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Abstract

We provide a polynomial time algorithm for computing tbeiversal Grobner basi®f any
polynomial ideal having a finite set of common zeros in fixed number of variables. One ingredient of
our algorithm is an effective construction of the state polyhedron of any member of the Hilbert
scheme Hilﬁ of n-long d-variate ideals, enabled by introducing thibert zonotopeHﬁ and
showing that it simultaneously refines all state polyhedra of ideals odHiIb
0 2003 Elsevier Science (USA). All rights reserved.

1. Introduction

The universal Grobner basi®f an ideall in the algebraF[x] := F[x1, ..., xq] of
d-variate polynomials over a field is the minimal ét/) which is simultaneously a
Grobner basis fof under every monomial order. A finite universal Grobner basis always
exists and in a sense is the ultimate generating set fifr algorithmic purposes. In
particular, for ideals having a finite set of common zeros (variety) over the algebraic closure
of F, a universal Grébner basis reduces the problem of computing the zero set to the
problem of finding roots ofl univariate polynomials. For instance, consider the system
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P = {x2 — xp,x5 — Txp + 6x1, x1x2 — 3x2 + 2x1} of bivariate polynomials; the universal
Grobner basis of the idedl:= ideal P) is

1 7
U(l)=PU {x%—3x%+2x1, x§—5x22+4x2, x1+éx§—éx2, xz—xf}

and contains univariate polynomials in eachxaf and x,. Finding the roots of these
two polynomials, we conclude that the set of zerosPokatisfies varP) = var(l) C
{0, 1, 2} x {0, 1, 4}. Substituting back taP, we find that va¢P) = {(0, 0), (1, 1), (2, 4)},
thereby solving the system.

Thelengthof an ideall in F[x] is theF-dimension of the quotief[x]/ and is finite if
and only if the set of common zeros bbver the algebraic closure Bfis finite. Let Hiltﬁ
be the set ofi-long ideals inF[x] = F[x1, ..., x4]; it can be embedded as an algebraic
variety in a higher-dimensional space and is referred to aslilhert schemeof n-long
d-variate ideals. One of the goals of this article is to provide a polynomial time algorithm
for computing the universal Grobner basis of any ideal on the Hilbert scheme (see Section
4 for the complete formulation):

Theorem 4.2. Fix d. Then there is a polynomial time algorithm that computes the universal
Grébner basig/(1) of any ideall e Hilb? using O (n**+1(logn)?4~D@=Dy arithmetic
operations.

The computational complexity is measured in terms of the number of arithmetic
operations over the underlying field Over the field of rational numbers, the algorithm is
(strongly) polynomial time in the Turing computation model, but we will not dwell on the
details here.

One ingredient of our algorithm is an effective unified construction, for any ideal
I e Hilbﬁ, of its state polyhedronS(/) whose vertices bijectively index the reduced
Grobner bases of. This is done in Section 2, where we introduce tasis polytope
B(I) of any ideall € Hilbﬁf and establish the following description of its state polyhedron

(see Section 2 for the complete statement).
Theorem 2.4. The state polyhedron dfe Hilb¢ is provided byS(1) := B(I) + R%.

As a corollary, we obtain the following polynomial upper bounds on the number of
reduced Grobner bases and the size of the universal Grébner basis of any ideal on the
Hilbert scheme.

Corollary 2.5. For every fixedd, the following hold for anyn-long d-variate ideal
I € Hilb?:

(1) the number of distinct reduced Grébner base$ &f O (n24(@—D/d+1)y.

(2) the number of elements in the universal Grébner b&SiE) is
O (n?%d—3+(3d-1)/(d(d+1)))

The cardinality of the set defining the basis polytdp@) of I € Hilb? is typically
exponential inn even for fixedd = 2 and so Theorem 2.4 does not lead directly to an
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efficient algorithm for constructing the state polyhedron. We overcome this difficulty by
introducing, in Section 3, thelilbert zonotoperf. Proving that3(7) is a projection of

a suitable matroid polytope, we show ttdf is universalfor the Hilbert Scheme in the
following sense:

Theorem 3.5. The Hilbert zonotopét¢ refines the state polyhedra$(/) of everyl €
Hilb4.

Using Theorems 2.4 and 3.5 we are able, in Section 4, to provide the aforementioned
polynomial time algorithm for constructing the state polyhedron and universal Grobner
basisi{/(I) of any I € Hilbff. In particular, our results apply for the vanishing ideahafy
point configuration, extending earlier results of [10] for the generic case, and for lattice
ideals studied earlier in [11].

In Section 5 we interpret some of the notions and demonstrate some of the results
discussed herein for the special classes of vanishing ideals of point configurations and
of lattice ideals, the latter having some consequences for the so-called “group relaxation”
of integer programming.

We conclude with a brief discussion, in Section 6, of the embedding of the Hilbert
scheme Hillﬁ into the Grassmanian of-dimensional subspaces of a vector space of
dimensionO (n(logn)4—1).

