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Abstract

In this paper, we detail the use of symbolic methods in order to solve some advanced design
problems arising in signal processing. Our interest lies especially in the construction of wavelet filters
for which the usual spectral factorization approach (used for example to construct the well-known
Daubechies filters) is not applicable. In these problems, we show how the design equations can be
written as multivariate polynomial systems of equations and accordingly how Gr¨obner algorithms
offer an effective way to obtain solutions in some of these cases.
© 2003 Elsevier Ltd. All rights reserved.
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0. Introduction

Wavelets and filter banks have become useful in digital signal processing in part because
of their ability to represent piecewise smooth signals with relative efficiency. For such
signals, the discrete wavelet transform (DWT) of ann-point vector is again ann-point
vector, but one for which the energy is compacted into fewer values. In as far as this is
true, the DWT is useful for signal compression (JPEG 2000), fast algorithms, and signal
estimation and modeling (noise suppression and image segmentation, etc). The DWT is
usually implemented as an iterated digital filter bank tree, so the design of a wavelet
transform amounts to the design of a filter bank.

While the spectral factorization approach is the most convenient method to construct
the classic wavelets (Daubechies, 1992) (and the corresponding digital filters), it is not
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applicable to many of the other wavelet design problems where additional constraints are
imposed. However, for many of these design problems, the design equations can be written
as a multivariate polynomial system of equations. Accordingly, Gr¨obner basis algorithms
offer a way to obtain solutions in these cases. This paper describes the general wavelet
design problem from the perspective of filter banks and explains the derivation of the core
design equations. In addition, it is noted that the design of wavelet bases is intriguing in
part for its limitations—specifically, in many cases it is not possible to obtain wavelets
having all the properties one desires. This has motivated the development, for example, of
multiwavelet bases, which are developed inSections 5and6, and of wavelet frames (of
overcompletebases) which are described inSection 7. For both multiwavelet bases and
some wavelet frames, the spectral factorization approach which is key in the construction
of Daubechies wavelets, cannot be used anymore. However, as described in the following
respective sections, it becomes possible to derive solutions to these new problems using
Gröbner bases.

Recently, major advances have been achieved in the field of computational algebraic
geometry that lead to new efficient ways to deal with one of the central applications of
computer algebra: solving systems of multivariate polynomial equations. Using the new
algorithms that have been developed, practical problems like (multi)wavelet design can
now be solved exactly in a way that is very competitive with numerical methods. One of the
most promising schemes to solve systems of polynomial equations has been by computing
Gröbner bases. At the same time, even though the computation of a Gr¨obner basis is the
crucial point in our approach, one should not forget that it is only the first step in the solving
process. Methods to implement change of ordering of the Gr¨obner basis, and alternative
approaches like triangular systems and rational univariate representation of the system
are also key tools. We will discuss some of these methods in the following. For previous
applications of Gr¨obner bases to the design of wavelets and digital filters, see for example
the works ofPark et al.(1997), Faugère et al.(1998), Lebrun(2000), Lebrun and Vetterli
(2001), Selesnick and Burrus(1998), Selesnick(1999) andSelesnick(2000b).

Following a filter bank perspective, we introduce filter banks based on conjugate
quadrature filters (CQFs), and we give a simple introduction to wavelets. Iteration of the
filter bank on the lowpass analysis generates discrete-time wavelet bases. In the limit, we
end up with wavelet bases and the concept of multiresolution analysis. We also highlight
the motivation for introducing multiwavelets as a way to overcome some limitations
of CQFs. Readers interested in a more detailed presentation of filter bank and wavelet
theory are referred to the classical books ofDaubechies(1992), Vaidyanathan(1993),
Vetterli and Kovaˇcević (1995), Strang and Nguyen(1996), Burrus et al.(1998) andMallat
(1998).

1. Preliminaries

The Z-transform of a discrete-time signal, defined as

X(z) = Z{x(n)} =
∑

n

x(n)z−n
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will be used often in the development that follows. A filter will be represented by its
impulse responseh(n) or transfer functionH (z) = Z{h(n)}.

The output of the filter is the convolution of the input with the impulse responseh(n).

y(n) = h(n) ∗ x(n) :=
∑

k

x(k)h(n− k),

or equivalently,Y(z) = H (z)X(z). Theupsampler, represented by the diagram

is defined by the relation

y(n) =
{

x(n/2) for n even
0 for n odd.

(1)

The usual notation isy(n) = [↑ 2]x(n). The upsampler simply inserts zeros between
samples. For example, ifx(n) is the sequence

{. . . ,3,5,2,9,6, . . .}
where the underlined number representsx(0), theny(n) is given by

{. . . ,0,3,0,5,0,2,0,9,0,6,0, . . .}.
In terms of theZ-transform, we have

y(n) = [↑ 2]x(n) Y(z) = X(z2). (2)

The discrete-time Fourier transform ofy(n) is given byY(ejω) = X(ej 2ω). Or using the
notation ŷ(ω) = Y(ejω), x̂(ω) = x(ejω), we havêy(ω) = x̂(2ω). The downsampler,
represented by the diagram,

is defined asy(n) = x(2n). The usual notation isy(n) = [↓ 2]x(n). The downsampler
simply keeps every second sample, and discards the others. For example, ifx(n) is the
sequence

{. . . ,7,3,5,2,9,6,4, . . .}
where the underlined number representsx(0), theny(n) is given by

{. . . ,7,5,9,4, . . .}.
In terms of theZ-transform, we have

y(n) = [↓ 2]x(n) Y(z) = 1
2(X(z

1/2)+ X(−z1/2)) (3)

andŷ(ω) = 1
2 (̂x(

ω
2 )+ x̂(ω−2π

2 )). This operation induces aliasing in the frequency domain.
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1.1. Filter banks

The basic principle of filter banks is to decompose signals into lowpass and highpass
components at half the rate of the input signal (so as to keep the same amount of data) in
such a way that it is possible to exactly reconstruct the input signal from these components.
This subject of interest,subband coding with multirate filter banks, became an active
topic whenCroisier et al.(1976) showed it was possible to construct filter banks with
aliasing cancellation using quadrature mirror filters (QMF) and simple downsampling and
upsampling operations.

An analysis filter bank decomposes a signalx0 into two subband signalsx1 andd1 as
shown in the diagram.

Consequently, a two-channel multirate filter bank first convolves the input signalx0 with a
lowpass filterg0 and a highpass filterg1 to minimize aliasing and then downsamples these
two signals.

x1 = [↓ 2](g0 ∗ x0) and d1 = [↓ 2](g1 ∗ x0). (4)

Explicitly, we have

x1(n) =
∑

k

x0(k)g0(2n− k) and d1(n) =
∑

k

x0(k)g1(2n− k). (5)

A synthesis filter bank combines the subband signals into a single signal.

The output signal is then reconstructed by upsamplingx1 andd1 and filtering again with
a lowpass filterh0 and a highpass filterh1 to reject the out-of-band components in the
spectrum. The synthesis is given by

y0 = h0 ∗ ([↑ 2]x1)+ h1 ∗ ([↑ 2]d1). (6)

Explicitly, we have

y0(n) =
∑

k

x1(k)h0(n− 2k)+
∑

k

d1(k)h1(n− 2k). (7)

A perfect reconstruction (PR) filter bank is one where the synthesis filter bank perfectly
reconstructs the inputx0 from the subband signalsx1 andd1; that is, one wherey0 = x0.
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For a PR filter bank, the synthesis filtersh0, h1 together with their translates by even
integers form a basis forl 2(Z) and (7) can be written as

x0(n) =
∑

k

〈x0, h̃0,k〉h0,k(n)+
∑

k

〈x0, h̃1,k〉h1,k(n) (8)

where

hi,k(n) = hi (n− 2k) and h̃i,k(n) = gi (2k− n) for i = 0,1. (9)

The dual basis{h̃i,k} is comprised of the reversed versions of the analysis filtergi (n) and
their translates by even integers.

