of wavelet bases is intriguing in
part for its limitations—specifically, in many cases it is not possible to obtain wavelets
having all the properties one desires. This has motivated the development, for example, of
multiwavelet bases, which are developedSiections 5and6, and of wavelet frames (of
overcompletédbases) which are described $ection 7 For both multiwavelet bases and
some wavelet frames, the spectral factorization approach which is key in the construction
of Daubechies wavelets, cannot be used anymore. However, as described in the following
respective sections, it becomes possible to derive solutions to these new problems using
Grébner bases.

Recently, major advances have been achieved in the field of computational algebraic
geometry that lead to new efficient ways to deal with one of the central applications of
computer algebra: solving systems of multivariate polynomial equations. Using the new
algorithms that have been developed, practical problems like (multi)wavelet design can
now be solved exactly in a way that is very competitive with numerical methods. One of the
most promising schemes to solve systems of polynomial equations has been by computing
Grébner bases. At the same time, even though the computation atan@rbasis is the
crucial pointin our approach, one should not forget that it is only the first step in the solving
process. Methods to implement change of ordering of theb@ei’ basis, and alternative
approaches like triangular systems and rational univariate representation of the system
are also key tools. We will discuss some of these methods in the following. For previous
applications of Gobner bases to the design of wavelets and digital filters, see for example
the works ofPark et al(1997, Faugere et al (1998, Lebrun(2000, Lebrun and Vetterli
(2007), Selesnick and Burrud 9998, Selesnic1999 andSelesnick20008.

Following a filter bank perspective, we introduce filter banks based on conjugate
guadrature filters (CQFs), and we give a simple introduction to wavelets. Iteration of the
filter bank on the lowpass analysis generates discrete-time wavelet bases. In the limit, we
end up with wavelet bases and the concept of multiresolution analysis. We also highlight
the motivation for introducing multiwavelets as a way to overcome some limitations
of CQFs. Readers interested in a more detailed presentation of filter bank and wavelet
theory are referred to the classical booksDHubechieq1992, Vaidyanathan(1993,

Vetterli and Kovaévic (1995, Strang and Nguye(1.996, Burrus et al(1998 andMallat
(1998.

1. Preliminaries

The Z-transform of a discrete-time signal, defined as

X(2) = Z{x(m)} =Y xmz "
n
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will be used often in the development that follows. A filter will be represented by its
impulse responsie(n) or transfer functiorH (z) = Z{h(n)}.

The output of the filter is the convolution of the input with the impulse respbtse

wm:hmnmmy:EZﬂmmn—m,
k

or equivalentlyY (z) = H(z) X(2). Theupsamplerrepresented by the diagram

o) —>(12)—> vl

is defined by the relation

__|x(n/2) forneven
ym = {0 forn odd. (1)

The usual notation iy(n) = [t 2]x(n). The upsampler simply inserts zeros between
samples. For example,xf(n) is the sequence

{....,3,5,2,9,6,...}

where the underlined number represet(®), theny(n) is given by
{...,0,3,0,5,0,2,0,9,0,6,0,...}.

In terms of theZ-transform, we have
y(m =1 2x(n) <= Y () = X(@). (2

The discrete-time Fourier transform p¢n) is given byY(ej“’) = X(e?%). or using the
notationy(w) = Y(e!®), X(w) = x(e'“), we havey(w) = X(2w). The downsampler
represented by the diagram,

o) —{(12)—> 400

is defined ag/(n) = x(2n). The usual notation ig(n) = [| 2]x(n). The downsampler
simply keeps every second sample, and discards the others. For exanxgt®, i§ the
sequence

{...,7,3,5,2,9,6,4,..}
where the underlined number represet(®), theny(n) is given by
{....,7,5,9,4,...}.
In terms of theZ-transform, we have
y(m = [ 2x() &= Y (2) = 3(X(@?) + X(=z"/%) (3)

andy(w) = %(5(‘(%) +i(“’*22”)). This operation induces aliasing in the frequency domain.
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1.1. Filter banks

The basic principle of filter banks is to decompose signals into lowpass and highpass
components at half the rate of the input signal (so as to keep the same amount of data) in
such a way that it is possible to exactly reconstruct the input signal from these components.
This subject of interestsubband coding with multirate filter bankbecame an active
topic whenCroisier et al.(1976 showed it was possible to construct filter banks with
aliasing cancellation using quadrature mirror filters (QMF) and simple downsampling and
upsampling operations.

An analysis filter bank decomposes a sigrginto two subband signals; andd; as
shown in the diagram.

zo(n)

> gi1(n) di(n)

go(n) —»@—» 21(m)
4.@_,

Consequently, a two-channel multirate filter bank first convolves the input sigmath a
lowpass filtergp and a highpass filtegy to minimize aliasing and then downsamples these
two signals.

x1=1[]2](Gox*x0) and di=[{ 2](g1+*X0). (4)
Explicitly, we have
xum =) xkgo@n—k and di(m) =) xo(k)gu(2n k). (5)
k k

A synthesis filter bank combines the subband signals into a single signal.

z1(n) ho(n)

di(n) hi(n)

4.@_.
— %o(n)
4,@_,

The output signal is then reconstructed by upsamplingndd; and filtering again with
a lowpass filtethg and a highpass filteln; to reject the out-of-band components in the
spectrum. The synthesis is given by

Yo = ho* ([1 2Ix1) + hy * ([1 2]da). (6)
Explicitly, we have
yon) =Y xa(kho(n — 2k) + > di(k)ha(n — 2K). (7)
k k

A perfect reconstruction (PR) filter bank is one where the synthesis filter bank perfectly
reconstructs the inpug from the subband signalg andds; that is, one wherggo = Xo.
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For a PR filter bank, the synthesis filtdng, hy together with their translates by even
integers form a basis fo?(Z) and (7) can be written as

Xo(n) = Y (X0, Ao k)ho k(M) + D (X0, iy k)1 k() (8)
k k
where
hik(M)=hin—2k) and hix() =g@k—n) fori =01 (9)

The dual basigh; x} is comprised of the reversed versions of the analysis fijter) and
their translates by even integers.

Vetterli gave the necessary and sufficient conditions inzitg@main for PR (in fact
generalized PR, since delays of the fazm are allowed):

Go(2)Ho(2) + G1(2)H1(2) = 227 (10)
Go(2)Ho(—2) + G1(2)Hi(—2) = 0. (11)

For filters satisfying these PR conditions, the sigigatan be recovered fromy andd;.
In this case the subband signals provide an alternate representation of the input signal
Xo. The goal is to design the four filters such that the filter bank is PR and such that
the new representation ap is more efficient and thus facilitates signal processing tasks.
Although the PR conditions do not demand it, applications of the subband decomposition
(Crochiere et a).1976 generally call for the filterfig andgp to be lowpass, and the filters
h; andgs to be highpass so thai andd; have more or less disjoint spectrums.

From the PR conditions, we get thgtandg; are uniquely determined frolp andh;
by rewriting the previous equations

[ Ho  Hi@) } [GO(Z)} _ [22'} (12)
Ho(-2 Hi(-2 |[Gi@ | [ 0 |
IntroducingD(2) := Ho(2)H1(—2) — Ho(—2)H1(2), supposed to be non-vanishing ©n
we get
277! 277!
= ——Hj(— = ———Ho(-2). 1

Go(@ = 5 @ 1(=2) and  Gi1(2) b2 o(=2) (13)
Now, if we require further that all filters have finite impulse response (FIR, i.e. a finite
number of taps), then essentially only two choices are possible orandz—'. Namely,

Quadrature mirror (QMF) D(z) = 2z,
This givesGop(z) = Hi(—2) and G1(z) = —Ho(—2). Now, Croisier et al.(1976
additionally imposedhg andh; to be mirror filters H1(z) := Ho(—2)), we then get

HZ(2) — HE(-2) = 2z (14)

wherel is necessarily odd. The solutions of this equation are naturally called QMF.
Unfortunately, the only solutions being FIR QMF are variations of the Haar filt€z) =
1/4/2(1+ z~1). The interest of these filters is rather limited.
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Conjugated quadrature filters (CQFP(z) = 2z~'1.
We getGo(z) = zHi(—2) and G1(z2) = —zHg(—2). Smith and Barnwel(1984 and
Mintzer (1985 were able to overcome the major limitation of QMF by imposinggand
h1 to be CQFsH1(z) .= —z 1Hg(—z1). We get

Ho(@Ho(z ™) + Ho(—-2)Ho(-z 1) = 227", (15)
wherel is necessarily even. With this slight change, FIR solutions are now possible. And
as we will see, these filters are closely linked to wavelets.

