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Abstract

In this paper, we present an algorithm for construction of minimal involutive polynomial bases which are GroÈbner bases of

the special form. The most general involutive algorithms are based on the concept of involutive monomial division which leads

to partition of variables into multiplicative and non-multiplicative. This partition gives thereby the self-consistent

computational procedure for constructing an involutive basis by performing non-multiplicative prolongations and

multiplicative reductions. Every specific involutive division generates a particular form of involutive computational

procedure. In addition to three involutive divisions used by Thomas, Janet and Pommaret for analysis of partial differential

equations we define two new ones. These two divisions, as well as Thomas division, do not depend on the order of variables.

We prove noetherity, continuity and constructivity of the new divisions that provides correctness and termination of involutive

algorithms for any finite set of input polynomials and any admissible monomial ordering. We show that, given an admissible

monomial ordering, a monic minimal involutive basis is uniquely defined and thereby can be considered as canonical much

like the reduced GroÈbner basis. # 1998 IMACS/Elsevier Science B.V.

Keywords: Computer algebra; Polynomial ideals; GroÈbner bases; Involutive monomial division; Minimal involutive bases;

Involutive algorithm

1. Introduction

Computational aspects of constructing GroÈbner bases invented by Buchberger [1] are now under
intensive investigation due to the great theoretical and practical importance of these bases in
computational commutative algebra and algebraic geometry [2±4]. GroÈbner bases are also becoming of
greater importance in non-commutative [5±7] and differential algebra [8,9].

Since its invention about thirty years ago, feasibility of the Buchberger algorithm has been notably
increased. First of all, it was resulted from discovering criteria for avoiding unnecessary reductions
[10±12] which allow a partial extension to non-commutative case [7]. Next, the key role of the
reduction and, especially, selection strategies was experimentally observed, and heuristically good
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strategies were found [13]. For construction of a lexicographical GroÈbner basis, which is the most
useful for solving polynomial equations, an efficient computation scheme was developed in [14] based
on converting a basis from one ordering into another.

On the other hand, Zharkov and Blinkov [15] were pioneered in revealing another computational
scheme for GroÈbner bases construction in commutative algebra. They used the partition of variables
into multiplicative and non-multiplicative invented in Pommaret [16] to bring partial differential
equations into so-called involutive form [17] which has all the integrability conditions satisfied.
Zharkov and Blinkov showed that sequential multiplication of the polynomials in the system by non-
multiplicative variables, and reduction of these prolonged polynomials modulo others, by means of
their multiplicative power products only, ends up, under certain conditions, with a GroÈbner basis.
Though the latter is generally not the reduced basis, it reveals some attractive features [18].

Already first computer experiments carried out in [15] showed rather high efficiency of the new
computational scheme. However, that algorithm terminates, generally, only for zero-dimensional ideals
and for degree compatible term orderings [19]. The algebraic origin of such an algorithmic behavior
was analyzed in [20] where it was also shown that Pommaret involutive bases are just GroÈbner ones of
ideals in the commutative rings with respect to non-commutative gradings. Interconnection of
Pommaret bases and GroÈbner bases was recently investigated also in [21].

In our previous paper [22], general algorithmic foundations of involutive approach to commutative
algebra were considered, and a number of new concepts was introduced allowing one to study the
involutive algorithmic procedure in its general form. The central concept of our analysis is involutive
monomial division. Every specific involutive division generates some particular computation procedure
for constructing the corresponding involutive basis. Every involutive basis, if it is finite, was proved to
be a GroÈbner basis, generally, redundant. We formulated the axiomatic properties of an involutive
division which provide a proper partition of variables into multiplicative and non-multiplicative, and,
hence, to construct different divisions. It was also proved that those partitions used by Janet [17],
Thomas [23] and Pommaret [16] are generated by particular involutive divisions.

Important properties of noetherity, continuity and constructivity for an involutive division were also
characterized. Noetherity provides for the existence of a finite involutive monomial basis for any
monomial ideal much like to the conventional monomial bases. Continuity assures involutivity of every
locally involutive set. Constructivity is a strengthening of continuity. It allows one to compute an
involutive monomial basis from the initial one by means of its enlargement with single non-
multiplicative prolongations only, that is, to avoid enlargement with multiplicative prolongations. We
showed that Janet and Thomas divisions are noetherian, continuous and constructive whereas Pommaret
division, being continuous and constructive, is not noetherian. Just by this reason a positive-
dimensional polynomial ideal, generally, does not have a finite Pommaret basis. We presented in [22] a
general form of the involutive algorithm. Its correctness follows from continuity of a division while
termination holds for any polynomial ideal and for any admissible monomial ordering only for
noetherian divisions. The algorithm involves the Buchberger's chain criterion to avoid unnecessary
reductions.