Vetterli gave the necessary and sufficient conditions in thez-domain for PR (in fact
generalized PR, since delays of the formz−l are allowed):

G0(z)H0(z)+ G1(z)H1(z) = 2z−l (10)

G0(z)H0(−z)+ G1(z)H1(−z) = 0. (11)

For filters satisfying these PR conditions, the signalx0 can be recovered fromx1 andd1.
In this case the subband signals provide an alternate representation of the input signal
x0. The goal is to design the four filters such that the filter bank is PR and such that
the new representation ofx0 is more efficient and thus facilitates signal processing tasks.
Although the PR conditions do not demand it, applications of the subband decomposition
(Crochiere et al., 1976) generally call for the filtersh0 andg0 to be lowpass, and the filters
h1 andg1 to be highpass so thatx1 andd1 have more or less disjoint spectrums.

From the PR conditions, we get thatg0 andg1 are uniquely determined fromh0 andh1

by rewriting the previous equations[
H0(z) H1(z)

H0(−z) H1(−z)

] [
G0(z)
G1(z)

]
=
[

2z−l

0

]
. (12)

IntroducingD(z) := H0(z)H1(−z) − H0(−z)H1(z), supposed to be non-vanishing onT,
we get

G0(z) = 2z−l

D(z)
H1(−z) and G1(z) = − 2z−l

D(z)
H0(−z). (13)

Now, if we require further that all filters have finite impulse response (FIR, i.e. a finite
number of taps), then essentially only two choices are possible forD(z) andz−l . Namely,

Quadrature mirror (QMF). D(z) = 2z−l .
This gives G0(z) = H1(−z) and G1(z) = −H0(−z). Now, Croisier et al. (1976)
additionally imposedh0 andh1 to be mirror filters (H1(z) := H0(−z)), we then get

H 2
0 (z)− H 2

0 (−z) = 2z−l (14)

where l is necessarily odd. The solutions of this equation are naturally called QMF.
Unfortunately, the only solutions being FIR QMF are variations of the Haar filterH0(z) =
1/
√

2(1+ z−1). The interest of these filters is rather limited.
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Conjugated quadrature filters (CQF). D(z) = 2z−l−1.
We get G0(z) = zH1(−z) and G1(z) = −zH0(−z). Smith and Barnwell(1984) and
Mintzer (1985) were able to overcome the major limitation of QMF by imposingh0 and
h1 to be CQFs:H1(z) := −z−1H0(−z−1). We get

H0(z)H0(z
−1)+ H0(−z)H0(−z−1) = 2z−l , (15)

wherel is necessarily even. With this slight change, FIR solutions are now possible. And
as we will see, these filters are closely linked to wavelets.

1.2. Zero moments

The filter bank provides an efficient representation of piece-wise smooth signals if the
subband signald1 is close to zero for smooth signalsx0 and if the filterh1 is short. That is,
for signal compression, we wantd1 ≈ 0 wheneverx0 is smooth. As a vehicle for achieving
this, it is common to ask thatd1 = 0 wheneverx0 is a discrete-time polynomial of specified
degree.

It can be shown that the filterG1(z) annihilates polynomial signals of degreeK − 1 if
and only if(z− 1)K dividesG1(z), or equivalently, if∑

n

nk(−1)ng1(n) = 0, for 0≤ k ≤ K − 1.

That is, the filterg1 hasK zero moments.

1.3. Orthonormal filter banks

If the analysis filtersg0, g1 of a PR filter bank are related to synthesis filterh0, h1 by a
time-reversal,

g0(n) = h0(−n), g1(n) = h1(−n),

or equivalently

G0(z) = H0(z
−1), G1(z) = H1(z

−1),

then the filter bank is said to be anorthonormal filter bank. Orthonormal filter banks have
desirable statistical properties. In this case, the PR conditions become

H0(z)H0(z
−1)+ H1(z)H1(z

−1) = 2 (16)

H0(−z)H0(z
−1)+ H1(−z)H1(z

−1) = 0. (17)

It is easily verified that settingh1 to the CQF filter ofh0, i.e. h1(n) = (−1)nh0(1− n)
or equivalentlyH1(z) = z−1H0(−z−1), it supplies a solution to the second of the two PR
conditions. With this form forH1(z), the first PR condition becomes

H0(z)H0(z
−1)+ H0(−z)H0(−z−1) = 2, (18)

or equivalently∑
n

h0(n)h0(n− 2k) = 2δ(k) =
{

2 k = 0
0 k �= 0.
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For an orthonormal filter bank, all the filters are determined byH0(z):

H1(z) := −z−1H0(−z−1), G0(z) = H0(z
−1), G1(z) = zH0(−z).

Moreover, the decomposition of a signalx0 by an orthonormal filter bank may be
interpreted as its expansion in an orthonormal basis of	2. Namely the expansion (8)
is an orthonormal one. This result can be generalized to IIR (non-FIR) filter banks.
Besides, if the filters are not imposed to be CQF then we get biorthogonal bases of	2

(Vetterli and Herley, 1992).
Note that if(z− 1)K dividesG1(z), thenG1(1) = 0, and so for an orthonormal filter

bank we haveH0(−1) = 0. Substitutingz= 1 in (18) gives

H 2
0 (1) = 2. (19)

Furthermore, if(z−1)K dividesG1(z), then(z+1)K dividesH0(z). Daubechies’ problem
is the following. GivenK , find H (z) of minimal degree such that

1.
∑

n h(n)h(n− 2k) = 2δ(k)

2. (z+ 1)K dividesH (z).

It turns out that the solutionsh(n) of minimal degree can be most conveniently found by
defining a product filterP(z). Letting P(z) := H (z)H (z−1), we have the requirement that
P(z) + P(−z) = 2. Hence, orthonormal filter banks can be obtained by designingP(z)
satisfying thislinear condition. BecauseP(ejω) = |H (ejω)|2, P(z) must be non-negative
for all z = ejω, otherwise it does not admit the factorizationP(z) = H (z)H (z−1). Also
note that if(z+ 1)K dividesH (z), then(z+ 1)2K dividesP(z).

Gathering these conditions together gives an alternate form of Daubechies’ design
problem: givenK , find P(z) of minimal degree such that

1. P(ejω) ≥ 0 for allω

2. P(z) = P(z−1)

3. P(z)+ P(−z) = 2

4. (z+ 1)2K dividesP(z).

The solution is given by

P(z) = 2(1− y)K
K−1∑
k=0

(
K + k − 1

k

)
yk (20)

wherez= ejω andy = 1/2(1− cosω).
The key to this solution is (1) that all constraints onH (z) can be converted into linear

constraints onP(z), and (2) thatH (z) can be obtained fromP(z) by the Féjer–Riesz
theorem and spectral factorization. For other design problems where additional constraints
are imposed, it is not possible to convert the constraints onH (z) into linear constraints
on P(z). It is in those cases that Gr¨obner bases can be used to investigate the existence of
solutions having various desired properties.
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2. Daubechies solution

To illustrate the Gr¨obner basis-design of orthonormal filter banks we begin by showing
an example of the design of Daubechies filters of length 8. Although they can be obtained
through simpler means, it is a good example with which to begin.

Let R(z) be the remainder obtained after dividingH (z) by (z + 1)K . Then the
requirement that(z + 1)K divides H (z) can be written asR(z) = 0. To simplify the
notation, we denoteh(n) by hn. WhenK = 4, the minimal lengthh(n) that satisfies the
orthonormality condition is of length 8 (the degree ofH (z) is 7). ForK = 4, length 8, the
design equations forh(n) are:

// Orthonormality conditions

h2
0 + h2

1+ h2
2+ h2

3 + h2
4+ h2

5 + h2
6+ h2

7− 2= 0

h7h5 + h6h4+ h2h0 + h3h1+ h4h2+ h5h3 = 0

h6h2 + h7h3+ h4h0 + h5h1 = 0

h6h0 + h7h1 = 0.

// Zero-moment conditions

h0 − h4+ 20h7− 10h6+ 4h5 = 0

h1 + 15h5+ 70h7− 36h6− 4h4 = 0

h2 − 45h6+ 84h7+ 20h5− 6h4 = 0

h3 + 35h7− 20h6+ 10h5− 4h4 = 0.

Note that the first condition
∑

n h2
n = 2 is the only non-homogeneous equation. We can

replace it by the equationH 2(1) = 2 without affecting the set of solutions. In addition,
the negation of each solution vector is also a solution (ifhn is a solution, then so is−hn).
Therefore, we can reduce the number of solutions by replacing the constraintH 2(1) = 2
with the constraintH (1) = +√2. To simplify the Gröbner basis calculations, we can
replace the equationH (1) = +√2 by H (1) = 1, then the equations are in terms of
rationals only. This has the effect only of scaling all solution vectors by 1/

√
2. The solution

can be rescaled afterwards to obtain the correct normalization. This procedure reduces the
degree of the set of equations by a factor of two.