1.2. Zero moments

The filter bank provides an efficient representation of piece-wise smooth signals if the
subband signal; is close to zero for smooth signadg and if the filterhy is short. That is,
for signal compression, we watit ~ 0 whenevekg is smooth. As a vehicle for achieving
this, itis common to ask thaly = 0 wheneveky is a discrete-time polynomial of specified
degree.

It can be shown that the filt&®,(z) annihilates polynomial signals of degre— 1 if
and only if (z — 1)X dividesG1(z), or equivalently, if

Y =D @) =0, foro<k=K-1
n

That is, the filterg; hasK zero moments
1.3. Orthonormal filter banks

If the analysis filtergyg, g1 of a PR filter bank are related to synthesis filtgrh1 by a
time-reversal,

go(n) = ho(—n), g1(n) = hy(=n),
or equivalently
Go(@ = Hoz'h),  Gi(» = Hiz™h,

then the filter bank is said to be anthonormal filter bankOrthonormal filter banks have
desirable statistical properties. In this case, the PR conditions become

Ho2)Ho(z Y) + Hi@H1zH =2 (16)
Ho(—2)Ho(z™) + Hi(=2)Hi(z7hH = 0. 17

It is easily verified that settinh; to the CQF filter ofhg, i.e.hy(n) = (—=1)"ho(1 — n)
or equivalentlyH1(z) = z~tHo(—z1), it supplies a solution to the second of the two PR
conditions. With this form foH1(z), the first PR condition becomes

Ho(2)Ho(z 1) + Ho(—2)Ho(—z ) = 2, (18)
or equivalently

3" homho(n — 2k) = 25(k) = {S « 2 o
n
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For an orthonormal filter bank, all the filters are determinedHgyz):
Hi@ == —z'Ho(-z'Y).  Go@ =Hoz ",  Gi1(@) =zHy(-2).

Moreover, the decomposition of a signg) by an orthonormal filter bank may be
interpreted as its expansion in an orthonormal basigZofNamely the expansior8)
is an orthonormal one. This result can be generalized to IIR (non-FIR) filter banks.
Besides, if the filters are not imposed to be CQF then we get biorthogonal bages of
(Vetterli and Herley1992.

Note that if (z — 1)X dividesG1(z), thenG1(1) = 0, and so for an orthonormal filter
bank we haveHp(—1) = 0. Substitutingz = 1 in (18) gives

HZ(1) = 2. (19)

Furthermore, ifz— 1)X dividesG1(z), then(z+1)¥ dividesHo(z). Daubechies’ problem
is the following. GivenK, find H (z) of minimal degree such that

1. Y h(mh(n — 2k) = 28(k)

2. (z+ 1K dividesH (2).

It turns out that the solutiorts(n) of minimal degree can be most conveniently found by
defining a product filteP (z). Letting P(z) := H (2)H (z~ 1), we have the requirement that
P(2) + P(=2) = 2. Hence, orthonormal filter banks can be obtained by desigRizy
satisfying thidinear condition. Becaus®(e!“) = |H (e/®)|2, P(z) must be non-negative
for all z = el®, otherwise it does not admit the factorizatiBiz) = H (z2)H (z™1). Also
note that if(z+ 1)K dividesH (z), then(z + 1)2X dividesP(z).

Gathering these conditions together gives an alternate form of Daubechies’ design
problem: giverK, find P(z) of minimal degree such that

1. P(el®) > Oforallw

2. P(2 = P@zh

3. P@+P(—2)=2

4. (z+ 1)%K dividesP(2).

The solution is given by

— (K+k-1
P =2a-y 3 (T (20)
k=0

wherez = el® andy = 1/2(1 — cosw).

The key to this solution is (1) that all constraints Hriz) can be converted into linear
constraints onP(z), and (2) thatH (z) can be obtained frontP(z) by the FEjer—Riesz
theorem and spectral factorization. For other design problems where additional constraints
are imposed, it is not possible to convert the constraint$l@p) into linear constraints
on P(2). Itis in those cases that Gsier bases can be used to investigate the existence of
solutions having various desired properties.
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2. Daubechies solution

To illustrate the Gobner basis-design of orthonormal filter banks we begin by showing
an example of the design of Daubechies filters of length 8. Although they can be obtained
through simpler means, it is a good example with which to begin.

Let R(z) be the remainder obtained after dividind(z) by (z + 1)X. Then the
requirement thatz + 1)K divides H (2) can be written aR(z) = 0. To simplify the
notation, we denotl(n) by hy. WhenK = 4, the minimal lengtth(n) that satisfies the
orthonormality condition is of length 8 (the degreett(z) is 7). ForK = 4, length 8, the
design equations fdr(n) are:

// Orthonormality conditions
hg+h3+h3+h5+hi+h3+hi+h3—2=0
h7hs + hsha + hohg + hzh1 4 hshz 4+ hshz = 0
hsh2 4+ h7h3 4+ hshg + hsh; =0

hgho + h7h1 = 0.

// Zero-moment conditions

ho — hg 4+ 20h7 — 10hg + 4hs =0

hy + 15hs + 70h7 — 36hg — 4hs =0

ho — 45hg + 84h7 + 20hs — 6hy = 0

h3 4+ 35h7 — 20hg + 10hs — 4hs = 0.

Note that the first conditiod hﬁ = 2 is the only non-homogeneous equation. We can
replace it by the equatiokl (1) = 2 without affecting the set of solutions. In addition,
the negation of each solution vector is also a solutioh(ifs a solution, then so is-hp).
Therefore, we can reduce the number of solutions by replacing the cons$triht = 2
with the constraintd (1) = ++/2. To simplify the Gobner basis calculations, we can
replace the equatioi (1) = ++/2 by H(1) = 1, then the equations are in terms of
rationals only. This has the effect only of scaling all solution vectors/hy2l The solution
can be rescaled afterwards to obtain the correct normalization. This procedure reduces the
degree of the set of equations by a factor of two.