In the present paper, in addition to Janet, Thomas and Pommaret divisions analyzed in [22], we give
examples of two more involutive divisions which are proved to be continuous, constructive and
noetherian. We present also the special form of an involutive algorithm which, given a constructive
noetherian division, provides computation of a minimal involutive basis. We show that the monic form
of the latter is uniquely defined for any fixed admissible monomial ordering.

544 V.P. Gerdt, Y.A. Blinkov / Mathematics and Computers in Simulation 45 (1998) 543±560



The rest of the paper is organized as follows. In Section 2, we give a brief review of involutive
concepts and methods which are used in the following sections. In Section 3, we consider some
examples of involutive monomial divisions including those introduced by Thomas, Janet and Pommaret
along with two new ones. In Section 4, we study the minimal involutive monomial bases. The
algorithm for construction of minimal polynomial bases is described in Section 5, and some concluding
remarks are given in Section 6.

2. Background of involutive approach

In this section, we briefly describe the fundamentals of the general involutive approach proposed in
[22] which are used in Sections 3±5.

Let N be a set of non-negative integers, and M � xd1

1 � � � xdn
n jdi 2 N

� 	
be a set of monomials in the

polynomial ring R � K x1; . . . ; xn� � over zero characteristic field K.
By deg(u) and degi(u) we denote the total degree of u 2M and the degree of variable xi in u,

respectively. An admissible monomial ordering is denoted by �, and throughout this paper we shall
assume that

x1 � x2 � � � � � xn (1)

The leading monomial and the leading coefficient of polynomial f 2 R with respect to ordering �
are denoted by lm( f ) and lc( f ), respectively. If F � R is a polynomial set, then by lm(F) we denote the
leading monomial set for F, and Id(F) will denote the ideal in R generated by F. For the least common
multiple and for the greatest common divisor of two monomials u; v 2M we shall use the conventional
notations lcm(u,v) and gcd(u,v), respectively. If monomial u divides monomial v we shall write ujv.

Definition 2.1 An involutive division L on M is given, if for any finite monomial set U �M and for
any u 2 U there is given a submonoid L�u;U� of M satisfying the conditions:

(a) If w 2 L(u,U) and vjw, then v2L(u,U)
(b) If u,v 2 U and uL(u,U) \ vL(v,U) 6� ;, then u2vL(v,U) or v 2 uL(u,U)
(c) If v2U and v2 uL(u,U), then L(v,U) �L(u,U)
(d) If V � U, then L(u,U) � L(u,V) for all u 2 V

Elements of L(u,U) are called multiplicative for u. If w 2 uL(u,U) we shall write ujLw and call u

(Lÿ)involutive divisor of w. The monomial w in its turn is called (Lÿ)involutive multiple of u. In such
an event monomial v � w=u is multiplicative for u and the equality w � uv will be written as w� u�v.
If u is the conventional divisor of w but not involutive one we shall write, as usual, w� u�v. Then v is
said to be non-multiplicative for u.

Definition 2.2 We shall say that involutive division L is globally defined if for any u 2M its
multiplicative monomials are defined irrespective of the monomial set U 3 u, that is, if L(u,U) � L(u).

Definition 2.1 for every u2 U � M provides the partition

fx1; . . . ; xng � ML�u;U� [ NML�u;U�; ML�u;U� \ NML�u;U� � ; (2)
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of the set of variables into two subsets: multiplicative ML(u,U)�L(u,U) and non-multiplicative
NML�u;U�=2L�u;U�. Conversely, if for any finite set U 2M and any u2U the partition (2) is given such
that the corresponding submonoid L(u,U) of monomials in variables in ML�u;U� satisfies the conditions
(b)±(d), then the partition generates the involutive division.

The conventional monomial division, obviously, satisfies condition (b) only in the univariate case.
In what follows monomial sets are assumed to be finite, unless involutive division L is globally

defined. In this case, since L is defined irrespective to the monomial set, it admits extension to infinite
sets.

Definition 2.3 A monomial set U 2M is involutively autoreduced or L-autoreduced if the condition
uL(u,U) \ vL(v,U) � ; holds for all distinct u,v 2 U.