2. Thebasispolytope and the state polyhedron

A staircaseis a setx € N? of nonnegative integer vectors such that v € A
(coordinatewise) implieg € A. Let (I\f)stair denote the finite set of-element staircases
in N4, Ford = 2 then-staircases are the Young diagrams:ofor a staircase, let 1 :=
N4\ & be its complement ifN¢ and let mir{x) be the unique finite set of coordinatewise
minimal vectors ink. Then-staircases ilN¢ are in bijection with the monomial ideals in
Hilb? via I; :=ideakx’: v € min(x)}.

Now fix any ideall e Hilbff. An n-subseth ¢ N? is basic for I if the congruence
classes moduld of the monomialsc? with v € A form a vector space basis for the
quotient spacéef[x]/1, or equivalently, if theF-vector space lifx": v € A} satisfies
lin{x”: veA}NnI={0}.If Ais basic then the clagg] = f + I of any f € F[x] contains
a unigue representative in {in’: v € A}; let[ f], denote this unique polynomial satisfying
[fl elin{x?: ver}andf —[f1 €.

A staircasex € (n )stair is initial for I if its monomial ideal’, is the initial ideal
inc(I) :=idealin<(f): f € I} of I under some monomial ordet. If A is initial then
it is also basic and the unique reduced Grdbner basiks wider < is the setG; (1) :=
{x"* — [x*];: u € min(})} consisting of preciselymin(1)| polynomials. LetA(I) denote
the set of initial staircases @f We shall need the following two propositions on basic sets
and initial staircases of an ideal.

Proposition 2.1. Let < be any monomial order and lete A(I) be the initial staircase
of I satisfyingl;, = in<(I). Then for any vectox € N \ » we havex“]; € lin{x’: v e 1,
v <u}.
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Proof. Let f :=x" — [x"], € I and letx? =in<(f). Thenx’ € in.(I) = I, hence
v ¢ L. Sincex" is the only monomial inf with exponent not in, it must be that = u
hence in(f) = x*, so all monomials involved ifix*], are smaller than* under< as
claimed. O

Proposition 2.2. Let < be any monomial order and lete A(I) be the initial staircase
ofI € Hilbﬁf satisfyingl, = in.(I). Let u be any basic set of. Write . = {&1, ..., A,}
andu = {u1, ..., un} With Ay <--- < A, and pu1 < --- < u,. Theni; < uy for each
k=1,...,n.

Proof. Suppose indirectly;y < Ax for somek, and letU :=lin{[x#1],, ..., [x*],}. Then
wi < i < a for all i <k hence[x*]; e lin{x*i: j <k} (clearly if u; € » and by
Proposition 2.1 ifu; ¢ 1). SoU C lin{x*/: j < k} hence dintU) < k. But u is basic
SO {[x*1];, ..., [x*],} is linearly independent hence so {ifsc#1];, ..., [x**],}. Thus,
dim(U) =k, a contradiction. O

Each vectorw in the nonnegative orthaﬂﬁi partially orders monomials® by the
valuew - v. For any generiav this is a total order and hence a monomial order, and every
monomial order arises that way from some genaerie Ri. The initial ideal of/ under
w is in, (1) :=idealin, (f): f €I} and is a monomial ideal ifv is generic. Declare two
non-negative vectors andw’ equivalent if in, (1) = in,, (I). The equivalence classes are
relatively open convex cones forming a subdivisionRjj called theGrdbner fanof 1
(cf. [8]). A vectorw lies in a full-dimensional cone of the Grobner fan if and only if (i#)
is a monomial ideal.

The (minimizing)normal coneof a face at a polyhedroR in R? is the relatively open
cone of those vectors € RY uniquely minimized overP at that face. The collection of
normal cones of all faces df is called thenormal fanof P. Let B be any polytope ifR?
and letP := B +R%. Then the normal fan of the polyhedrénforms a subdivision oR%
and the vertices of are precisely those vertices Bfwhose normal cone & contains a
strictly positive vectom € R

A polyhedronP in R¢ is thestate polyhedron of the idedl(cf. [3]) if the Grébner fan
of I equals the normal fan at. This holds if and only if the set (1) of initial staircases is
in bijection with the vertex set aP, with w € Ri uniguely minimized oveP at its vertex
corresponding ta. € A(/) if and only if the initial monomial ideal of underw satisfies
iny(I) =1I,.

We now describe a construction of the state polyhedron for which this bijection is very
natural, in that the vertex correspondingit@ A(7) is simply its vector sun}_ A € N,

d . . . . . .
Let VI := U (') ) a; dENOte the union of alt-staircases itN?. Given an ideal € Hilb,

let I'(I) := {» c V: A basic forl} denote the finite set of all-subsets o¥¢ basic for/.

Since every initial staircase df is basic and is contained ¢ = (R,’ld) <tair W€ have
A(I) € I"'(I). The following polytope will later enable the efficient computation of the

state polyhedron.
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Definition 2.3. The basis polytopef I € Hilb¢ is the convex hull of sums of basic sets
of Iin V¢4,

B(I) = conv{Zk: = F(I)} C R,
The state polyhedron of amylongd-variate ideal is provided by the following theorem.

Theorem 2.4. The state polyhedron af € Hilb¢ is provided byS(I) := B(I) + R%.
Furthermore

(1) its vertex setigd " A: A € A(J)} and is in bijection withA(I) via the map — > 4;
(2) a genericw € Ri is minimized overS(/) and B(I) at >_x with A € A(I) and
L =iny(I).