If the first equation above is replaced by the equation

ho+hi+hy+hz3+hsg+hs+hg+h7—1=0
then lexicographic Gatiner basis is

281474976710656 hS — 17502186044416 hY — 3848200697216 hY — 150323855360 A3 + 3523215360 h4 + 183500800 hZ — 5734400 h2 + 32000 h7 + 625
78400 hg — 6507069766656 hT + 481036337152 hS + 93052400600 hS + 1906488704 ki — 233963520 A3 — 5877760 h2 + 220600 hy + 125

392000 hs + 116548232544256 h; — 6253472382976 hg — 1537061421056 hg — 85144371200 h; — 811991040 hg + 52326400 hg + 1797600 hy + 1875
196000 hy + 200271069732864 h — 17798344474624 hS — 3949750209584 hS — 162655109120 hi + 2876375040 A2 + 181350400 hZ — 3869600 hy — 11625
196000 A3 + 248489627877376 ht — 15874199126016 h§ — 3416109613056 h — 125074145280 hj + 3867279360 h2 + 169881600 hZ — 6126400 hy — 49625
392000 hg — 332052511588352 hJ + 19722489823232 hS + 4483408986112 h3 + 200236072960 h% — 1885470720 h3 — 192819200 h2 + 2200800 h7 — 148875
392000 hy — 613527488299008 hJ + 3801870635008 hS + 8369280647168 h + 335202661760 h — 6922567680 A2 — 392089600 h2 + 10847200 hy — 98625
2000 ho — 1099511627776 hY + 68719476736 hS + 15032385536 hS + 587202560 hy — 13762560 h3 — 716800 h2 + 22400 hy — 125.
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h(n) [H(E™)l
1 15
05 { { 1
of | o 05
-05— 2 4 6 s % 02 04 06 08 1
1 15
0.5 N ‘ 1
ot . - [ Lo 05
-05 2 4 6 s % 02 04 06 08 1
1 15
0.5 ‘ N 1
0 M . 1 [ . i 0.5
~05 0
0 2 4 6 8 o 02 04 06 08 1
1 15
05 { { 1
A ] s
-05 0
0 2 4 6 8 0 02 04 06 08 1

Fig. 1. The 4 orthonormal filters of length 8 with 4 zero moments.

Appending the following equation
h]_ =+ 2h2 + 3h3 =+ 4h4 + 5h5 =+ 6h6 + 7h7 — A (21)
yields a more compact @bher basis:

4A8 — 112A7 + 1344A5 — 9016A° + 36904A% — 9408043 + 14509642 — 122500A + 42385
448(h7 — 16A7 + 392A°% — 4004A5 + 220500% — 70476A3 + 13007422 — 126910A + 48965
448(hg — 16A7 + 392A°% — 4004A5 + 22050A% — 70476A3 + 12993472 — 126210A + 48265
448(hs + 48A7 — 1176A8 4 1201275 — 6615084 + 21142873 — 39050202 + 381850 — 147735
448(hy + 48A7 — 1176A8 4+ 12012A5 — 661508% 4 21142823 — 39008242 + 379190A — 144795
448(h; — 48A7 + 1176A8 — 12012A5 + 661508% — 21142873 + 39078282 — 38409(A + 149695
448(hy — 48A7 + 1176A% — 12012A° + 661508% — 21142873 + 39036242 — 380870A + 144795
448(h; + 16A7 — 392A5 1 4004A° — 22050A% + 70476A3 — 13035472 + 1291507 — 53165
448(hg + 16A7 — 392A8 4 4004A5 — 220508% + 70476A% — 13021472 + 127890A — 50505

The lexicographic Gabiner basis can be obtained from the degreeb@ef basis using the
FGLM algorithm, as described below in the Appendix.

Of the eight solutions, four are real-valued, four are complex-valued. The four real-
valued solutions are shown fFig. 1L Notice that the reverse of each solution is also a
solution. Not counting negation and reversal, there are two distinct solutions.

As noted above, the Daubechies filters can be obtained via the spectral factorization
of a suitably designed (Laurent) polynomidlz), as described by Daubechies. In this
procedure, Gsbner bases are not required, as the desigA(aj is a linear problem and
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spectral factorization requires finding the roots of a univariate polynomial only. However,

if it is desired that the filteh(n) satisfy additional constraints, it is likely that the spectral
factorization approach cannot be used. For example, if it is desirech¢thate nearly
symmetrich(n, — n) ~ h(n) then the design problem becomes more complicated and
Grobner bases can be utilized. (For image processing, it is desirable that a filter bank consist
of symmetric filters because the distortion introduced by filtering with non-symmetric
filters is sometimes visible.) It is well-known that exactly symmetric finite-length solutions
do not exist for the orthonormal two-channel filter bank design problem, for the exception
of the Haar solution wittH (z) = %(1 +z1.

For this reason, it is common to use (1) orthonormal PR filter banks with nearly
symmetric filters or (2) symmetric PR filter banks that are nearly orthonormal. While
the design of these types of filter banks can be approximately carried out by different
factorizations ofP(z) in (20), many algorithms have been suggested for these two classes
that desigrh(n) directly rather thamp(n).

The design of nearly symmetric orthonormal PR filter banks is described in the next
section, where Gainer bases are used to obtain the filters. An alternative is to use
multiwavelets, for which orthonormality and symmetry are simultaneously possible. The
design of multiwavelets is detailed Bections Jand6.

3. Nearly symmetric orthonormal filter bank

While the classic Daubechies filters can be obtained without having to solve any
multivariate nonlinear equations, many generalizations and specialized designs that satisfy
additional constraints cannot be obtained so easily. As an example, consider the design of a
length 8 filterh(n) satisfying the orthonormality conditioi®), with some zero moments
and some degree of symmetilidelnour and Selesni¢c001). To enforce a degree of
symmetry, we ask that

h(no +n) = h(no — n)

for some selected range of If there were no symmetry constraints, then the filter bank
could have at most four zero moments. Because of the symmetry constraints, the filter bank
will have fewer zero moments. Takir§ = 2, n, = 2.5, we can get the following design
problem. DesigrH (z) of minimal degree such that,

1. h(2) = h(3), h(1) = h(4).
2. (z+ 12 dividesH (2).
3. Zn hnhnfzk = 8(k)

This design problem gives rise to the following design equations.

// Orthonormality conditions
ho+hi+ho+hz3+hs+hs+hsg+h7 -1
haho + hsh1 + hahy + hshs + hghs + h7hs
hsh2 + hshg + hsh1 4+ h7hz

hghg + h7h;.
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// Zero-moment conditions

ho — ho — 3hg — 5hg + 6h7 + 4hs + 2h3
hy1 + 3h3 + 5hg + 7h7 — 6hg — 4hg — 2hs.
// Partial symmetry conditions

hz — h3

h1 — hg.

As above, appending EqR]) has the effect of simplifying the coefficients appearing
in the Giobner basis. It turns out that the lexicographioér basis then factors into
two parts. We used theacstd command inSingular(Greuel et al.2000 to perform the
factorization. The first Gifiner basis is

40A° — 984A5 + 9796A% — 49888A3 + 13531472 — 183246A + 95445
10668817 + 800A® — 18060A% + 156848A°% — 646136A° + 123148\ — 828755
32006415 — 800A® + 18060A* — 156848A° + 64613672 — 1284832 + 962115
26675 — 400A° + 9030A% — 78424A3 + 321401A% — 607404 + 405209
32hs — 2A% + 18A — 35,

10668813 + 800A® — 18060A% + 156848 — 632800A° + 11381367 — 728735
1066881, + 800A® — 18060A% + 156848A° — 632800A% + 11381367 — 728735
32h; — 2A% + 18A — 35,

8001610 — 400A° + 9030A* — 78424A3 + 318067A° — 577403A + 353532

The second Gabner basis is

2A% — 18A + 33,
16h7 — 2A+5,
16hg — 2A + 5,
16hs + 1,

16hs — 1,

16h3 + 2A — 13,
16hy + 2A — 13,
16h1 — 1,

16hg + 1.

The first part has four real-valued solutions and two complex-valued solutions. The
second part has two real-valued solutions. The six real solutions are sh&imn i The
frequency responsgsi (e/®)| are also shown in the figure. Only the last solution is a
reasonable lowpass filter. The other five solutions can be considered parasitic solutions.
They would not be favored in practice because they do not have acceptable lowpass
frequency responses.
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Fig. 2. The 6 orthonormal filters of length 8 with 2 zero moments and partial symmetry mgpeup.5.

It is seen in the figure, that the sixth solution, while not exactly symmetric, is
more symmetric than the solutions shownHig. 1. Furthermore, the solution has more
symmetry than requested in the design problem; we hé&e= h(5) as well.