Definition 2.4 Given an involutive division L, a monomial set U is involutive1 with respect to L or
L-involutive if

[u2UuM � [u2UuL�u;U� (3)

Definition 2.5 An L-involute monomial set ~U is called L-completion of a set U � ~U if

[u2UuM � [u2~UuL�u;U�
If there exists a finite L-completion ~U of a finite set U, then the latter is finitely generated with

respect to L. The involutive division L is noetherian if every finite set U is finitely generated.

Proposition 2.6 [22] If involutive division L is noetherian, then every monomial ideal has a finite

involutive basis ~U.

Proposition 2.7 If U is a finitely generated monomial set, then so is set obtained by autoreduction of U
in the sense of the conventional monomial division.

Proof It follows immediately from observation that any involutive completion of U is also an involutive
completion of its autoreduced subset.

Definition 2.8 A monomial set U is called locally involutive with respect to the involutive division L if

�8u 2 U��8xi 2 NML�u;U���9v 2 U��vjL�u � xi��:

Definition 2.9 A division L is called continuous if for any finite set U 2M and for any finite sequence
fuig�1�i�k� of element in U such that

�8i < k��9xj 2 NML�ui;U���ui�1jLui � xj� (4)

the inequality ui 6� uj for i 6� j holds.

1Janet [17] and Thomas [23] call such sets complete.
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Theorem 2.10 [22] If involutive division L is continuous then local involutivity of any monomial set U
implies its involutivity.

Definition 2.11 A continuous involutive division L is constructive if for any U �M; u 2 U;
xi 2 NML�u;U� such that u � xi has no involutive divisors in U and

�8v 2 U� 8xj 2 NML�v;U�
ÿ �

v � xjju � xi; v � xj 6� u � xi

ÿ �
v � xj 2 [u2UuL�u;U�� �

the following condition holds:

�8w 2 [u2UuL�u;U��u � xi=2wL�w;U [ fwg�� (5)

Given a finite set of polynomials F � R and an admissible ordering �, multiplicative and non-
multiplicative variables for f2F are defined in terms of lm(f) and the leading monomial set lm(F).

The concepts of involutive polynomial reduction and involutive normal form are introduced similar
to their conventional analogues [11] with the use of involutive division instead of the conventional one.

Definition 2.12 Let L be an involutive division L on M, and let F be a finite set of polynomials. Then
we shall say:

(i) p is L-reducible modulo f2F if p has a term t � au 2 T�a 6� 0� such that u � lm�f � � v;
v 2 L�lm�f �; lm�F��. It yields the L-reduction p! g � pÿ �a=lc�f ��fv.
(ii) p is L-reducible modulo F if there exists f 2 F such that p is L-reducible modulo f.
(iii) p is in L-normal form modulo F if p is not L-reducible modulo F.

We denote the L-normal form of p modulo F by NFL�p;F�. In contrast, the conventional normal form
will be denoted by NF(p,F). If monomial u is multiplicative to lm�f ��f 2 F�, and h�fu we shall write
h�f�u.

Definition 2.13 A finite polynomial set F is L-autoreduced if the leading monomial set lm(F) of F is
L-autoreduced and every f2F does not contain involutively multiple of any element in lm(F).

Theorem 2.14 [22] If set F � R is L-autoreduced, then NFL�p;F� � 0 iff p 2 R is presented in the
form p �Pij ci fi � uij, where fi 2 F; ci 2 K; and uij 2 L�lm�F�; lm�F�� are such that uij 6� uik

for i 6� k.

Corollary 2.15 [22] If polynomial set F is L-autoreduced, then NFL�p;F� is uniquely defined for any

p 2 R, and NFL�p1 � p2;F� � NFL�p1;F� � NFL�p2;F�

Definition 2.16 An L-autoreduced set F is called �Lÿ� involutive if

�8f 2 F� �8u 2M� �NFL�fu;F� � 0�
Given v 2M and an L-autoreduced set F, if there exist f2 F such that lm( f ) � v and

�8f 2 F� �8u 2M� �lm�f � � u � v� NFL�fu;F� � 0� � (6)
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then F is called partially involutive up to the monomial v with respect to the admissible ordering �. F is
still said to be partially involutive up to v if v �lm(f) for all f 2 F.