Proof. Let w € Ri be any generic vector and let € A(/) be the initial staircase
of I satisfying in,(I) = I,,. Consider anyu € I"(I). Writing A = {\1,...,1,} and
w={u1, ...,y With w - 21 <--- <w-A, andw - u1 < --- < w - uy, we find by
Proposition 2.2 that for eadhwe havew - 1, < w - g, with equality if and only ifA, = i
sincew yields a total order. Thus,

n n
w'Z)\=Zw')\k<Zw'uk=woZu
k=1 k=1

with equality if and only ifi; = uy for all k. We find that for allx € I" (1) other than

A we havew - Y"1 < w - Y u hencew is uniquely minimized oveB(I) + RZ aty" 1.
This shows in particular thgf A is indeed a vertex af (1) andB(/) and thatd " # > A
foranyu € I'(I) other than.. Since any. € A(I) satisfiesl) = in,, (1) for some generic

w e Ri, the map. — > A is indeed a bijection fromA (1) onto{d>_A: A € A(I)}. Since
generic vectors are denseIFBf{r and a fan is determined by its maximal dimensional cones
we find that the Grébner fan df equals the normal fan & (1) = B(I) + R%, showing
thatS(7) is indeed the state polyhedronbf O

Theorem 2.4 remains valid if we replad¥) by the convex hullB = con{>_ A:
A e 'Y with I' O A(1) any collection of basic sets éfwhich contains all initial staircases
of . In particular, it holds with

Nd
I'=A{) and F:{Ae( ) : Abasicforl}.
-/ stair

However, these choices do not lend themselves to efficient algorithmic construction of the
state polyhedron and the universal Grébner basis. As we shall see, we needifatetie

the collection of all basic sets dfcontained in some subsgtc N¢. The smallest such set
yielding I which contains alk-staircases ifN¢ is their unionV¢, leading to our choice

of r'(I) andB([).



534 E. Babson et al. / Advances in Applied Mathematics 30 (2003) 529-544

Let /(1) denote thauniversal Grobner basis of defined as the union of all reduced
Grobner bases af and hence simultaneously providing a Grobner basid fonder any
monomial order. Theorem 2.4 yields the following polynomial upper bounds on the number
of distinct reduced Grobner bases and the size of the universal Grobner basis of any ideal
in Hilbﬁf. The proof is similar to that of [10] for the case of vanishing ideals of point
configurations.

Corollary 2.5. For every fixedd, the following hold for anyr-long d-variate ideal
I € Hilb?:

(1) the number of distinct reduced Grébner base$ f O (n24(@-D/d+D).

(2) the number of elements in the universal Grébner b&giE) is
O (n%—3+(3d-1)/(d(d+1)))

Proof. Consider any\ e (R}zd)stair‘ Then, fori =1,...,d, eachv € A satisfiesv; <n

hence theith coordinate value op_ 2 is less tham?. Thus, the lattice polytop® =
conY_A: A € A(I)} is contained in the culd®, n?]¢ and hence ha@ (vol(P)@—D/(@+1))
= 0 (n?d-D/Wd+Dy vertices (cf. [1]). By Theorem 2.4, the state polyhed®fi) =
P+ Ri and P have the same vertex set, giving (1).

Next, for anyi e (Rf)stair, the size of the set m{n) of minimal elements not in.

is O (n?=D/4) (cf. [4]). Since the reduced Grobner baélg of I corresponding ta. has
Imin(x)| elements, the product of the bound on &#mn(x)| and the bound just established

in (1) on the number of reduced Grdbner basis yields the bound in (2) on the size of their
union/(I). O

3. TheHilbert zonotope and itsuniversality

While the number of initial staircases éfe Hilbﬁf is polynomial inn for any fixed
d by Corollary 2.5, the cardinality of (1) is typically exponential im even ford = 2;
for instance, ifl is the bivariate vanishing ideal of any genetipoints in the plane over
an infinite field (see discussion of point configurations in Section 5), them-slibsets
of V¢ are basic, and hence so areralitaircases itN? which are in bijection with number
partitions ofn. Thus, it is not possible to filten(7) out of I"(1) and construc3(/) or
S(I) directly in polynomial time.

To overcome this we now introduce, for each pair of positive integeasnd n, the
Hilbert zonotopeH<. As we shall see, it isiniversalfor the Hilbert scheme Hilpin that
it provides a refinement of the basis polytdp@) and the state polyhedrd&(7) of every
ideal 7 € Hilb¢.

Recall thatv¢ = (R,T)stairis the union of alk-staircases itN“. Call an element of the

symmetrizationV¢ — V¢ = {u — v: u, v € V¢} primitiveif it is not a nonnegative integer
multiple of another element df¢ — V¢. Forn > 2 let D¢ be the set of primitive elements
of V¢ — V¢, and forn = 1 let DY := %{es, ..., eq). We make the following fundamental
definition.
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Definition 3.1. TheHilbert zonotopet¢ is the following Minkowski sum of line segments:

Hi:= ) [0,1]-vCR’

veDd

Note thatD¢ = —D? is centrally symmetric, hence so 1 which equivalently can be
defined as) [—1, 1] - v by summing over only one of each pdirv, v} of antipodal
primitive elements.