Other formulations of the nearly symmetric orthonormal filter bank design problem are
based on moments bfn), and the corresponding wavelets are caleiflets(Daubechies
1992 Tian et al, 1997 Wei and Bovik 1998. The design of Coiflets also requires the
solution to nonlinear design equations and usually the solutions are found through iterative
numerical optimization. As detailed iBection 6.2 Grobner bases can also be used to
obtain Coiflets (in fact multiCoiflets).
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4, |terated filter banks

The filter bank structure described above is often used in an iterated manner. Indeed,
the analysis of a signal over several scales (multiresolution analysis) can be accomplished
by iterating the filter bank on the first subband. The idea of filter bank trees is to cascade
this iteration up to a certain levklWe then havé + 1 signals: the coarse signaland the
details signalsl, ..., dj.

go(n) 4’@*
go(n) (12— 91(n)
o i) (12— da(n)

| o) (12—~ di(w)

The original signalxg can be reconstructed from these subband signals by the iterated
synthesis filter bank.

dz(n)

go(m) (—(12)—s(n)
—(12—

zo(n)

ho(n)

z3(n)

ho(n)

~@-
~@-

dz(n) hi(n)

()
—»@—» ho(n)
da(n) —~(12)—{ ha(n) ——uo(n)

di(n) @ hi(n)

If (z—1)K dividesG1(z), then not only isl; = 0 whenevexg is a polynomial signal of
degree less thali, butd, = 0 andds = O also. This is clarified as follows. L&k denote
the set of discrete-time polynomials of degieend less; then we can write the following.
If

1. xo(n) € Px—1, and
2. (z - DK dividesG1(2)

then

1. x1(n) € Pk_1, and
2. di(n) =0.

Note that polynomial signals are preservedxgfis a polynomial signal, then so ig.
Therefore, if G1(z) annihilates polynomials of a specified degrée thenall of the
subbandsl; are zero whenever the input is a polynomial of the same degree.

Now, if we omit some detail signalsl; (n), in the reconstruction (this is the principle
of compression), the “quality” of the signal reconstructed will depend largely on the
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“smoothness” Mallat, 1989 Daubechies1992 Rioul, 1993 of the basis vectors with
which the reconstruction is performed.

4.1. Wavelet bases

The transformation of a signap by anl-level iterated filter bank into subband signals
di1,do, ..., d, X constitutes the DWT. A wavelet basis fon(R) is closely related to
the DWT. In particular, given an orthonormal DWT (fully determined ty(n)), an
orthonormal wavelet basis farz (R) is given by

where the scaling functiog (t) is defined through the dilation equation (or two-scale
relation):

¢(t) =+2) ho(meg (2t —n)
n

and the wavelet is defined by

Yt =v2) himg @t —n).
n

Furthermore, ifz+ 1)X dividesHo(z) then
/tkl//(t)dtzo foro<k<K -1

and
> nke (t — k) € Py.
n

Therefore, the design of an orthonormal wavelet basid fqiR) is equivalent to the
design of an orthonormal filter bank. Implementation is nearly always performed using
filter banks, but the functiong (t) and v (t) are useful because they indicate how the
filter bank behaves when the filter bank is iterated indefinitely. For example, if the filter
bank is not designed so that + 1)2 divides Ho(z), then¢(t) will not be continuous.
The smoothness af(t) is important because it reflects what artifacts may appear in the
synthesized signal(n).

The scaling functiong (t) for the examples above are shownFigs. 3and4, from
which the comparative symmetry of the second problem is also visible.

It should be noted that a solution (in th& sense) to the dilation equation (a scaling
function) does not always exist. However, if‘iuqi% |ﬁ0(w)| > 0, then the convergence

is in L2 norm (Cohen 1992 to a bona-fidd_? function. In that case, these two functions
generate a multiresolution analysis bf as defined byMallat (1989. Defining Vi :=
spar{q)(z—kt —n) | n € Z}, we get by the two-scale equations, a nested sequence of
subspaces df? satisfying

[ ] Vn C anl.
[ ] mnVn = {0} andUnVn = L2
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Fig. 3. The scaling functions generated by the first two filters shovifignl
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Fig. 4. The scaling function generated by the sixth filter showrign 2

o feVhe f(2) e V1.
o feVoe f(t —k) e Vo, VkeZ.
e {¢(t —Kk) | k € Z} is an orthonormal basis &f.

IntroducingW = spar{w(Z*"t —n) | n e Z}, we getVp_1 = Vo ® W, and so
®nWh = L2 Itis easily proven thafy (2t — n) | k,n e Z} is an orthonormal basis

of L2. Starting from a CQF, we have constructed a basis dfrom dyadic dilations

and translations of a single functio@. is called an orthonormal wavele, is called the
associated scaling function. Again, theality of the multiresolution analysis is measured

by the numbeK of zeros atr of Ho(el®) since itimplies that 1t, . . ., t“~1 can be exactly
reconstructed from integer translates of the scaling function, thus giving approximation
orderK (Jia and Leji1993.

This way of constructing wavelets from iterated filter banks was pioneered by
Daubechies(1988. It became since, a standard way to derive orthonormal and bi-
orthogonal wavelet bases. The underlying CQF filter banks are now well-studied, the
design procedure is well-understood. By the structure of the problem, certain solutions
are however ruled out: since it is impossible to design FIR linear-phase CQF with real
coefficients other than the Haar filter, this implies that the only orthonormal wavelet with
compact support and symmetry is the Haar wavelet.

For multiwavelets, however, the relation betwesh), v (t) and the corresponding filter
bank is more complicated. In the next section, the design of multiwavelets is considered
in detail. It turns out that Gxiner bases are very useful in investigating the existence of
multiwavelets having properties that are not possible in the scalar-wavelet framework.
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5. Multiwavelets

Generalizing the wavelet case, one can allow a multiresolution anafysis.cz
of L2(R) to be generated by a finite orthonormal set of scaling functipp@),

¢1(t), ..., ¢r—1(t) and their integer translates. In this framework, the so-called
multiscaling functiong(t) := [¢o(t), ..., ¢r_1(t)]" satisfies now a matrix two-scale
equation
o) =D Mkp2t k) (22)
k

where now{M (k) }k is a sequence afx r matrices of real coefficients. The multiresolution
analysis structure give¥_; = Vo & Wo whereWp is the orthogonal complement of
Vo in V_1. Again, starting from the orthonormal basigg(t), ¢1(t), ..., ¢r—1(t) and
their integer translates, we can construct an orthonormal baslpofienerated by

Yot), Y1), ..., Yr—1(t) and their integer translates with the so-called multiwavelet
¥ () = [Yot), ..., ¥r_1()]T derived by
¥(t) =D NK@@t -k (23)
k

where{N(K)}k is a sequence af x r matrices of real coefficients obtained by orthonormal
completion(Lawton et al, 1996 of {M (k)}«. Introducing in thez-domain, the refinement
masksM(z) = 1/2% Mz " andN(z) := 1/2) " ,N(n)z ", Egs. 2 and @3
translate in Fourier domain into

$20) =ME)P@) and P (2w) = NE*)$(w). (24)

Under some natural conditions of convergence (detail&binen et al(1997 andLebrun
(2000), and similarly to the wavelet case, we can derive the behavior of the multiscaling
function by iterating the first product above. We get at the limit

00 .
$(©) = Moo(@)$(0) = [ [M(&/2)$(0). (25)
i=1
In the sequel, we will impose that the sequen¢bb(k)}x and {N(k)}x have finite
support and thus that(t) and ¢ (t) have compact supporikassopust et gl1996. The
orthonormality of the multiscaling function translates also into a matrix orthonormality
condition onM (2): for all z on the unit circle,

MMTEZH +M(=2MT(=z7YH) =1. (26)

With this approach, one is finally able to overcome some of the limitations of
CQF filter banks. It is now possible to get finitely generated multiresolution analysis
with all the scaling functions and wavelets being orthogonal, compactly supported and
(antiysymmetric.