If the first equation above is replaced by the equation

h0 + h1+ h2+ h3 + h4+ h5 + h6+ h7− 1= 0

then lexicographic Gr¨obner basis is
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h(n)

–0.5

0

0.5

1

–0.5

0

0.5

1

–0.5

0

0.5

1

–0.5

0

0.5

1

0

0.5

1

1.5

0

0.5

1

1.5

0

0.5

1

1.5

0

0.5

1

1.5

|H(ejω)|

0 2 4 6 8 0 0.2 0.4 0.6 0.8 1

0 2 4 6 8 0 0.2 0.4 0.6 0.8 1

0 2 4 6 8 0 0.2 0.4 0.6 0.8 1

0 2 4 6 8 0 0.2 0.4 0.6 0.8 1

Fig. 1. The 4 orthonormal filters of length 8 with 4 zero moments.

Appending the following equation

h1 + 2h2+ 3h3+ 4h4+ 5h5+ 6h6+ 7h7− A (21)

yields a more compact Gr¨obner basis:

4A8 − 112A7 + 1344A6 − 9016A5 + 36904A4 − 94080A3 + 145096A2 − 122500A+ 42385
4480h7 − 16A7 + 392A6 − 4004A5 + 22050A4 − 70476A3 + 130074A2 − 126910A+ 48965
4480h6 − 16A7 + 392A6 − 4004A5 + 22050A4 − 70476A3 + 129934A2 − 126210A+ 48265
4480h5 + 48A7 − 1176A6 + 12012A5 − 66150A4 + 211428A3 − 390502A2 + 381850A− 147735
4480h4 + 48A7 − 1176A6 + 12012A5 − 66150A4 + 211428A3 − 390082A2 + 379190A− 144795
4480h3 − 48A7 + 1176A6 − 12012A5 + 66150A4 − 211428A3 + 390782A2 − 384090A+ 149695
4480h2 − 48A7 + 1176A6 − 12012A5 + 66150A4 − 211428A3 + 390362A2 − 380870A+ 144795
4480h1 + 16A7 − 392A6 + 4004A5 − 22050A4 + 70476A3 − 130354A2 + 129150A− 53165
4480h0 + 16A7 − 392A6 + 4004A5 − 22050A4 + 70476A3 − 130214A2 + 127890A− 50505.

The lexicographic Gr¨obner basis can be obtained from the degree-Gr¨obner basis using the
FGLM algorithm, as described below in the Appendix.

Of the eight solutions, four are real-valued, four are complex-valued. The four real-
valued solutions are shown inFig. 1. Notice that the reverse of each solution is also a
solution. Not counting negation and reversal, there are two distinct solutions.

As noted above, the Daubechies filters can be obtained via the spectral factorization
of a suitably designed (Laurent) polynomialP(z), as described by Daubechies. In this
procedure, Gr¨obner bases are not required, as the design ofP(z) is a linear problem and
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spectral factorization requires finding the roots of a univariate polynomial only. However,
if it is desired that the filterh(n) satisfy additional constraints, it is likely that the spectral
factorization approach cannot be used. For example, if it is desired thath(n) be nearly
symmetrich(no − n) ≈ h(n) then the design problem becomes more complicated and
Gröbner bases can be utilized. (For image processing, it is desirable that a filter bank consist
of symmetric filters because the distortion introduced by filtering with non-symmetric
filters is sometimes visible.) It is well-known that exactly symmetric finite-length solutions
do not exist for the orthonormal two-channel filter bank design problem, for the exception
of the Haar solution withH (z) = 1√

2
(1+ z−1).

For this reason, it is common to use (1) orthonormal PR filter banks with nearly
symmetric filters or (2) symmetric PR filter banks that are nearly orthonormal. While
the design of these types of filter banks can be approximately carried out by different
factorizations ofP(z) in (20), many algorithms have been suggested for these two classes
that designh(n) directly rather thanp(n).

The design of nearly symmetric orthonormal PR filter banks is described in the next
section, where Gr¨obner bases are used to obtain the filters. An alternative is to use
multiwavelets, for which orthonormality and symmetry are simultaneously possible. The
design of multiwavelets is detailed inSections 5and6.

3. Nearly symmetric orthonormal filter bank

While the classic Daubechies filters can be obtained without having to solve any
multivariate nonlinear equations, many generalizations and specialized designs that satisfy
additional constraints cannot be obtained so easily. As an example, consider the design of a
length 8 filterh(n) satisfying the orthonormality condition (18), with some zero moments
and some degree of symmetry (Abdelnour and Selesnick, 2001). To enforce a degree of
symmetry, we ask that

h(no + n) = h(no − n)

for some selected range ofn. If there were no symmetry constraints, then the filter bank
could have at most four zero moments. Because of the symmetry constraints, the filter bank
will have fewer zero moments. TakingK = 2, no = 2.5, we can get the following design
problem. DesignH (z) of minimal degree such that,

1. h(2) = h(3), h(1) = h(4).
2. (z+ 1)2 dividesH (z).
3.
∑

n hnhn−2k = δ(k).
This design problem gives rise to the following design equations.

// Orthonormality conditions

h0 + h1+ h2+ h3 + h4+ h5 + h6+ h7− 1

h2h0 + h3h1+ h4h2 + h5h3+ h6h4+ h7h5

h6h2 + h4h0+ h5h1 + h7h3

h6h0 + h7h1.
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// Zero-moment conditions

h0 − h2− 3h4− 5h6+ 6h7+ 4h5+ 2h3

h1 + 3h3+ 5h5+ 7h7− 6h6− 4h4− 2h2.

// Partial symmetry conditions

h2 − h3

h1 − h4.

As above, appending Eq. (21) has the effect of simplifying the coefficients appearing
in the Gröbner basis. It turns out that the lexicographic Gr¨obner basis then factors into
two parts. We used thefacstd command inSingular(Greuel et al., 2000) to perform the
factorization. The first Gr¨obner basis is

40A6− 984A5+ 9796A4− 49888A3+ 135314A2− 183246A+ 95445,

106688h7+ 800A5− 18060A4+ 156848A3− 646136A2+ 1231488A− 828755,

320064h6− 800A5+ 18060A4− 156848A3+ 646136A2− 1284832A+ 962115,

26672h5− 400A5+ 9030A4− 78424A3+ 321401A2− 607409A+ 405209,

32h4− 2A2+ 18A− 35,

106688h3+ 800A5− 18060A4+ 156848A3− 632800A2+ 1138136A− 728735,

106688h2+ 800A5− 18060A4+ 156848A3− 632800A2+ 1138136A− 728735,

32h1− 2A2+ 18A− 35,

80016h0− 400A5+ 9030A4− 78424A3+ 318067A2− 577403A+ 353532.

The second Gr¨obner basis is

2A2− 18A+ 33,

16h7− 2A+ 5,

16h6− 2A+ 5,

16h5+ 1,

16h4− 1,

16h3+ 2A− 13,

16h2+ 2A− 13,

16h1− 1,

16h0+ 1.

The first part has four real-valued solutions and two complex-valued solutions. The
second part has two real-valued solutions. The six real solutions are shown inFig. 2. The
frequency responses|H (ejω)| are also shown in the figure. Only the last solution is a
reasonable lowpass filter. The other five solutions can be considered parasitic solutions.
They would not be favored in practice because they do not have acceptable lowpass
frequency responses.
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Fig. 2. The 6 orthonormal filters of length 8 with 2 zero moments and partial symmetry aboutn0 = 2.5.

It is seen in the figure, that the sixth solution, while not exactly symmetric, is
more symmetric than the solutions shown inFig. 1. Furthermore, the solution has more
symmetry than requested in the design problem; we haveh(0) = h(5) as well.