The Hilbert zonotope is well behaved in the following sense.

Proposition 3.2. Fix any d. Then the number of vertices of the Hilbert zonotde
satisfiesO (n2@=D(logn)2€@-1%); further, in polynomial time using that many arithmetic
operations, all its vertices can be listed, eaghalong with a vectorw(k) uniquely
minimized ovef{¢ ath.

Proof. First note thatd = |J ("

n )stair is given by

d
vd = :v eN’ [wi+1) gn}:
i=1

indeed, ifv € N lies in somen-staircase. then the entire bog € N¢: u < v} is contained
in 2 hence

d

l_[(Ui +1= HueNd: u <U}| < A =n;

i=1

conversely, ifv € N satisfiesﬂle(vi + 1) < nthenthe box above can be augmented with
multiples of unit vectors to an-staircase. containingv. Now the cardinality of

d

:u e N ]‘[(v,» +1) gn}
i=1

obeys the boundO (n(logn)?—t) (cf. [12]). Thus, the Hilbert zonotopét¢ is the

Minkowski sum of

N := %‘D;‘” = 0(\Vnd|2) = 0(n?(logn)?@—b)

line segments and therefore (cf. [6,9]) h@asN¢~1) vertices which can all be enumerated,
eachh along with a vectorw (k) uniquely minimized at:, using O(N¢~1) arithmetic
operations, giving the claimed boundsa
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Example3.3. We compute the HiIbertzonotop% ford = 2,n = 3. Using Proposition 3.2
we find the setH of vertices of’H§ which shows that it is a (centrally symmetric) 10-gon,
as well as the corresponding st of the linear functionals uniquely minimized at its

s [[EHE B
BRI )
LB
(LRI

We need to recall a few facts about matroids and matroid polytopesvlet(V, I")
be a matroid over a finite sét with collection of based™ c 2". Its matroid polytope
is defined as the convex hull(M) := conf1lz: B € I'} ¢ RY, wherelp denotes the
incidence vectoof B C V, that is, the{0, 1} vector inRY with supportB. This is a well
known object of importance in combinatorial optimization. Belowelet RV denote the
unit vector indexed by € V.

Proposition 3.4. Everyl-face of the matroid polytope is equaldp— e, for somes, v € V.

Proof. Consider any paii, B € I of bases such thdfls, 1] is an edge (that is, a 1-
face) of B(M), and letw € RV be a linear functional uniquely maximized ov&¢M) at
thatedge. IfA\ B = {u} is a singleton the® \ A = {v} is a singleton as well in which case

14 — 1p = e, — e, and we are done. Suppose then, indirectly, that it is not, and pick an
element: in the symmetric differencéa A B := (A\ B)U (B \ A) of A andB of minimum
valuew, . Without loss of generality assume= A \ B. Thenthereisa € B\ A such that

C := A\ {u}U{v}is abasis oM. Since|A A B| > 2, C is neitherA nor B. By the choice

of u, this basis satisfies - 1c = w-14 — w, + wy, > w - 14, hence also a maximizer af
overB(M), a contradiction. O

A polyhedronp is arefinemenbf a polyhedror if the normal fan ofP is a refinement
of that of Q, that is, the closure of each normal congis the union of closures of normal
cones ofP. The significance of the Hilbert zonotope is now demonstrated by the following
theorem.

Theorem 3.5. The Hilbert zonotopé? is a refinement of both the basis polytael)
and the state polyhedrofi(1) of every member of the Hilbert schemHiIbZ of n-long
d-variate ideals.

Proof. Consider anyl e Hilb¢. Let M := (V¢, '(I)) be the matroid oveW? with
collection of based™ (1), which is the restriction td/,f’ of the infinite matroid oveiN?
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of all basic sets of. Let B(M) :=conl,: A€ I'(I)} C RY be the matroid polytope
of M and let

d
7 R —>Rd:evv—>v

be the natural projection sending the unit veetprorresponding tw € V,f’ to the vector
veN? c R?. Then for each. € I'(I) we haver (1) = 3" X hence the basis polytope bf

B(I) = conv[ZA: e F(I)} = con{(1,): 2 e I(D)} =7 (B(M))

is a projection of the matroid polytope. Thus, each edgé@f) is the projection of
some edge oB(M) hence, by Proposition 3.4, is equalstge, — ¢,) = u — v for some
pairu,v € V,f’ and therefore parallel to some eIementDﬁi. Thus, the Hilbert zonotope
HE =, pal0,1] - v is the Minkowski sum of a set of segments containing all edge
directions ofB(1) and therefore its normal fan is a refinement of the normal faB(@§.