The first multiwavelets were designed bylpert (1993 using methods from
numerical analysis (finite elements and splines methods). A construction using fractal
interpolation of a multiresolution analysis having approximation order 2 (1t a@h be
reconstructed from the translates of the scaling functions) using two symmetric, compactly
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supported, orthogonal scaling functions (that are furthermore Lipschitzgbgnimo et al.
(1999 (DGHM) triggered many other attempts to construct new multiwavelet bases
(Vetterli and Strang1994 Strang and Stre]dl995 Donovan et al.1996 Chui and Lian
1996 and motivated a thorough study of the theory of multiwaveletsil(et al, 1996
Cohen et a.1997 Plonkg 1997 Plonka and Stre|a999.

Considering a finitely generated multiresolution analysis with orthonormal multiscaling
function ¢(t) and multiwavelety (t), from Vo = Vi & Wi, we get fors(t) =

YnSp (Mé(t —n) € Vo,
t t
=Y s/ - df ~—n). 27
s(t) ;sl(mcp(z n)+ 1(n>w/r(2 n) (27)
Hence, we derive the well-knowMallat (1989 algorithm for multiwavelets. At the
analysis,

s =) Mk-2msk and din) =) N(k-2mso(k) (28)
k k

and at the synthesis, we get

so(n) = ) _MT(n—2ks1(k) + N (n — 20d1 (k). (29)
k

These relations enable us to construct a multi-input multi-output filter bank (multifilter

bank) as shown below.
0= « <o
2N(3) @i d :@2NT(z)

Because of their inherent vector nature, in order to process scalar signal, multifilter banks
require a vectorization of the input signal to produceradimensional input signal.

A simple way to do this vectorization is to split scalar signals into their polyphase
components. Introducing

2M(1)

So So

mo(2) 1
my(2) z1
. =2M(Z) . (30)
mr_1(2) z D
and in the same wayo(z), n1(2), ..., N —1(2), the system can then be rewritten as a

2r channel time-varying filter bank as shown kig. 5. Intuitively, this is a filter bank

with relaxed requirements on the time invariance. In each filtering block, we periodically
alternate between different filtetsebrun and Vetterl{1998 andSelesnick1998 pointed

out that if the componentag(z), m1(2), ..., m_1(2) of the lowpass branch have different
spectral behavior, e.g. lowpass behavior for one, highpass for another, this will lead to
unbalanced channels that will mix the coarse resolution signal and detail coefficients and
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Analysis Synthesis

7d1.k7

Fig. 5. Multifilter bank seen as a time-varying filter bank.

will create strong oscillations in the reconstructed signal. This leads us to introduce the
concept of balanced multiwavelets.

5.1. Balancing

This problem relates also to the basic principle of filter banks: one expects a reasonable
class of smooth signals (typically piecewise polynomial signals) to be preserved by the
lowpass branch and annihilated by the highpass one. In the wavelet case, the two important
issues of the reproduction of polynomials by the associated multiresolution analysis
(approximation theory issue) and the preservation/cancellation of discrete-time polynomial
signals by the associated filter bank (subband coding and compression issue) are tightly
connected since they have been proved to be equivalent to the Strang-Fix conditions:
the number of zeros at in the factorization of the lowpass filteo(el @) of the filter
bank. This is however not the case anymore for multiwavelatbrun and Vetter]i1998.

The preservation/annihilation of constant signals by the lowpass/highpass branches of the
multifilters (calledbalancingof order 1) is proved to be equivalertegbrun and Vetter]i
1998 Selesnick1999 to any of the following conditions:

e [1,1,...,1]is aleft eigenvector o¥ (1) with eigenvaluerg(1) = 1.
dO =111,...,1".

e Y'Z3mi(2) has zeros on the unit circle at= e/"/" fork = 1,...,2r — 1.
e One can factorizé! (z) = 1/2A(zZ)Mo(z) A~1(z) with
1 -1 0 ... O
0 1 -1 . 1 1
A(2) = : L. 0 and Mo(1) =
0 .1 -1 1 1
-zt o ... 0 1

These conditions can be generalized to higher orders of balancing (preser-
vation/annihilation of polynomials signals of higher degree). Introducing the polynomial
interpolation vector filterselesnick1998 Lebrun 2000,

1
0 (@ = ~log) @, 0} @ ..oy (D)
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where
n

rk+ 1)
(n) 1— -1,k
@ = ZF(kJrl)F( e

we get the following equivalent conditions:

o« Y5 I(<pr Y (22 ymi(z) has zeros of ordep atz = elk*/" fork = 1,...,2r — 1.
e M(2) can be factoredfon=1,..., pas
1 n 2
M@ = A Z)Mn-1(2A” "(2) (31)
1 1
withMp_1(D) | : | = | ¢ | andA(z) defined as before.
1 1

These two conditions are furthermore convenient to deal with in the practical design of
multiwavelets.

Besides, one also proves that balancing of orgds equivalent tog(t) having an
approximation order op and fori = 0, ...,r — 1, the shifted analysis scaling functions
i (t +i/r) having identicalp first moments i.e [ ¢i(t +i/r)t"dt = [ ¢o(t)t" dt for
i =0,....,r —1andn = 0,..., p — 1. Intuitively, this says that the condition of
balancing of ordemp imposes multiwavelets to behave like wavelets up to the opder
of approximation. One can in fact show that the shortest length orthonormal multiwavelets
for a given order of balancing are indeed the Daubechies orthonormal waedersi
200Q Lebrun and Vetter]i2007).

6. Algebraic design of multiwavelets

We are now able to deal with and solve the systems of polynomial equations that appear
when designing high order balanced multifilters. Using the results obtained in the previous
section (especially the factorization of the refinement mask) and inspired by the techniques
used byPark et al (1997 andFaugre et al(1998 on similar problems of design, we are
now ready to investigate the construction of orthonormal multifilters of arbitrary balancing
order in a similar way to whdbaubechie$1992 did for her well-known filters.

6.1. Symmetry oriented design: the Bat family

Given a balancing ordep, we are looking for the shortest length orthonormal
multifilters with real coefficients and symmetries. The symmetries on the filters allow easy
and practical implementations on finite length signals. The scheme of construction is then
the following.

First, we construct the refinement madkz), by putting degrees of freedom on a matrix
Mp-_1(2).
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1. Impose the order of balancing to bei.e. forn=1,..., p,
1
M@ = A" @M 1A (@)

with Mp_1(D[1,..., 11T =[1,..., 1]". This way we reduce the number of degrees
of freedom in the design.
2. Impose the conditio® (orthonormality) orM (2),

MMTZH +M(=2MT(=zH =1.

This gives quadratic equations on the free variabledgf 1(z) (the idea is to
introduce the Laurent polynomial matrix)

Vp-1(2) =27P1—z7")PMp_1(20AP(2)

and translate the orthonormality condition on this matrix.

3. Impose conditions of symmetry. Here we look for flipping propenyi(z) =
z7?4+tImgo(z1). The flipping property enables an easy lossless symmetrization
(detailed inLebrun(2000) of finite length input signals.

4. We now have a system of polynomial equations. We compute the algebraic
dimension of the system using a drldbrier basis approach and increase the degrees
of freedom until we get solutions (and a dridbrier basis of dimension 0). We used
here the programS8ingular (Greuel et al.2000 for orderp = 1,2,3 and FGb
(Faugere 1999 for the orderp = 4. We now have a zero-dimensional dridBrier
basisG ., that we can either transform into a lexdbrier basiss ., using FGLM
in the casep = 1, 2, 3 or in the case = 4, where FGLM showed its limits, we
compute a rational univariate representatiorGaf,, by a modified version of the
program RealSolvingRouillier, 1999. We can then factorize the leading polynomial
of the lex Gobner basiss ., in Maple and thus get rid of the multiplicities of the
solutions. This means we factorize theoBnér basis in local algebras that are much
easier to solve exactly. In the cape= 4, we deal with a RUR and a similar idea is
applied to the characteristic polynomjal(t). We then have the set of solutions for
the system.