Other formulations of the nearly symmetric orthonormal filter bank design problem are
based on moments ofh(n), and the corresponding wavelets are calledCoiflets(Daubechies,
1992; Tian et al., 1997; Wei and Bovik, 1998). The design of Coiflets also requires the
solution to nonlinear design equations and usually the solutions are found through iterative
numerical optimization. As detailed inSection 6.2, Gröbner bases can also be used to
obtain Coiflets (in fact multiCoiflets).
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4. Iterated filter banks

The filter bank structure described above is often used in an iterated manner. Indeed,
the analysis of a signal over several scales (multiresolution analysis) can be accomplished
by iterating the filter bank on the first subband. The idea of filter bank trees is to cascade
this iteration up to a certain levell . We then havel + 1 signals: the coarse signalxl and the
details signalsdl , . . . ,d1.

The original signalx0 can be reconstructed from these subband signals by the iterated
synthesis filter bank.

If (z−1)K dividesG1(z), then not only isd1 = 0 wheneverx0 is a polynomial signal of
degree less thanK , butd2 = 0 andd3 = 0 also. This is clarified as follows. LetPK denote
the set of discrete-time polynomials of degreeK and less; then we can write the following.
If

1. x0(n) ∈ PK−1, and
2. (z− 1)K dividesG1(z)

then

1. x1(n) ∈ PK−1, and
2. d1(n) = 0.

Note that polynomial signals are preserved; ifx0 is a polynomial signal, then so isx1.
Therefore, if G1(z) annihilates polynomials of a specified degreeK , then all of the
subbandsdi are zero whenever the input is a polynomial of the same degree.

Now, if we omit some detail signals,di (n), in the reconstruction (this is the principle
of compression), the “quality” of the signal reconstructed will depend largely on the
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“smoothness” (Mallat, 1989; Daubechies, 1992; Rioul, 1993) of the basis vectors with
which the reconstruction is performed.

4.1. Wavelet bases

The transformation of a signalx0 by anl -level iterated filter bank into subband signals
d1,d2, . . . ,dl , xl constitutes the DWT. A wavelet basis forL2(R) is closely related to
the DWT. In particular, given an orthonormal DWT (fully determined byh0(n)), an
orthonormal wavelet basis forL2(R) is given by

{φ(t − k), 2 j /2ψ(2 j t − k) : j , k ∈ Z, j ≥ 0}
where the scaling functionφ(t) is defined through the dilation equation (or two-scale
relation):

φ(t) = √2
∑

n

h0(n)φ(2t − n)

and the wavelet is defined by

ψ(t) := √2
∑

n

h1(n)φ(2t − n).

Furthermore, if(z+ 1)K dividesH0(z) then∫
tkψ(t) dt = 0 for 0≤ k ≤ K − 1

and ∑
n

nkφ(t − k) ∈ Pk.

Therefore, the design of an orthonormal wavelet basis forL2(R) is equivalent to the
design of an orthonormal filter bank. Implementation is nearly always performed using
filter banks, but the functionsφ(t) andψ(t) are useful because they indicate how the
filter bank behaves when the filter bank is iterated indefinitely. For example, if the filter
bank is not designed so that(z + 1)2 divides H0(z), thenφ(t) will not be continuous.
The smoothness ofφ(t) is important because it reflects what artifacts may appear in the
synthesized signaly(n).

The scaling functionsφ(t) for the examples above are shown inFigs. 3and4, from
which the comparative symmetry of the second problem is also visible.

It should be noted that a solution (in theL2 sense) to the dilation equation (a scaling
function) does not always exist. However, if inf|ω|<π3

|̂h0(ω)| > 0, then the convergence

is in L2 norm (Cohen, 1992) to a bona-fideL2 function. In that case, these two functions
generate a multiresolution analysis ofL2 as defined byMallat (1989). Defining Vk :=
span{φ(2−kt − n) | n ∈ Z}, we get by the two-scale equations, a nested sequence of
subspaces ofL2 satisfying

• Vn ⊂ Vn−1.
• ∩nVn = {0} and∪nVn = L2.
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Fig. 3. The scaling functions generated by the first two filters shown inFig. 1.
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Fig. 4. The scaling function generated by the sixth filter shown inFig. 2.

• f ∈ Vn ⇔ f (2t) ∈ Vn−1.
• f ∈ V0⇔ f (t − k) ∈ V0, ∀k ∈ Z.
• {φ(t − k) | k ∈ Z} is an orthonormal basis ofV0.

IntroducingWk := span{ψ(2−kt − n) | n ∈ Z}, we getVn−1 = Vn ⊕ Wn and so
⊕nWn = L2. It is easily proven that{ψ(2kt − n) | k,n ∈ Z} is an orthonormal basis
of L2. Starting from a CQF, we have constructed a basis ofL2 from dyadic dilations
and translations of a single function.ψ is called an orthonormal wavelet,φ is called the
associated scaling function. Again, thequality of the multiresolution analysis is measured
by the numberK of zeros atπ of H0(ejω) since it implies that 1, t, . . . , t K−1 can be exactly
reconstructed from integer translates of the scaling function, thus giving approximation
orderK (Jia and Lei, 1993).

This way of constructing wavelets from iterated filter banks was pioneered by
Daubechies(1988). It became since, a standard way to derive orthonormal and bi-
orthogonal wavelet bases. The underlying CQF filter banks are now well-studied, the
design procedure is well-understood. By the structure of the problem, certain solutions
are however ruled out: since it is impossible to design FIR linear-phase CQF with real
coefficients other than the Haar filter, this implies that the only orthonormal wavelet with
compact support and symmetry is the Haar wavelet.

For multiwavelets, however, the relation betweenφ(t),ψ(t) and the corresponding filter
bank is more complicated. In the next section, the design of multiwavelets is considered
in detail. It turns out that Gr¨obner bases are very useful in investigating the existence of
multiwavelets having properties that are not possible in the scalar-wavelet framework.
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5. Multiwavelets

Generalizing the wavelet case, one can allow a multiresolution analysis{Vn}n∈Z
of L2(R) to be generated by a finite orthonormal set of scaling functionsφ0(t),
φ1(t), . . . , φr−1(t) and their integer translates. In this framework, the so-called
multiscaling functionφ(t) := [φ0(t), . . . , φr−1(t)]� satisfies now a matrix two-scale
equation

φ(t) =
∑

k

M(k)φ(2t − k) (22)

where now{M(k)}k is a sequence ofr ×r matrices of real coefficients. The multiresolution
analysis structure givesV−1 = V0 ⊕ W0 whereW0 is the orthogonal complement of
V0 in V−1. Again, starting from the orthonormal basis,φ0(t), φ1(t), . . . , φr−1(t) and
their integer translates, we can construct an orthonormal basis ofW0 generated by
ψ0(t), ψ1(t), . . . , ψr−1(t) and their integer translates with the so-called multiwavelet
ψ(t) := [ψ0(t), . . . , ψr−1(t)]� derived by

ψ(t) :=
∑

k

N(k)φ(2t − k) (23)

where{N(k)}k is a sequence ofr × r matrices of real coefficients obtained by orthonormal
completion(Lawton et al., 1996) of {M(k)}k. Introducing in thez-domain, the refinement
masksM(z) := 1/2

∑
n M(n)z−n and N(z) := 1/2

∑
n N(n)z−n, Eqs. (22) and (23)

translate in Fourier domain into

φ̂(2ω) =M(ejω)φ̂(ω) and ψ̂(2ω) = N(ejω)φ̂(ω). (24)

Under some natural conditions of convergence (detailed inCohen et al.(1997) andLebrun
(2000)), and similarly to the wavelet case, we can derive the behavior of the multiscaling
function by iterating the first product above. We get at the limit

φ̂(ω) =M∞(ω)φ̂(0) =
∞∏

i=1

M(ejω/2i
)φ̂(0). (25)

In the sequel, we will impose that the sequences{M(k)}k and {N(k)}k have finite
support and thus thatφ(t) andψ(t) have compact support (Massopust et al., 1996). The
orthonormality of the multiscaling function translates also into a matrix orthonormality
condition onM(z): for all z on the unit circle,

M(z)M�(z−1)+M(−z)M�(−z−1) = I. (26)

With this approach, one is finally able to overcome some of the limitations of
CQF filter banks. It is now possible to get finitely generated multiresolution analysis
with all the scaling functions and wavelets being orthogonal, compactly supported and
(anti)symmetric.