Next, consider any fac& of S(I). ThenF is also a face oB3(/) ¢ S(I) and hence
the closure of its normal cone Bt7) is a union of closures of normal cones?ﬁ(ﬂ. But
D¢ contains all unit vectors which implies that each normal corpfs contained in the
interior of some orthant. Thus, the closure of the normal coneé atS (/) is the union of
the closures of those normal conezﬁif contained in the normal cone éfat B(1) which
lie in the nonnegative orthai?. O

Let us call the coarsest common refinement of the state polyhedra of all ideals
the Hilbert scheme thelilbert polytope As pointed out to us by D. Bayer, the Hilbert
zonotope may in general be finer than the Hilbert polytope; in particular, it may have more
vertices. However, the Hilbert zonotope allows efficient algorithmic treatment while the
Hilbert polytope might not.

4. Computing the state polyhedron and universal Grdbner basis

We now use the Hilbert zonotope to efficiently compute the set of initial staircases, the
state polyhedron and the universal Grobner basis of any ideal on the Hilbert scheme.

Let U? :={u+e;: ue Ve 0<i <d} with eg:=0 ande; the ith unit vector for
1<i<d. Then Uj contains, along with every-staircase\, all vectorsu + ¢; with u
any vector inx ande; any unit vector, hence also ngir). On the other hand/,f C Vz‘fl
and hence, for fixed, obeys the same upper boutdn (logn)?¢—1) on its cardinality as
doesVy .

We assume thak € Hilbff is presented by its Grobner basig := {x" — [x"]y: u €
min(1)} under some monomial order. Such a presentation, say with respect to the degree
reverse lexicographic order, is known to be efficiently computable from any generating
set—see discussion at the end of this section. Given such an ideal we will need the
representativgx”], for everyu in the setU,i’. We include the short proof of the following
adaptation of [5, Propoistion 3.1].
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Proposition 4.1. Fix anyd. Then, given any idedl = ideakG,) € HiIbZ, the representa-
tives[x“], =Y, c; av.u - x* Of all u € UZ can be computed using (n3(logn)?~1) arith-
metic operations.

Proof. Compute[x“], for the elements: U,i’ in the order< as follows. Ifu € A
then [x“]; = x*. If u € min(x) thenx* — [x*], is in the given reduced Grébner basis
G; from which [x*], can be recovered. Otherwise=u — ¢; € U,f’ \ A for somei.
By Proposition 2.1[x*], € lin{x’: r € T} with T :={r € A: t < s}. Now s < u and
t+e <s+e =uforallreT, hencdx*l, =Y, rarsx" and[x' ™4, =3 o ay ryex"
forall t € T are already available. Thus

[xu];\ = [xHei];\ = Zaﬁs[xﬂrei]x = Za“ Zav!t+eixv

teT teT VEA

v
= E < Z at,sav,tJre;)x

ver “teT

is now obtained using@ (n?) arithmetic operations. Sind&/?| = O (n(logn)?~1) we are
done. O

We are finally in position to provide the efficient procedure for computing the set of
initial staircases, the state polyhedron and the universal Grobner basis of any ideal on the
Hilbert scheme. Theorem 3.5 enables us to bypass the difficulty caused by the exponential
size of I'(1).

Theorem 4.2. For every fixed! there is a polynomial time algorithm that, given amjong
d-variate ideall € Hilbﬁf, computes its sett (1) of initial staircases, its state polyhedron
S(I), and its universal Grobner basig() using O (n%?*1(logn)@-D@-D) arithmetic
operations.

Proof. First enumerate, as in Proposition 3.2 and hence within the claimed complexity
bound, theo (n2@=D (logn)2@—D?) vertices ofH¢, each vertex along with a vectow (i)
uniguely minimized ovelHZ at 1. We claim that any (coordinatewise) positivgh) on
the list is uniquely minimized ove8(7) at ) for some initial staircasg € A(I) and,
conversely, for everyr € A(I) there is some (possibly many) positiugh) on the list
uniquely minimized ove3(7) at ) _ . Consider first any positive)(i) on the list. Since
Hf’, refinesBB(I) by Theorem 3.5, the vectar(k) and hence a positive generic perturbation
of it lie in the normal cone of some vertex Bf7). By Theorem 2.4, this vertex i$_ u
for some initial staircas@ € A(7). Conversely, consider any initial staircgges A([1).
Then, by Theorem 2.4" 1 is a vertex ofS(/) hence its normal cone is contained in the
interior of the nonnegative orthant. Sin%e{ refinesS(I) by Theorem 3.5, this normal
cone contains the normal cone of some (possibly many) vart#ix¢. The vectorw(h)
of that vertexi on the list must then be positive.

We proceed to show that for each positivé:) on the list we can efficiently compute the
minimizing vertex) _ u of B(I), the initial staircase:, and the reduced Grobner baélg.
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First, compute, as in Proposition 4.1, using the given presentatieideal G, ) of I
by some reduced Grébner basis, the representatiie =, _, a,. - xV of every vector
ue U,f’.

Now pick any vertex: of H¢ with w := w(h) positive. Use the following greedy
algorithm to find a basic sgt = {u1,...,u,} € I'(I): fori =1,...,n pick u; to be
an element inV,f’ - U,i’ of minimal valuew - u; with the property tha{[x*/],: j < i}
is linearly independent. Then for any other basiciset I" (1), writing v = {v1, ..., v}
with w - vy <--- < w - v,, we havew - uy < w - v, for all k hencew - Y u<w-> v.
This shows tha} ~ 1 minimizesw overB(I) hence, as shown in the first paragraph of this
proof, is the unique minimizing vertex of the positivégs) = w overB(I), andu € A(I)
is the corresponding initial staircase.