5. Among this finite number of solutions, we can look for the one leading
to the smoothest scaling functions using an estimate by invariant cycles
(Lebrun and Vetter]i2001J).

Then, we easily derive the highpass filtexgz), n1(z) from the lowpass filtersng(z),
my(z) by imposing ng(z) to be symmetric andni(z) to be antisymmetric. The
orthonormality conditions give a unique solution up to a change of sign.

Using this approach, we have been able to construct all the minimal length
orthonormal multiwavelets with compact support and flipped scaling functions,
symmetric/antisymmetric wavelets for order 1, 2, 3 and 4 of balanéiigg .6 shows the
smoothest scaling functions associated to these high order balanced multiwavelets. The
coefficients are available from the webpage of J.L. For order 4 of balancing, because of
the degree of the characteristic polynomial in the RUR, a real roots localization program
(included in RealSolving) has been used and only numerical solutions (in fact exact
intervals containing the solutions) have been obtained.
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Fig. 6. Order 1 (resp. 2, 3 and 4) balanced orthogonal multiwavelet: the scaling functions are flipped around 1
(resp. 2, 4 and 8), the wavelets (not shown here) are symmetric/antisymmetric, the length is 3 (resp. 5, 7 and 11)
taps (2x 2).

6.2. Interpolation oriented design: M-Coiflets

Now, if the scaling functiorpo(t) has furthermoreg — 1 vanishing moments, we get
a multiwavelet generalization of CoifletstultiCoifletsare thus constructed as balanced
multiwavelets with more stringent conditions on the momentsggt). For practical
design, we will use the following extension of the balanced vanishing moments condition.

Forn=0,..., p—1, we have
an i : n .
o[- 1@ M@0 = g 1(€)]w=0

n

d : :
G [2p-1E@*IME )] =07,

The design procedure is then very similar to the one for the Bat family above. Two new
conditions are added:
1. The filtersmp(z) andms(z2) are supposed to be odd length and symmetric.

2. M(z) satisfies the multiCoiflet conditions above foe= 0, ..., p— 1.
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Using this approach, we have been able to construct all the minimal length ortho-
normal multiCoiflets with compact support, symmetric scaling functions, symmet-
ric/antisymmetric wavelets for order 1, 2 and 3 of balanckig. 7 shows the smoothest
scaling functions associated to multiCoiflets with these properties. More details are avail-
able inLebrun(2000, Lebrun(2003 and alsdSelesnicK1999 where a family of cardinal
multiwavelets is constructed (these can be seen as generalized multiCoiflets with the center
of mass of the scaling functions not on the integer grid anymore).

7. Wavelet tight frames

This section describes a family of wavelet tight frames, or ‘overcomplete’ bases in-
troduced inSelesnick(20003 and Selesnick and Send2000. With frames some fun-
damental properties can be better realized than is possible with bases. For example, bet-
ter time-frequency localization can be achieved. In addition, wavelet frames can be shift-
invariant, while wavelet bases cannot be. In general, frames provide more degrees of free-
dom to carry out design. Several applications have benefited from the use of frames, for ex-
ample, denoisingGoifman and Donohdl 995 Guo et al, 1995 Lang et al, 1995 1996.

This section describes the design of frames that are analogous tDathieechies
(1992 orthonormal wavelets—that is, the design of minimal length filters with polynomial
properties, but now in the case of oversampled filter banks. The wavelets presented below
are much smoother than what can be achieved in the critically sampled case.

The nonlinear design equations that arise are then solved usiogn@&rbases.

As Grobner bases are used here, we are able to obtain zero wavelet moments for
wavelets of minimal length, in contrast to earlier work on wavelet tight frames of this
type (Chuiand He 2000 Ron and Shen1997. Some later works Ghui et al, 2002
Daubechies et 312001 also describe other methods not based anb@er bases.

7.1. Preliminaries

The wavelet tight frames developed in this section are based on a single scaling function
¢ (1) and two distinct waveletgr1 (t) andyr2(t). Following the multiresolution framework,
¢, ¥1, Y2 satisfy the dilation and wavelet equations

¢(t) =+2) ho(meg (2t —n)
n

Yit) = v2) hi(mgt —n), i=12
n

Corresponding t@, y1, ¥2, we have the scaling filtdrg(n), the two wavelet filterd1 (n)
andhz(n), and the oversampled filter bank illustratedHig. 8.

Letgi(t) = ¢ (t — k) andyi j k(t) = ¢i (2't — k) fori = 1, 2. Then{gk (1), i j k(b :
j.keZ,j>=0,i € {0,1}} forms a tight frame folL»(R) if any square integrable signal
f (t) can be expanded as

o o o
f) =Y chex®+ Y Y (@i, Ky jk® +d2(j, Y2 k) (32)

k=—o00 j=0k=—00
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Fig. 7. Symmetric orthogonal balanced multiCoiflets of order 1, 2 and 3. On the third row, the multiCoiflets have
one additional vanishing moment in O for the same balancing order.
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Fig. 8. An oversampled analysis and synthesis filter bank.



250 J. Lebrun, 1. Selesnick / Journal of Symbolic Computation 37 (2004) 227-259

where
c<k>=/ F O t, diu,k):/ FOv O d, =12

That is, a function can be expanded in a tight frame in a way that resembles an expansion
in an orthonormal basis. Like orthonormal bases, tight frames have a Parseval’s relation:

e¢]

2= 3" et +> " > (du(j. k2 + [da(j. k) D).

k=—o00 j=0k=—o00
By standard multirate identities, the PR conditions can be written as
Ho@Hoz ™) + Hi@)H1(Z ) + Ho@Ha(z ) = 2 (33)
Ho(=2)Ho(z ™) + Hi(-2H1(z ™) + Ha(—2)Ha(z ) = 0. (34)

7.2. Zerosatw =0, w =7

Let Ko denote the number of zerbty(el®) has atw = 7. Fori = 1, 2, letK; denote
the number of zeroblj (e/®) has atw = 0.

Z+D% Ho@, (z-DK1 1 H, @-D1K2| Hx2). (35)

For orthonormal baseg/¢(t) = 0), it is necessary thay = K1, so no distinction need
be made betweeKg andK;. However, for tight wavelet frames of the fori®3), it is not
necessary thakg = K1 = Ka. Ko denotes the degree of polynomials representable by
shifts of ¢ (t). K1 andK> denote the number of zero moments of the wavelet fithg(s)
andhz(n), providedKg > K1, andKg > Ko.

The value ofKg influences the degree of smoothnesg ¢énd therefore ofi;). On the
other hand, the valugs; andK indicate what polynomials are annihilated (compressed)
by the given signal expansion. In contrast to orthonormal wavelet bases, with a tight frame
one has the possibility to control these parameters more freely. If it is desired for a given
class of signals that the wavelets have two zero moments (for example), then the remaining
degrees of freedom can be used to achieve a higher degree of smoothness byKgaking
greater tharkK1 andKa.

7.3. Example

We seek to design FIR filtets, h1, hy that generate tight frames of the form described
in (32). We seek the shortest filtelng having a prescribed number of zerozat —1 and
z = 1 (specified by the valuds;) that satisfy the tight frame condition83) and @4). In
the examples, we ask thigy = K. If they are unequal, then one wavelet annihilates more
polynomials than the other, or one wavelet is doing ‘more work’ than the other.

Note that the conditions3@) and @4) are nonlinear equations in the filter coefficients
hj (n). For the design problems considered below, these nonlinear design equations are
handled using Gaifiner bases.