The first multiwavelets were designed byAlpert (1993) using methods from
numerical analysis (finite elements and splines methods). A construction using fractal
interpolation of a multiresolution analysis having approximation order 2 (1 andt can be
reconstructed from the translates of the scaling functions) using two symmetric, compactly
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supported, orthogonal scaling functions (that are furthermore Lipschitz) byGeronimo et al.
(1994) (DGHM) triggered many other attempts to construct new multiwavelet bases
(Vetterli and Strang, 1994; Strang and Strela, 1995; Donovan et al., 1996; Chui and Lian,
1996) and motivated a thorough study of the theory of multiwavelets (Heil et al., 1996;
Cohen et al., 1997; Plonka, 1997; Plonka and Strela, 1998).

Considering a finitely generated multiresolution analysis with orthonormal multiscaling
function φ(t) and multiwaveletψ(t), from V0 = V1 ⊕ W1, we get for s(t) =∑

n s�0 (n)φ(t − n) ∈ V0,

s(t) =
∑

n

s�1 (n)φ
(

t

2
− n

)
+ d�1 (n)ψ

(
t

2
− n

)
. (27)

Hence, we derive the well-knownMallat (1989) algorithm for multiwavelets. At the
analysis,

s1(n) =
∑

k

M(k− 2n)s0(k) and d1(n) =
∑

k

N(k − 2n)s0(k) (28)

and at the synthesis, we get

s0(n) =
∑

k

M�(n− 2k)s1(k)+ N�(n− 2k)d1(k). (29)

These relations enable us to construct a multi-input multi-output filter bank (multifilter
bank) as shown below.

Because of their inherent vector nature, in order to process scalar signal, multifilter banks
require a vectorization of the input signal to produce anr -dimensional input signal.
A simple way to do this vectorization is to split scalar signals into their polyphase
components. Introducing

m0(z)
m1(z)
...

mr−1(z)

 := 2M(zr )


1

z−1

...

z−(r−1)

 (30)

and in the same wayn0(z),n1(z), . . . ,nr−1(z), the system can then be rewritten as a
2r channel time-varying filter bank as shown inFig. 5. Intuitively, this is a filter bank
with relaxed requirements on the time invariance. In each filtering block, we periodically
alternate between different filters.Lebrun and Vetterli(1998) andSelesnick(1998) pointed
out that if the componentsm0(z),m1(z), . . . ,mr−1(z) of the lowpass branch have different
spectral behavior, e.g. lowpass behavior for one, highpass for another, this will lead to
unbalanced channels that will mix the coarse resolution signal and detail coefficients and
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Fig. 5. Multifilter bank seen as a time-varying filter bank.

will create strong oscillations in the reconstructed signal. This leads us to introduce the
concept of balanced multiwavelets.

5.1. Balancing

This problem relates also to the basic principle of filter banks: one expects a reasonable
class of smooth signals (typically piecewise polynomial signals) to be preserved by the
lowpass branch and annihilated by the highpass one. In the wavelet case, the two important
issues of the reproduction of polynomials by the associated multiresolution analysis
(approximation theory issue) and the preservation/cancellation of discrete-time polynomial
signals by the associated filter bank (subband coding and compression issue) are tightly
connected since they have been proved to be equivalent to the Strang-Fix conditions:
the number of zeros atπ in the factorization of the lowpass filterH0(ejω) of the filter
bank. This is however not the case anymore for multiwavelets (Lebrun and Vetterli, 1998).
The preservation/annihilation of constant signals by the lowpass/highpass branches of the
multifilters (calledbalancingof order 1) is proved to be equivalent (Lebrun and Vetterli,
1998; Selesnick, 1998) to any of the following conditions:

• [1,1, . . . ,1] is a left eigenvector ofM(1) with eigenvalueλ0(1) = 1.

• φ̂(0) = [1,1, . . . ,1]�.

• ∑r−1
i=0 mi (z) has zeros on the unit circle atz= ej kπ/r for k = 1, . . . ,2r − 1.

• One can factorizeM(z) = 1/2�(z2)M0(z)�−1(z) with

�(z) :=



1 −1 0 . . . 0

0 1 −1
. . .

...
...

. . .
. . .

. . . 0

0
. . .

. . . 1 −1
−z−1 0 . . . 0 1

 and M0(1)

1
...

1

 =
1
...

1

 .

These conditions can be generalized to higher orders of balancing (preser-
vation/annihilation of polynomials signals of higher degree). Introducing the polynomial
interpolation vector filters (Selesnick, 1998; Lebrun, 2000),

α�n (z) :=
1

r
[α(n)0,r (z), α

(n)
1,r (z), . . . , α

(n)
r−1,r (z)]
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where

α
(n)
i,r (z) = 1+

n∑
k=1

Γ (k+ i
r )

Γ (k+ 1)Γ ( i
r )
(1− z−1)k,

we get the following equivalent conditions:

• ∑r−1
k=0 α

(p−1)
k,r (z2r )mk(z) has zeros of orderp at z= ej kπ/r for k = 1, . . . ,2r − 1.

• M(z) can be factored forn = 1, . . . , p as

M(z) = 1

2n
�n(z2)Mn−1(z)�

−n(z) (31)

with Mn−1(1)

1
...

1

 =
1
...

1

 and�(z) defined as before.

These two conditions are furthermore convenient to deal with in the practical design of
multiwavelets.

Besides, one also proves that balancing of orderp is equivalent toφ(t) having an
approximation order ofp and fori = 0, . . . , r − 1, the shifted analysis scaling functions
φi (t + i /r ) having identicalp first moments i.e.

∫
φi (t + i /r )tndt = ∫

φ0(t)tn dt for
i = 0, . . . , r − 1 and n = 0, . . . , p − 1. Intuitively, this says that the condition of
balancing of orderp imposes multiwavelets to behave like wavelets up to the orderp
of approximation. One can in fact show that the shortest length orthonormal multiwavelets
for a given order of balancing are indeed the Daubechies orthonormal wavelets (Lebrun,
2000; Lebrun and Vetterli, 2001).

6. Algebraic design of multiwavelets

We are now able to deal with and solve the systems of polynomial equations that appear
when designing high order balanced multifilters. Using the results obtained in the previous
section (especially the factorization of the refinement mask) and inspired by the techniques
used byPark et al.(1997) andFaugère et al.(1998) on similar problems of design, we are
now ready to investigate the construction of orthonormal multifilters of arbitrary balancing
order in a similar way to whatDaubechies(1992) did for her well-known filters.

6.1. Symmetry oriented design: the Bat family

Given a balancing orderp, we are looking for the shortest length orthonormal
multifilters with real coefficients and symmetries. The symmetries on the filters allow easy
and practical implementations on finite length signals. The scheme of construction is then
the following.

First, we construct the refinement maskM(z), by putting degrees of freedom on a matrix
Mp−1(z).
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1. Impose the order of balancing to bep, i.e. forn = 1, . . . , p,

M(z) = 1

2n
�n(z2)Mn−1(z)�

−n(z)

with Mn−1(1)[1, . . . ,1]� = [1, . . . ,1]�. This way we reduce the number of degrees
of freedom in the design.

2. Impose the conditionO (orthonormality) onM(z),

M(z)M�(z−1)+M(−z)M�(−z−1) = I.

This gives quadratic equations on the free variables ofMp−1(z) (the idea is to
introduce the Laurent polynomial matrix)

Vp−1(z) := 2−p(1− z−r )pMp−1(z)�
−p(z)

and translate the orthonormality condition on this matrix.
3. Impose conditions of symmetry. Here we look for flipping property:m1(z) =

z−2L+1m0(z−1). The flipping property enables an easy lossless symmetrization
(detailed inLebrun(2000)) of finite length input signals.

4. We now have a system of polynomial equations. We compute the algebraic
dimension of the system using a drl Gr¨obner basis approach and increase the degrees
of freedom until we get solutions (and a drl Gr¨obner basis of dimension 0). We used
here the programsSingular (Greuel et al., 2000) for order p = 1,2,3 and FGb
(Faugère, 1999) for the orderp = 4. We now have a zero-dimensional drl Gr¨obner
basisG<drl that we can either transform into a lex Gr¨obner basisG<lex using FGLM
in the casep = 1,2,3 or in the casep = 4, where FGLM showed its limits, we
compute a rational univariate representation ofG<drl by a modified version of the
program RealSolving (Rouillier, 1999). We can then factorize the leading polynomial
of the lex Gröbner basisG<lex in Maple and thus get rid of the multiplicities of the
solutions. This means we factorize the Gr¨obner basis in local algebras that are much
easier to solve exactly. In the casep = 4, we deal with a RUR and a similar idea is
applied to the characteristic polynomialχu(t). We then have the set of solutions for
the system.