The determination ofx by the greedy algorithm can be efficiently implemented by
performing Gaussian elimination on the fly as follows. Totally ofdgéicompatibly withw
so that ifu precedes thenw - u < w - v and leth = {i1, ..., A,} be an arbitrary labeling
of A. Thus, the coefficients, , for all u € U,f andv € A now form ann x |U,§’| matrix A
over F. For eachu € U¢ let A* € F" denote the column of that matrix corresponding
to u, with A} := a;, ,. Now, in the greedy algorithm, far=1, ..., n, pick u; to be the
first element inV¢ c U¢ whose columm* contains a nonzero coordinatg” for some
k > i. Apply suitable row operations td so as to transfornA*i to the unit vectofe;
while maintainingA*/ =e; forall j <i. This consume® (n - |U,f|) arithmetic operations
per u;, totaling toO (n? - [UZ|) operations.

Moreover, the updated matrix at the end of this iterated process is the matrix of
coordinates in the new basis for eachu € U,;’, the representativer“],, is simply read
off from the corresponding column &s"], = > ; A¥x*i. Now, the set mifyi) consists
precisely of those € U¢ \ u with the property that for each= 1, ..., d eitheru; = 0 or
u —e; € u, hence can be quickly filtered out b‘[‘l’ So, within the same complexity bound
of 0(n? - |U¢|) operations we obtain the reduced Grobner basjs= {x" — [x“],: u €
min(it)} corresponding tq.

Summarizing, for each positive (k) on the list of vertices: of Hﬁ, we can find the
initial staircaseu € A(1) for which }_ u is the unique minimizer ofv(h) overB(I) and
the corresponding reduced Grobner basjs using on?. IU,?I) operations. Therefore,
the entire setA(Z) of initial staircases, the state polyhedrSii/) = con{d u: p €
A(D)} + R4, and the universal Grobner bagi§/) = UueA(,) G, of the given ideall
can be produced using

0(nz(d_l)(logn)z(d_l)2 n?. n(logn)d_l)
arithmetic operations as claimedt

Example 4.3. We compute the universal Grobner basis of the idealidealG,) € HiIb%
ford = 2,n = 3 overF = R, presented b, = {x3 — 3x2+3x1 — 1, x2— x1+ 1} which is
its reduced Grdbner basis under the lexicographic orderwyith x1, with A the staircase
A = {00, 10, 20}. First, we obtain the set ab € Ri via the Hilbert zonotopéi% as in
Example 3.3, which idV, := {31, 32,23, 13}. Next, we compute the 8 10 matrix A of
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coefficients of the representatives']; = a1, - 1+ az, - x1 + az, - x2 for all u € UZ,
whose rows and columns are indexedignd U§ respectively, and obtain

00 10 20 30 01 11 21 02 12 O3

oo/1 o 0 1 -1 0 1 1 1 O
A=10(0 1 0 -3 1 -1 -3 -2 -2 O0].

200 0 1 3 O 1 2 1 1 0

Now consider some vector iW.y, say w := 32. ReorderU§ compatibly withw and
suitably permute the columns of. Apply the greedy algorithm and find the new
initial staircaseu = {00, 01, 02}. Next apply suitable row operations t to make the
transformation to the new basis and obtain the following updated matrix, with rows and
columns suitably re-labeled,

00 01 10 02 11 03 20 12 21 30
oo/1 0 1 0 O O O O O 11
A=01{0 1 1 0 1 O 2 0 1 3.
o2\ 0 0 O 1 1 0 1 1 2 3

Now, we have miGx) = {10, 03} and so the new reduced Grobner basis is read off from
the third and sixth columns of the new matrix toGg = {x1 — x> — 1, xg}.

Repeating this for each of the other three vector#@in we keep getting either or 1.
We conclude that hera (1) = {A, u} consists of two staircases only, the state polyhedron
is

S() = conv[ZA, Z“} +R2 =[30,03] + R?,
and the universal Grébner basis is

U(I):GAUGﬂz{xf—3x%+3x1—l, x2—x1+1, x1—x2—1, x%}

It is known (cf. [5] and references therein) that the reduced Grébner basis under the
degree reverse lexicographic order of any ideat ideal F) € Hilo? presented by any
set of generators can be computed in ti@l(aDdZ) whereD is the maximal degree of any
generatorf € F. Thus, Theorem 4.2 also implies, for any fixédan efficient algorithm for
computing the state polyhedron and the universal Grébner basis of any ideal of the Hilbert
scheme Hilﬁ presented by any set of generators using a number of arithmetic operations
polynomial inn andD.

We conclude by pointing out that Theorems 3.5 and 4.2 yield the practical outcome that,
for eachd andn, a list W¢ of positivew(h) of verticesh of H¢ can be computed once
and for all, providing auniversal set of monomial ordefsr the Hilbert scheme Hiththat
allows the efficient computation of the universal Grobner b&gi® of any givenn-long
d-variate ideall .
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5. Examples: point configurationsand lattice ideals

We now interpret some of the notions and results discussed above for several special
classes of ideals of the Hilbert scheme HilbVe start with the simple class of monomial
ideals.