We ask thatkg = 5, K; = Ky = 2. It was found that the shortest filtehg, hy,

h, satisfying 83) and @4) are of length 7, 7, and 5, respectively. By utilizingaBnier
basis methods it is possible to obtain exact expressiorts toy. (Singular(Greuel et al.
2000 was used for the @Gibner basis calculations.) The original design equations have
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Fig. 9. The generators of a wavelet tight frame with paramefgrs- 5, K1 = Ky = 2.

only rational coefficients, and we were able to obtaiplicit expressions foh; (n) in
terms of radicals. The expressions obtainedi@n) are too long to include here, but are
available from |.S.

The filtershg, h1, ho were found by converting the nonlinear design equations into a drl
Grébner basis, then converting that into a lexo@mér basis, and factorizing that into two
Grobner bases. Then the ordering of the variables was changed, to obtain twolmeGr”
bases which are more compact. However, if this ordering is used from the beginning, then
the original lex Gobner basis does not factor. All minimal-length pairs of scaling filters
can be found by solving these 2 @arier bases. The Gbher bases indicate that there are
32 solutions to the nonlinear design equations (16 solutions from each part).

As in the orthonormal case, there are multiple solutions to this problem. However,
in contrast to the orthonormal case, (i) the distinct solutions do not all share the same
autocorrelation, and (ii) not all of the spectral factors of each autocorrelation are solutions.
In this example, there are 4 distinct solutions, not counting their time-revelsélsn()
and negations<h; (n)). One of those 4 solutions is shownkig. 9. The other 3 solutions
are tabulated on the webpage of I.S.

8. Conclusion

In conclusion, for many of the design problems arising in the construction of specialized
wavelets and filter banks, @bher bases are a natural tool. And although the high
computational and memory cost of@arier bases limits their utility, we are able to obtain
solutions of practical interest, as illustrated in this paper. Indeed, we have introduced
examples of multiwavelet bases and wavelet frames that we could not have obtained
without them. As software for @bner bases, and the related theory, is advancing with
time, we expect Gbiner bases will be no less useful for future problems arising in the
design of filters and transforms for signal processing.
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Appendix A. Computation algebra digest
A.1l. Introducing Gbbner bases

In this paragraph, we will review the major ideas involved in the computation of
Grobner bases. We will not go much into the details, since many good books ranging from
introductory Eroberg 1997 to advanced levelGox et al, 1992 1998 have been written
on this now popular subject. We will rather develop an intuitive understanding of what a
Grébner basis is and describe some ways to compute them by using analogies to linear
algebra.

We define a multivariate polynomialto be a finite sum of termy_, ¢, x*, where a term

c. X% is the product of a coefficiert, and a monomiak®*. One can draw an analogy
between solving linear systems that can be seen as the study of the associated vector
subspace and solving a polynomial system that can be seen as the study of the associated
ideal. Namely, a polynomial system of equations is defined by & fist. .., pn} of
multivariate polynomials with rational coefficient®i( ..., pn € Q[X1, ..., Xn]). We
associate to this system the generated ideat (ps1,..., pn) i.e. the smallest ideal
containing p1, ..., pn as well asZL\':l hxpk, for any hy,....hn € Q[Xq, ..., Xnl.
Intuitively, the idea is that the polynomialgy, ..., pn have a common zero iff any
polynomial of the ideal vanishes also at that location. It is then equivalent to study a
system of polynomial equations or the ideal generated by the polynomials.

For a set of linear equations, the Gauss elimination algorithm enables us to compute an
equivalent triangular system by canceling the leading term of each equation. A similar
algorithm (called théuchbergemalgorithm) can be developed for the case of multivariate
polynomials. An important aspect of the Gauss elimination algorithm is in the choice of
the pivots that are used during the triangularization of the system. For the same reasons, the
first thing we have to define is an ordering on the monomials (that needs to be compatible
with polynomial multiplication). We introduce here two monomial orderings:

e Thelexicographicordering, abbreviateléx. This is the ordering used in dictionaries.
e Thedegree reverse lexicographicder, abbreviatedrl. This is a modified reversed
lexicographic ordering taking first into account the total degree of the polynomials.

We then introduce the leading terngpt <) of a polynomialp as its term with the
highest order according to the ordering we also introduce the leading monomial



J. Lebrun, 1. Selesnick / Journal of Symbolic Computation 37 (2004) 227-259 253

Im(p, <) as the leading term with a coefficient normalized to 1 arig,le<) as the leading
coefficient. Notice that when no doubt remains, we will omit to mention the ordering. In
a very similar way to what is done in the Gauss elimination algorithm, we introduce the
S-polynomiabs a monomial combination of two polynomials so as to cancel their leading
terms.

lem(lt(py), It(p2)) —— lem(lt(py), It(p2))
It(po) ' It(p2)

where Icm stands for thkeast common multiplef a set of polynomials. For example,
with the <jex ordering(x > y > 2), p1 = 2x3%y + --- and p2 = x°y? + -, we get
Spol(p1, p2) = yp1—2x . We have canceled the leading termggaind pp. Of particular
interest is when Spopz, p2) = p1—qpz for some polynomiad (e.g.p; = 3x3y+- - - and

p2 = Xy + ---). In that case, we say that is reducibleby p, and thatg is thereduction

of p1 by pz. This reduction can easily be extended to the reduction of a polynomial by an
ordered list of polynomiald, = [qy, ..., dn]-

We shall emphasize the importance of the order in which the reductions are done: the
same set of polynomials reordered in a different list will usually give rise to a different
output of the reduction process. However, for any list of polynomials there exists an
equivalent list such that the order has no influence anymore.

The famous Buchberger algorithm transforms by a progressive reduction process a
general ordered list of polynomials generating the idéato an equivalent one that makes
it much easier to deal with the ideal generated. The list of polynomials obtained by the
Buchberger algorithm is called a @fier basis. One of the major properties obkarér
bases is that it makes it algorithmically easy to verify if a given polynomial belongs or not
to the ideal generated.

The major features of the Buchberger algorithm is that the list obtai@ed
= [01,...,0n] still generatesl and satisfies the following ®@bher basis definition:
Spol(gi, gj) reduces to 0 modul, for everyg;, gj € G. Itis easily seen that ®bner
bases have the following equivalent characterizations:

Spok(p1, p2) == (36)

e f el iff f reducesto O modulé (Reducéf, G) = 0).
e The leading term of any element bfis divisible by at least one leading ternidt)
of G.

For an ideall, let (LT(1)) denote the ideal of leading terms bfi.e. the ideal generated
by the set of leading termsTi(l) := {cx* | 3f e I, It(f) = cx*}. We then get that
G = [01,...,9n] is a Gibner basis of iff the ideal of leading terms of is generated
by the leading terms d& i.e. (LT(1)) = {It(g1), ..., It(gn)).

Usually, one can compute infinitely many @harier bases. However, among all these,
one satisfies some nicer properties: every elergenf the basisG has its leading term
normalized (coefficient equal to 1) and); € G, no term ofg; is divisible by a leading
monomial Im(g;j)(j # i). This particular basis is called tmeducedGrobner basis: one
verifies that for a given monomial ordering monomigl a non-empty polynomial ideal
always has a unique reducedaBnéer basis. With the reduced @brier basis, we get the
very nice feature that the output of RedyupeG) does not depend anymore on the order
of the polynomials in the list: ReduceG) becomes theanonical reductionmodulol .
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In the case< is lexicographic, the reduced @uier basis has a very nice structure.
Namely, the reduced Buchberger algorithm gives a union of triangular arrays of
polynomials of the following form:

d+1) d+1
A+ xd)<xkd+1 + nf )<X1=---’Xd>xkd+1*1+ nf )(Xl»---»Xd)Xkd+1*2Jr )
0 d+1 h(a+1)(x1,...,xd) d+1 hé)a+1)(xl»---»xd) d+1

hid+2)(x1,..