5. Among this finite number of solutions, we can look for the one leading
to the smoothest scaling functions using an estimate by invariant cycles
(Lebrun and Vetterli, 2001).

Then, we easily derive the highpass filtersn0(z),n1(z) from the lowpass filtersm0(z),
m1(z) by imposing n0(z) to be symmetric andn1(z) to be antisymmetric. The
orthonormality conditions give a unique solution up to a change of sign.

Using this approach, we have been able to construct all the minimal length
orthonormal multiwavelets with compact support and flipped scaling functions,
symmetric/antisymmetric wavelets for order 1, 2, 3 and 4 of balancing.Fig. 6 shows the
smoothest scaling functions associated to these high order balanced multiwavelets. The
coefficients are available from the webpage of J.L. For order 4 of balancing, because of
the degree of the characteristic polynomial in the RUR, a real roots localization program
(included in RealSolving) has been used and only numerical solutions (in fact exact
intervals containing the solutions) have been obtained.
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6.2. Interpolation oriented design: M-Coiflets

Now, if the scaling functionφ0(t) has furthermorep − 1 vanishing moments, we get
a multiwavelet generalization of Coiflets.MultiCoifletsare thus constructed as balanced
multiwavelets with more stringent conditions on the moments ofφ0(t). For practical
design, we will use the following extension of the balanced vanishing moments condition.
Forn = 0, . . . , p− 1, we have

dn

dωn
[α�p−1(e

j 2ω)M(ejω)]|ω=0 = dn

dωn
[α�p−1(e

jω)]|ω=0

dn

dωn
[α�p−1(e

j 2ω)M(ejω)]|ω=π = 0�.

The design procedure is then very similar to the one for the Bat family above. Two new
conditions are added:

1. The filtersm0(z) andm1(z) are supposed to be odd length and symmetric.

2. M(z) satisfies the multiCoiflet conditions above forn = 0, . . . , p− 1.
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Using this approach, we have been able to construct all the minimal length ortho-
normal multiCoiflets with compact support, symmetric scaling functions, symmet-
ric/antisymmetric wavelets for order 1, 2 and 3 of balancing.Fig. 7 shows the smoothest
scaling functions associated to multiCoiflets with these properties. More details are avail-
able inLebrun(2000), Lebrun(2003) and alsoSelesnick(1999) where a family of cardinal
multiwavelets is constructed (these can be seen as generalized multiCoiflets with the center
of mass of the scaling functions not on the integer grid anymore).

7. Wavelet tight frames

This section describes a family of wavelet tight frames, or ‘overcomplete’ bases in-
troduced inSelesnick(2000a) andSelesnick and Sendur(2000). With frames some fun-
damental properties can be better realized than is possible with bases. For example, bet-
ter time-frequency localization can be achieved. In addition, wavelet frames can be shift-
invariant, while wavelet bases cannot be. In general, frames provide more degrees of free-
dom to carry out design. Several applications have benefited from the use of frames, for ex-
ample, denoising (Coifman and Donoho, 1995; Guo et al., 1995; Lang et al., 1995, 1996).

This section describes the design of frames that are analogous to theDaubechies
(1992) orthonormal wavelets—that is, the design of minimal length filters with polynomial
properties, but now in the case of oversampled filter banks. The wavelets presented below
are much smoother than what can be achieved in the critically sampled case.

The nonlinear design equations that arise are then solved using Gr¨obner bases.
As Gröbner bases are used here, we are able to obtain zero wavelet moments for
wavelets of minimal length, in contrast to earlier work on wavelet tight frames of this
type (Chui and He, 2000; Ron and Shen, 1997). Some later works (Chui et al., 2002;
Daubechies et al., 2001) also describe other methods not based on Gr¨obner bases.

7.1. Preliminaries

The wavelet tight frames developed in this section are based on a single scaling function
φ(t) and two distinct waveletsψ1(t) andψ2(t). Following the multiresolution framework,
φ, ψ1, ψ2 satisfy the dilation and wavelet equations

φ(t) = √2
∑

n

h0(n)φ(2t − n)

ψi (t) =
√

2
∑

n

hi (n)φ(2t − n), i = 1,2.

Corresponding toφ, ψ1, ψ2, we have the scaling filterh0(n), the two wavelet filtersh1(n)
andh2(n), and the oversampled filter bank illustrated inFig. 8.

Let φk(t) = φ(t − k) andψi, j ,k(t) = ψi (2 j t − k) for i = 1,2. Then{φk(t), ψi, j ,k(t) :
j , k ∈ Z, j ≥ 0, i ∈ {0,1}} forms a tight frame forL2(R) if any square integrable signal
f (t) can be expanded as

f (t) =
∞∑

k=−∞
c(k)φk(t)+

∞∑
j=0

∞∑
k=−∞

(d1( j , k)ψ1, j ,k(t)+ d2( j , k)ψ2, j ,k(t)) (32)
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Fig. 8. An oversampled analysis and synthesis filter bank.
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where

c(k) =
∫

f (t)φk(t) dt, di ( j , k) =
∫

f (t)ψi, j ,k(t) dt, i = 1,2.

That is, a function can be expanded in a tight frame in a way that resembles an expansion
in an orthonormal basis. Like orthonormal bases, tight frames have a Parseval’s relation:

‖ f ‖2 =
∞∑

k=−∞
|c(k)|2+

∞∑
j=0

∞∑
k=−∞

(|d1( j , k)|2+ |d2( j , k)|2).

By standard multirate identities, the PR conditions can be written as

H0(z)H0(z
−1)+ H1(z)H1(z

−1)+ H2(z)H2(z
−1) = 2 (33)

H0(−z)H0(z
−1)+ H1(−z)H1(z

−1)+ H2(−z)H2(z
−1) = 0. (34)

7.2. Zeros atω = 0, ω = π
Let K0 denote the number of zerosH0(ejω) has atω = π . For i = 1,2, let Ki denote

the number of zerosHi (ejω) has atω = 0.

(z+ 1)K0 | H0(z), (z− 1)K1 | H1(z), (z− 1)K2 | H2(z). (35)

For orthonormal bases (ψ2(t) = 0), it is necessary thatK0 = K1, so no distinction need
be made betweenK0 andK1. However, for tight wavelet frames of the form (32), it is not
necessary thatK0 = K1 = K2. K0 denotes the degree of polynomials representable by
shifts ofφ(t). K1 andK2 denote the number of zero moments of the wavelet filtersh1(n)
andh2(n), providedK0 ≥ K1, andK0 ≥ K2.

The value ofK0 influences the degree of smoothness ofφ (and therefore ofψi ). On the
other hand, the valuesK1 andK2 indicate what polynomials are annihilated (compressed)
by the given signal expansion. In contrast to orthonormal wavelet bases, with a tight frame
one has the possibility to control these parameters more freely. If it is desired for a given
class of signals that the wavelets have two zero moments (for example), then the remaining
degrees of freedom can be used to achieve a higher degree of smoothness by makingK0
greater thanK1 andK2.

7.3. Example

We seek to design FIR filtersh0,h1,h2 that generate tight frames of the form described
in (32). We seek the shortest filtershi having a prescribed number of zeros atz = −1 and
z = 1 (specified by the valuesKi ) that satisfy the tight frame conditions (33) and (34). In
the examples, we ask thatK1 = K2. If they are unequal, then one wavelet annihilates more
polynomials than the other, or one wavelet is doing ‘more work’ than the other.

Note that the conditions (33) and (34) are nonlinear equations in the filter coefficients
hi (n). For the design problems considered below, these nonlinear design equations are
handled using Gr¨obner bases.

We ask thatK0 = 5, K1 = K2 = 2. It was found that the shortest filtersh0, h1,
h2 satisfying (33) and (34) are of length 7, 7, and 5, respectively. By utilizing Gr¨obner
basis methods it is possible to obtain exact expressions forhi (n). (Singular(Greuel et al.,
2000) was used for the Gr¨obner basis calculations.) The original design equations have
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Fig. 9. The generators of a wavelet tight frame with parametersK0 = 5, K1 = K2 = 2.

only rational coefficients, and we were able to obtainexplicit expressions forhi (n) in
terms of radicals. The expressions obtained forhi (n) are too long to include here, but are
available from I.S.