5.1. Monomial ideals

Recall that the monomial ideals in Hiitare in bijection with the:-staircases itlN“ via
I, = ideallx": u € min()}. Consider any such ided]. ThenI"(I;) = {A} is a singleton:
indeed, ifu is any othem-subset ofN? andu € i \ A thenx” e lin{x": v € u} N I, hence
w is not basic. For any monomial orderwe have in (1)) = I, henceA(l,) = {A} as well.
Thus,B(1) = {>_ A} is a single point and the state polyhedrorsid,) = {>_A} + Ri.
For everyu € N \ x» we havex" € I, hence[x“], = 0. Thus, the universal Grobner basis
of I equals the unique reduced Grobner basisand are both given b¥/ (1)) = G, =
{x": u e min()}.

5.2. Point configurations

The vanishing idealc := {f € F[x]: f(c1) =--- = f(c,) = 0} of a configuration
C ={c1,...,c,) of n distinct points in affine spac&? is a radical ideal of length
dim(F[x]/1¢c) < n. Assume throughout this example thats infinite, which implies that
the length ofi¢ is exactlyn and hencdc € Hilb?. Fori = {1, ..., A,} € N¥ let

.)‘l .)‘2 .)‘n
C% C% e C%
1 2 n d
C‘ C‘ e C‘
2 € 2 Y ik
ct = , wherec;” = | |ci§€ )
PR P k=t
Cnl an . Cnn

Thenx is basic forlc if and only if C* is nonsingular: indeed, the vectof (c1), ...,
f(cn)) € F* of evaluations of a polynomiaf = Y"/_; a;x* € lin{x*1,...,x*} at the
points of C is provided byC* - A and is the zero vector i if and only if f
lies in I; thus, linfx*1,...,x*} N Ic = {0} if and only if C* is nonsingular. Thus,
F'(Ic)={)C Vnd: dei(C") # 0}; the basis polytope i8(Ic) = conu>_i: A € I'(I¢)};

the state polyhedron iS(I¢c) = B(I¢c) + R<; and the set of initial staircases i8(/¢c) =
{re I'Uc): Y i vertex of S(I¢)}. For every sufficiently generic configuration, say one
satisfying detC*) # 0 for all » C V,;’, the state polyhedro§(I¢) and the set of initial
staircasesA(Ic) coincide, respectively, with theorner cutpolyhedronP? and the set

(Rfj)cut of n-elementorner cutsin N¢ introduced and studied in [10]. ¥ is a monomial

order andh € A(I¢) is the initial staircase with in(/c) = I, then for everyu € N¢ we
have[x“]; = x* — det(({x} U C){YV)y . det1(C*). So the reduced Grobner basislef
under< is

Gy, = {def{(tx} U C) ™M) . det}(C*): u € min(h))
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and the universal Grobner bagi§lc) = U, c (s G is efficiently computable by our
methods. This extends the results of [10] where an efficient constructidf(fef) for
generic configurations only was provided, based on the separable-partitions methods
of [2,7].

5.3. Lattice ideals

The binomial ideal of an integer lattidec Z< is I}, := ideal{x”+ —xV :vel}where
vt, v~ e N denote the nonnegative and nonpositive parts efN? with v = vt — v~
AssumelL is full-dimensional with determinant ddt) = n implying that/; has length:
hencel; € HiIbZ. An n-subset, = {1, ..., A,} is basic for/, if and only if it is a set of
distinct representatives of the congruence classé’ ahodulo L, that is, if and only if
for all i # j we haver; — X ; ¢ L: this follows from the fact thai — v € L if and only
if x4 —xV eI (cf. [11]). Thus,I"(I1) = {» C VZ: i # j impliesx; — A; ¢ L}; the basis
polytope isB(I1) = conY_A: A € I'(I1)}; the state polyhedroniS(I;) = B(I1) + R4 ;
and the set of initial staircases is(I) = {A € I'(IL): >_x vertex of S(Ip)}. If < is a
monomial order and. € A(Iy) is the initial staircase with in(/;) = I, then for every
u € N we have[x*]; = x"* with u, the unique representative i with u — u; € L.
So the reduced Grdbner basis bf under< is G, = {x* — x**: u € min(A)} and the
universal Grobner basig(1.) = U, c.(;,) G» is efficiently computable by our methods.
Here the universal Grébner basis consists of binomials only, and the set of integer vectors

={u —v: x* —x¥ eU(I)} which can be read off at once frobi(/;) is auniversal
test sefor the lattice minimization problem that, given any N and anyw € R%, asks
for anx* e N? satisfyingx — x* € L and minimizing the value - x.

6. Onthecoordinatization of the Hilbert scheme

We conclude with a brief discussion of the embedding of the Hilbert schemé Hilb
into the Grassmanian ofi-dimensional subspaces of a vector space of dimension
O (n(logn)?=1).

d . . .