2,
. ) kgi2—1 (X1, Xd+1) _kd42-2
h(d+2)(X1----=Xd (X2 Xd+1)  Kd+ 2 xdt274 L
0 + d+2 hé +2)(X1W

+
K1) d+2 hé +2)(X1

(37)

(n) X X (n) X X
o (1 e )

whered gives the number of remaining degrees of freedom of the system when all of the
equations are satisfiesly( . . . , Xg are now parameters).is called the algebraic dimension
of the ideal: the solutions of a system of polynomial equations can be seen as a geometric
variety that can be classified by its algebraic dimensibe: 0: finite number of isolated
points,d = 1: curvesd = 2: surfaces and so on. In case the system has different kinds
of solutions (e.g. isolated points and curves), the global dimension is just the maximum
dimension of each component.

Whend = 0, i.e. when the system has a finite number of solutions, we get that the first
equation becomes a univariate polynomial equation and we can then rewrite the reduced
Grébner basis as:

X+ gu(x0) deg,, (90) < ki
X12<2 + 92(X1, X2) deg,(92) < ko (38)

XK 4 On(X1, X2, ..., %) dege (gn) < Kn.

On such a system, it is now easy to carry out many operations like counting exactly all
complex/real solutions including the multiplicity, isolating the real roots with the desired
precision or approximating the complex roo®&opnzalez-Vega et al1999. For example,

to numerically solve the system: first solve the univariate equa(ﬁjbﬁ 01(x1) = 0, then
recursively substitute and solve the next equations. Moreover, in the case the vgriable
is separating (intuitively two solutions cannot have the same first component; a rigorous

definition is given in the next section), we get that= k3 = - - - = ky = 1. The system is
then of the form
g1(X1)
X2 + G2(x1) (39)
Xn + Gn(X1).

and all we have to do is to soh@ (x1) = 0 and substitute in the other equations. This is
called theShape lemmaase Rouillier, 1999.

A.2. Linear algebra methods

The necessary time to compute a reducedb@er basis by the Buchberger algorithm
depends strongly on the monomial ordering that is used. In general, computing a
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reduced Gobner basis for the lexicographic ordering is much more time and memory
consuming than computing the corresponding ddl@er basis. However, this additional
computational cost may be worth it because, as seen before, the lexicographic ordering
provides a triangular like structure (similar to the one obtained by Gauss elimination) that
is really suitable for further processing. Fortunately, recent algorithms enable the efficient
computation of lexicographic @biner bases by using an alternative approach:

e First, we compute a @bher basis for the drl ordering, using, for example, the
standard Buchberger algorithm (note that the algorithm can be highly improved by
using heuristics for the choice of the critical pairs and the reductors in the reducing
process). An even better approach is to completely suppress the influence of these
choices, by in fachot choosinganymore as introduced byaugere (1999 in his
F4 algorithm: instead of choosing one critical pair, we take a subset of critical
pairs and reduce this set. By using a linear algebra approach to deal with the pairs,
the algorithm can be made extremely efficient for the computation of drbi@ai’
bases. An implementation named FGb of this algorithm can be tested on the web at
https://www-calfor.lip6.fr

o Finally, we compute the lexicographic @ier basis from the drl one by a change of
ordering. For the case when the ideal is zero-dimensional, a very efficient algorithm
called FGLM Faugere et al. 1999 has been developed using again a linear algebra
approach. Implementations of this algorithm are now available in most of the
computer algebra programs.

We will now give some details on how the linear algebra approach works. Again, for
more details, the reader can read the survey on the subjddbhyrain (1999. Starting
from a list P of polynomials such that the generated ideat (P) is zero-dimensional,
we show that the quotient spacé := Q[xg, ..., Xnl/! inherits a structure of finite-
dimensional algebra. Namely, assuming a reducaab@ei basi$z := [g1, ..., gn] for
some orderinge (typically drl), any element of4 has the formp = Reducép, G) for
somep € Q[Xq,...,Xn]. Since(LT(l)) = (It(gy),...,Ilt(gn)), we easily construct a
linear basis ofd from the set of monomialsx® | x¥ ¢ (LT(l))}, by taking in increasing
order the monomials under the staircase, i.e xthéhat are not a multiple of {g;) (since
this implies thak® = Reducex®, G) = x%). The linear basi8 = {1, ..., wq} obtained
this way is called thenonomial basi®f A. Finally, constructing the multiplication table
[wiwjli,j of A, we get a full description of the linear algebraic framework in which we
will deal with the polynomials.

Now, any elemenp € A can be expressed as a vecipl sincep = Z‘k’:l[p]ia)i.
The FGLM algorithm can then be described using linear algeby4 ifihe lexicographic
Grobner basis is obtained by detecting linear combinations of monomials irhe idea
is to construct in parallel the lex Gbner basiG.,, and a full rankd x d matrix G,
by scanning the monomiak¥’ in increasing lex ordering (starting from 1). There are two
possibilities:

1. [x¥] is linearly dependent of the previous vectors put@n(i.e. we can write

[XY] = Y ckIxPk]), then we addy, == x* — >, ckxPk to G, (namely,gy € |
and It(gy) = x%).
2. [x*]is linearly independent of the previous vectors puBirthen addx®] to G.

<lex
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Repeat the scan until ra(®) = d; G is then a lex Gobner basis of.

<lex

A.3. The rational univariate representation

In many situations, the computation of a lexoBnér basis of the idedl is a bit of
an overkill in the sense that in fact, all we are really interested in, is a good description
of the set of solutions of the systerZ(l) = {« € C" | Vp € P, p(e) = 0}
(we will denote byu(e) the multiplicity of a solutione). In the approach, alternative
to FGLM, developed byouillier (1999 andGonzalez-Vega et a(1999, one constructs
alist{xu(t), gu(1,t), gu(X1, 1), ..., gu(x1, t)} of polynomials ofQ[x, ..., X,] such that:
if o is a solution of the system, therie) is a root ofy, (t) with the same multiplicity and
conversely, ifc is a root ofyy(t), then

[gu(xl,é) gu(x2, ¢) gu(Xn, ;)}
gu(la {) ’ gu(la {) U gu(lvé‘)

is a solution of the system with the same multiplicity. Hengg(1) is fully characterized.
The basic tool of this method is the computation of linear opefdtpon .4 associated to
polynomialsu,

My: A— A
f > My f :=uf. (41)

We identify My with its C9*9 matrix represertation in the mononial basis of A. This

matrix is easily computed by expressia@; in the mononia basis, which gives the ith
column ofMy.

The computations oM give much important information o&¢ (1) and the system in
general. From these matrices, we can construct a bijection bet#géR), the set of
solutions of the system, and the roots of the univariate polynogid). All we have to

do now to getZc(P) is to isolate the roots of, (t). We then derive the solutions of the
system using the RUR. The isolation of roots is usually a difficult problem. However, in
the case we are only interested in the real solutions of the system, we can locate them very
efficiently by computing the signature of trace matridesdersen et al1993.

Alternatively, we can also factorizg, (t). We construct this way local algebras that enable

us to simplify the problem of isolating the roots by lowering the degrees of characteristic
polynomials in the RURs.

In short, the RUR approach appears to be a very efficient alternative to the computation of
a lexicographic Gobner basis: as detailed Rouillier (1999, it is computationally easier

to compute a RUR than to apply the FGLM algorithm and the characteristic polynomial
xu() is usually easier to deal with th@a(x1), the leading polynomial of the lexicographic
Grobner basis. Besides, when the polynomial system is overdetermined, similar linear
algebra methodsqjusti and Schost1999 have been developed to completely avoid the
computation of Gobner bases.

(40)
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