The filtersh0, h1, h2 were found by converting the nonlinear design equations into a drl
Gröbner basis, then converting that into a lex Gr¨obner basis, and factorizing that into two
Gröbner bases. Then the ordering of the variables was changed, to obtain two lex Gr¨obner
bases which are more compact. However, if this ordering is used from the beginning, then
the original lex Gr¨obner basis does not factor. All minimal-length pairs of scaling filters
can be found by solving these 2 Gr¨obner bases. The Gr¨obner bases indicate that there are
32 solutions to the nonlinear design equations (16 solutions from each part).

As in the orthonormal case, there are multiple solutions to this problem. However,
in contrast to the orthonormal case, (i) the distinct solutions do not all share the same
autocorrelation, and (ii) not all of the spectral factors of each autocorrelation are solutions.
In this example, there are 4 distinct solutions, not counting their time-reversals (hi (−n))
and negations (−hi (n)). One of those 4 solutions is shown inFig. 9. The other 3 solutions
are tabulated on the webpage of I.S.

8. Conclusion

In conclusion, for many of the design problems arising in the construction of specialized
wavelets and filter banks, Gr¨obner bases are a natural tool. And although the high
computational and memory cost of Gr¨obner bases limits their utility, we are able to obtain
solutions of practical interest, as illustrated in this paper. Indeed, we have introduced
examples of multiwavelet bases and wavelet frames that we could not have obtained
without them. As software for Gr¨obner bases, and the related theory, is advancing with
time, we expect Gr¨obner bases will be no less useful for future problems arising in the
design of filters and transforms for signal processing.
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Appendix A. Computation algebra digest

A.1. Introducing Gr̈obner bases

In this paragraph, we will review the major ideas involved in the computation of
Gröbner bases. We will not go much into the details, since many good books ranging from
introductory (Fröberg, 1997) to advanced level (Cox et al., 1992, 1998) have been written
on this now popular subject. We will rather develop an intuitive understanding of what a
Gröbner basis is and describe some ways to compute them by using analogies to linear
algebra.
We define a multivariate polynomialp to be a finite sum of terms

∑
α cαxα, where a term

cαxα is the product of a coefficientcα and a monomialxα. One can draw an analogy
between solving linear systems that can be seen as the study of the associated vector
subspace and solving a polynomial system that can be seen as the study of the associated
ideal. Namely, a polynomial system of equations is defined by a list{p1, . . . , pN} of
multivariate polynomials with rational coefficients (p1, . . . , pN ∈ Q[x1, . . . , xn]). We
associate to this system the generated idealI = 〈p1, . . . , pN〉 i.e. the smallest ideal
containing p1, . . . , pN as well as

∑N
k=1 hk pk, for any h1, . . . ,hN ∈ Q[x1, . . . , xn].

Intuitively, the idea is that the polynomialsp1, . . . , pN have a common zero iff any
polynomial of the idealI vanishes also at that location. It is then equivalent to study a
system of polynomial equations or the ideal generated by the polynomials.
For a set of linear equations, the Gauss elimination algorithm enables us to compute an
equivalent triangular system by canceling the leading term of each equation. A similar
algorithm (called theBuchbergeralgorithm) can be developed for the case of multivariate
polynomials. An important aspect of the Gauss elimination algorithm is in the choice of
the pivots that are used during the triangularization of the system. For the same reasons, the
first thing we have to define is an ordering on the monomials (that needs to be compatible
with polynomial multiplication). We introduce here two monomial orderings:

• Thelexicographicordering, abbreviatedlex. This is the ordering used in dictionaries.
• Thedegree reverse lexicographicorder, abbreviateddrl. This is a modified reversed

lexicographic ordering taking first into account the total degree of the polynomials.

We then introduce the leading term lt(p,<) of a polynomialp as its term with the
highest order according to the ordering<, we also introduce the leading monomial
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lm(p,<) as the leading term with a coefficient normalized to 1 and lc(p,<) as the leading
coefficient. Notice that when no doubt remains, we will omit to mention the ordering. In
a very similar way to what is done in the Gauss elimination algorithm, we introduce the
S-polynomialas a monomial combination of two polynomials so as to cancel their leading
terms.

Spol(p1, p2) := lcm(lt(p1), lt(p2))

lt(p1)
p1− lcm(lt(p1), lt(p2))

lt(p2)
p2 (36)

where lcm stands for theleast common multipleof a set of polynomials. For example,
with the<lex ordering(x > y > z), p1 = 2x3y + · · · and p2 = x2y2 + · · ·, we get
Spol(p1, p2) = yp1−2xp2. We have canceled the leading terms ofp1 andp2. Of particular
interest is when Spol(p1, p2) = p1−qp2 for some polynomialq (e.g.p1 = 3x3y+· · · and
p2 = xy+ · · ·). In that case, we say thatp1 is reducibleby p2 and thatq is thereduction
of p1 by p2. This reduction can easily be extended to the reduction of a polynomial by an
ordered list of polynomials,L = [q1, . . . ,qN ].

We shall emphasize the importance of the order in which the reductions are done: the
same set of polynomials reordered in a different list will usually give rise to a different
output of the reduction process. However, for any list of polynomials there exists an
equivalent list such that the order has no influence anymore.

The famous Buchberger algorithm transforms by a progressive reduction process a
general ordered list of polynomials generating the idealI into an equivalent one that makes
it much easier to deal with the ideal generated. The list of polynomials obtained by the
Buchberger algorithm is called a Gr¨obner basis. One of the major properties of Gr¨obner
bases is that it makes it algorithmically easy to verify if a given polynomial belongs or not
to the ideal generated.

The major features of the Buchberger algorithm is that the list obtainedG :
= [g1, . . . ,gN ] still generatesI and satisfies the following Gr¨obner basis definition:
Spol(gi , gj ) reduces to 0 moduloG, for everygi , gj ∈ G. It is easily seen that Gr¨obner
bases have the following equivalent characterizations:

• f ∈ I iff f reduces to 0 moduloG (Reduce( f,G) = 0).
• The leading term of any element ofI is divisible by at least one leading term lt(gi )

of G.

For an idealI , let 〈LT(I )〉 denote the ideal of leading terms ofI , i.e. the ideal generated
by the set of leading terms LT(I ) := {cxα | ∃ f ∈ I , lt( f ) = cxα}. We then get that
G := [g1, . . . , gN ] is a Gröbner basis ofI iff the ideal of leading terms ofI is generated
by the leading terms ofG i.e. 〈LT(I )〉 = 〈lt(g1), . . . , lt(gN)〉.

Usually, one can compute infinitely many Gr¨obner bases. However, among all these,
one satisfies some nicer properties: every elementgi of the basisG has its leading term
normalized (coefficient equal to 1) and∀gi ∈ G, no term ofgi is divisible by a leading
monomial lm(gj )( j �= i ). This particular basis is called thereducedGröbner basis: one
verifies that for a given monomial ordering monomial<, a non-empty polynomial ideal
always has a unique reduced Gr¨obner basis. With the reduced Gr¨obner basis, we get the
very nice feature that the output of Reduce(p,G) does not depend anymore on the order
of the polynomials in the list: Reduce(·,G) becomes thecanonical reductionmoduloI .
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In the case< is lexicographic, the reduced Gr¨obner basis has a very nice structure.
Namely, the reduced Buchberger algorithm gives a union of triangular arrays of
polynomials of the following form:

h(d+1)
0 (x1, . . . , xd)

(
x

kd+1
d+1 +

h(d+1)
1 (x1,...,xd )

h(d+1)
0 (x1,...,xd )

x
kd+1−1
d+1 + h(d+1)

2 (x1,...,xd)

h(d+1)
0 (x1,...,xd)

x
kd+1−2
d+1 + · · ·

)

h(d+2)
0 (x1, . . . , xd+1)

(
x

kd+2
d+2 +

h(d+2)
1 (x1,...,xd+1)

h(d+2)
0 (x1,...,xd+1)

x
kd+2−1
d+2 + h(d+2)

2 (x1,...,xd+1)

h(d+2)
0 (x1,...,xd+1)

x
kd+2−2
d+2 + · · ·

)
. . .

h(n)0 (x1, . . . , xn−1)

(
xkn
n + h(n)1 (x1,...,xn−1)

h(n)0 (x1,...,xn−1)
xkn−1
n + h(n)2 (x1,...,xn−1)

h(n)0 (x1,...,xn−1)
xkn−2
n + · · ·

)
(37)

whered gives the number of remaining degrees of freedom of the system when all of the
equations are satisfied (x1, . . . , xd are now parameters).d is called the algebraic dimension
of the ideal: the solutions of a system of polynomial equations can be seen as a geometric
variety that can be classified by its algebraic dimension:d = 0: finite number of isolated
points,d = 1: curves,d = 2: surfaces and so on. In case the system has different kinds
of solutions (e.g. isolated points and curves), the global dimension is just the maximum
dimension of each component.