Recall V¢ = (), IS the union of-staircases antfd = {v +¢;: v € V¢ and 0<
i <d} with eg = 0 ande; theith unit vector inR? for 1 < i < d. Throughout this section,
assume that/¢ is totally ordered. LeS :=F[x, ..., x4], let Sya =lin{x": u € vdycs
be theF-linear span of the monomials’ with u € U¢, and for each ideal e Hilb? let

Proposition 6.1. The dimension of the vector subspa@g of any ideall € Hilbif is
=|U%| —n.

Proof. Consider the mag: Sy« — (S/I) such thatf = 3, .jaaux" = f + 1. Then
ker(¢p) = {f € SUd fell= IUd Hence the map) : (SUd/IUd) — (S/I) such that
f+Iys— [+ Iis injective. Consider any elemept+ 1 "of S/I and let[g], € Sya

be the 'normal form of with respect to the reduced Grdbner basmlaforrespondmg
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to some initial staircase of I. Thenvy ([g], + IU:Z) =gl + I =g+ I hencey is
surjective. Therefore§/I andSng/Ing are isomorphid-spaces hence d'nﬂUg/IUg) =
dim(s/1) =n and din/y;4) = U —n=p. O

Proposition 6.2. Any ideall HiIbZ is uniquely determined by its vector subspag’e.

Proof. By definition of Uj, every reduced Grobner basis bfies in Iyd, implying that

the elements oIUg generatd as an ideal. Thus, forank J e Hilbﬁf, I = J ifand only if
IU,‘{ = JU;li. O

Proposition 6.1 shows thdbd is a p-dimensional subspace cSTUd, i.e., a point on

the Grassmanian GfUd p) of p-dimensional subspaces of thé? |-dimensional vector
Spacesy;a. Th|S|mpI|esthade and therefore, by Proposition 6.2, alsanherits standard
Pliicker coordinates from the Grassmanian, leading to an embedding of the Hilbert scheme
in projective space, as follows. Lep‘,)l: be any ordered vector space basis 1‘95

with f; = Zueud m; ,x*, and for ap-subsetv C N¢ let M, := (m;. w)1<i<puev bE the
corresponding x p submatrlx of coefficients. The Hilbert scheme is then embedded into
projective space by

ud d
() :Hib? = PG s (1) ::{det(Mv): ve (U”)};
p

it is well known that the Plucker poirf ) is independent of the choice of basi$) of Iya.
We proceed with the dual embedding into the Grassmanlaﬁﬁrn) of n-dimension-
al subspaces of;qs. The spaceSyq is endowed with the standard monomial basis

{x“:ue Ud} and corresponding standard inner produ€t x”) = 8, 4. LetI C SUd be
the orthogonal complement @f;s in Sy, which is |somorph|c 1&Sya/Iya. Let (hi)i_
be any ordered vector space basis Egg with ha; = Zuew aj yx*, and for ann- subset

AC Uj let A := (ai,u)1<i<n, ue). D€ the corresponding x n submatrix of coefficients.
The dual embedding is then given by

. d
G HiIbE - B 1 ()= {de‘“‘“: he (l;n>}

Next we explain how to actually compute the (dual) Pliicker coordinates; note, though,
that the number of coordinates .'fz("('oglf)d_l) hence exponential, so this computation
cannot be carried out in polynomial time even far= 2. Let I = idealG,) € Hilbif
be presented by its Grobner basis corresponding to some initial stalreages, ... ,}
under some monomial order. Compute as in Proposition 4.1 the representdtivé, =
Yoqiai «x*i of everyu e Ud, andfori=1,...,nleth; := ZueUd a; ux". Then(h)?_;
is an ordered basis d';ﬂ, with U¢ assumed to be totally ordered, we get the |U¢|
matrix A = (a; ) of coefficients of this basis; the Plicker coordinates are then read off
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from the minors ofA as(I)* = {det(A,): u € (’flff)}. In particular, the Pliicker coordinate
(I)t :=det(4,) is nonzero if and only ifx is basic for/.

We end this paper by observing that, for the following classes of ideals, the Pliicker
coordinates have a natural simple form.

6.1. Monomial ideals

Let I, = ideakx": v € min(1)} be the monomial ideal in HiLbcorresponding to an-
staircaser. Then (see Section 5)is the only basic set of, . Therefore the only nonzero

d
Plicker coordinate isl)AL and so(I)" = ¢, is the unit vector in projective spa@éwf l).
6.2. Point configurations

Let I¢ be the vanishing ideal of a configuratidh: {1, ..., cn) € F? with F infinite.
Fori=1,....nleth;:=} ysc/x" with cf =TI 1¢;y. For any polyn0m|alf =
> _ueud Mux" € Sya, its inner product withiz; satlsfles (fohi) =2 yeya muci = f(ci),
hence is zero if and only if vanishes or;. Thus, f is orthogonal to |Ir{lh1, o hy ) if
and only if it vanishes of’, or equivalently,f € Ic. This shows that;)?_, is an ordered
basis of(Ic)l;.

Let A = (a;,) be then x |U,§’| matrix whose rows are indexed by the poiats. . ., ¢, in
C and columns by € U,;’, with a; , := ¢}'. ThenA is the matrix of coefficients of the basis
(hi)!_, and hence the Plicker coordinatdg)* of I can be read off from the minors
of A.
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