Whend = 0, i.e. when the system has a finite number of solutions, we get that the first
equation becomes a univariate polynomial equation and we can then rewrite the reduced
Gröbner basis as:

xk1
1 + g1(x1) degx1

(g1) < k1

xk2
2 + g2(x1, x2) degx2

(g2) < k2

· · · · · ·
xkn

n + gn(x1, x2, . . . , xn) degxn
(gn) < kn.

(38)

On such a system, it is now easy to carry out many operations like counting exactly all
complex/real solutions including the multiplicity, isolating the real roots with the desired
precision or approximating the complex roots (Gonzalez-Vega et al., 1999). For example,
to numerically solve the system: first solve the univariate equationxk1

1 + g1(x1) = 0, then
recursively substitute and solve the next equations. Moreover, in the case the variablex1
is separating (intuitively two solutions cannot have the same first component; a rigorous
definition is given in the next section), we get thatk2 = k3 = · · · = kn = 1. The system is
then of the form

g̃1(x1)

x2+ g̃2(x1)

· · · · · ·
xn + g̃n(x1).

(39)

and all we have to do is to solvẽg1(x1) = 0 and substitute in the other equations. This is
called theShape lemmacase (Rouillier, 1999).

A.2. Linear algebra methods

The necessary time to compute a reduced Gr¨obner basis by the Buchberger algorithm
depends strongly on the monomial ordering that is used. In general, computing a
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reduced Gr¨obner basis for the lexicographic ordering is much more time and memory
consuming than computing the corresponding drl Gr¨obner basis. However, this additional
computational cost may be worth it because, as seen before, the lexicographic ordering
provides a triangular like structure (similar to the one obtained by Gauss elimination) that
is really suitable for further processing. Fortunately, recent algorithms enable the efficient
computation of lexicographic Gr¨obner bases by using an alternative approach:

• First, we compute a Gr¨obner basis for the drl ordering, using, for example, the
standard Buchberger algorithm (note that the algorithm can be highly improved by
using heuristics for the choice of the critical pairs and the reductors in the reducing
process). An even better approach is to completely suppress the influence of these
choices, by in factnot choosinganymore as introduced byFaugère (1999) in his
F4 algorithm: instead of choosing one critical pair, we take a subset of critical
pairs and reduce this set. By using a linear algebra approach to deal with the pairs,
the algorithm can be made extremely efficient for the computation of drl Gr¨obner
bases. An implementation named FGb of this algorithm can be tested on the web at
https://www-calfor.lip6.fr
• Finally, we compute the lexicographic Gr¨obner basis from the drl one by a change of

ordering. For the case when the ideal is zero-dimensional, a very efficient algorithm
called FGLM (Faugère et al., 1994) has been developed using again a linear algebra
approach. Implementations of this algorithm are now available in most of the
computer algebra programs.

We will now give some details on how the linear algebra approach works. Again, for
more details, the reader can read the survey on the subject byMourrain (1999). Starting
from a list P of polynomials such that the generated idealI = 〈P〉 is zero-dimensional,
we show that the quotient spaceA := Q[x1, . . . , xn]/I inherits a structure of finite-
dimensional algebra. Namely, assuming a reduced Gr¨obner basisG := [g1, . . . , gN ] for
some ordering< (typically drl), any element ofA has the formp̄ = Reduce(p,G) for
some p ∈ Q[x1, . . . , xn]. Since〈LT(I )〉 = 〈lt(g1), . . . , lt(gN)〉, we easily construct a
linear basis ofA from the set of monomials{xα | xα /∈ 〈LT(I )〉}, by taking in increasing
order the monomials under the staircase, i.e. thexα that are not a multiple of lt(gi ) (since
this implies thatx̄α = Reduce(xα,G) = xα). The linear basisB := {ω1, . . . , ωd} obtained
this way is called themonomial basisof A. Finally, constructing the multiplication table
[ωiω j ]i, j of A, we get a full description of the linear algebraic framework in which we
will deal with the polynomials.

Now, any element̄p ∈ A can be expressed as a vector[p] since p̄ = ∑d
k=1[p]iωi .

The FGLM algorithm can then be described using linear algebra inA. The lexicographic
Gröbner basis is obtained by detecting linear combinations of monomials inA. The idea
is to construct in parallel the lex Gr¨obner basisG<lex and a full rankd × d matrix G,
by scanning the monomialsxα in increasing lex ordering (starting from 1). There are two
possibilities:

1. [xα] is linearly dependent of the previous vectors put inG (i.e. we can write
[xα] = ∑

k ck[xβk]), then we addgα := xα −∑k ckxβk to G<lex (namely,gα ∈ I
and lt(gα) = xα).

2. [xα] is linearly independent of the previous vectors put inG, then add[xα] to G.

https://www-calfor.lip6.fr
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Repeat the scan until rank(G) = d; G<lex is then a lex Gr¨obner basis ofI .

A.3. The rational univariate representation

In many situations, the computation of a lex Gr¨obner basis of the idealI is a bit of
an overkill in the sense that in fact, all we are really interested in, is a good description
of the set of solutions of the system,ZC(I ) := {α ∈ Cn | ∀p ∈ P, p(α) = 0}
(we will denote byµ(α) the multiplicity of a solutionα). In the approach, alternative
to FGLM, developed byRouillier (1999) andGonzalez-Vega et al.(1999), one constructs
a list {χu(t), gu(1, t), gu(x1, t), . . . , gu(x1, t)} of polynomials ofQ[x1, . . . , xn] such that:
if α is a solution of the system, thenu(α) is a root ofχu(t) with the same multiplicity and
conversely, ifζ is a root ofχu(t), then[

gu(x1, ζ )

gu(1, ζ )
,

gu(x2, ζ )

gu(1, ζ )
, . . . ,

gu(xn, ζ )

gu(1, ζ )

]
(40)

is a solution of the system with the same multiplicity. Hence,ZC(I ) is fully characterized.
The basic tool of this method is the computation of linear operatorMu onA associated to
polynomialsu,

Mu : A→ A
f̄ &→Mu f̄ := u f . (41)

We identify Mu with its Cd×d matrix representation in the monomial basis of  A. This
matrix is easily computed by expressingūωi in the monomial basis, which gives the ith
column ofMu.
The computations ofMu give much important information onZC(I ) and the system in
general. From these matrices, we can construct a bijection betweenZC(P), the set of
solutions of the system, and the roots of the univariate polynomialχu(t). All we have to
do now to getZC(P) is to isolate the roots ofχu(t). We then derive the solutions of the
system using the RUR. The isolation of roots is usually a difficult problem. However, in
the case we are only interested in the real solutions of the system, we can locate them very
efficiently by computing the signature of trace matrices (Pedersen et al., 1993).
Alternatively, we can also factorizeχu(t). We construct this way local algebras that enable
us to simplify the problem of isolating the roots by lowering the degrees of characteristic
polynomials in the RURs.
In short, the RUR approach appears to be a very efficient alternative to the computation of
a lexicographic Gr¨obner basis: as detailed inRouillier (1999), it is computationally easier
to compute a RUR than to apply the FGLM algorithm and the characteristic polynomial
χu(t) is usually easier to deal with thañg1(x1), the leading polynomial of the lexicographic
Gröbner basis. Besides, when the polynomial system is overdetermined, similar linear
algebra methods (Giusti and Schost, 1999) have been developed to completely avoid the
computation of Gr¨obner bases.
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