Theorem 2.17 [22] An L-autoreduced set F � R is involutive with respect to a continuous involutive

division L iff the following (local) involutivity conditions hold

�8f 2 F� �8xi 2 NML�lm�f �; lm�F��� �NFL�f � xi;F� � 0�
Correspondingly, partial involutivity (6) holds iff

�8f 2 F� �8xi 2 NML�lm�f �; lm�F����lm�f � � xi � v��NFL�f � xi;F� � 0�

Theorem 2.18 [22] If F � R is an L-involutive basis, then it is also a GroÈbner basis, and the equality of
the conventional and L-normal forms NF�p;F� � NFL�p;F� holds for any polynomial p 2 R. If set F is

partially involutive up to the monomial v, then the equality of the normal forms NF�p;F� � NFL�p;F�
holds for any p 2 R such that lm(p) � v.

Theorem 2.19 [22] Let F be a finite L-autoreduced polynomal set, and let g�x be a non-multiplicative
prolongation of g 2 F. Then NFL�g � x;F� � 0 if the following holds

�8h 2 F� �8u 2M� �lm�h� � u � lm�g � x�� �NFL�h � u;F� � 0�

�9f ; f0; g0 2 F�
lm�f0�jlm�f �; lm�g0�jlm�g�
lm�f �jLlm�g � x�; lcm�f0; g0� � lm�g � x�
NFL�f0 � lt�f �

lt�f0� ;F� � NFL�g0 � lt�g�
lt�g0� ;F� � 0

264
375

3. Examples of involutive divisions

First of all, we give three examples of involutive division used in [16,17,23] for analysis of algebraic
differential equations. For the proof of validity of properties (b)±(d) in Definition 2.1 for these divisions
we refer to [22].

Example 3.1 Thomas division [23]. Given a finite set U �M, the variable xi is considered as
multiplicative for u 2U if degi�u� � max degi�v�jv 2 Uf g, and non-multiplicative, otherwise.

Example 3.2 Janet division [17]. Let set U �M be finite. For each 1�i� n divide U into groups
labeled by non-negative integers d1; . . . ; di:

�d1; . . . ; di� � fu 2 Ujdj � degj�u�; 1 � j � ig
A variable xi is multiplicative for u2U if i�1 and deg1�u� � maxfdeg1�v�jv 2 Ug, or if
i > 1; u 2 �d1; . . . ; diÿ1� and degi�u� � maxfdegi�v�jv 2 �d1; . . . ; diÿ1�g.

Example 3.3 Pommaret division [16]. For a monomial u � xd1

1 � � � xdk

k with dk > 0 the variables
xj; j � k are considered as multiplicative and the other variables as non-multiplicative. For u�1 all the
variables are multiplicative.
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Now we present two more examples of divisions which, as does Thomas division, do not rest on the
variable ordering.

Example 3.4 Division I. Let U be a finite monomial set. The variable xi is non-multiplicative for u2 U
if there is v2U such that

xd1

i1
� � � xdm

im
u � lcm�u; v�; 1 � m � �n=2�; dj > 0�1 � j � m�;

and xi 2 fxi1 ; . . . ; ximg
Example 3.5 Division II. For monomial u � xd1

1 � � � xdn

k the variable xi is multiplicative if di � dmax�u�
where dmax�u� � maxfd1; . . . ; dng.

To distinguish the above divisions, the related subscripts T; J;P; I; II will be used. We note that

� Thomas division, Divisions I and II do not depend on the ordering on the variables xi. Two other
divisions, as defined, are based on the ordering (1).
� Pommaret division and Division I are globally defined in accordance with Definition 2.1, and, hence,

admit extension to infinite monomial sets.

Proposition 3.6 Divisions I and II are involutive

Proof Division I. First of all, we prove that the condition (b) in Definition 2.1 is fulfilled. Let u 6� v be
elements in U such that ujIw and vjIw for some w 2M. If ujIv or vjIu, then we are done. Otherwise,
lcm(u,v)/u or lcm(u,v)/v contains non-multiplicative variable for u or v, respectively. Because
lcm�u; v�jw, it follows that w cannot be involutively multiple of both u and v.

Consider now u 2 U such that ujIv for some v 2U, and v 6�u. Suppose vjIw for some w 2M, and
assume for a contradiction that w is not involutively multiple of u. Then there are variables
xi1 ; . . . ; xim�1 � m � �n=2�� containing in w/v which are non-multiplicative for u and there is t2U such
that uxk1

i1
� � � xkm

im
� lcm�u; t�. Because v/u does not contain xi1 ; . . . ; xim it follows vxk1

i1
� � � xkm

im
� lcm�v; t�

that contradicts our assumption that w 2 vL�v;U� and proves the fulfilment of condition (c).
The condition (d) holds too, since an enlargement of the set U may, obviously, only produce extra

non-multiplicative variables for any u2U.
Division II. Let u with du � dmax�u� be an involutive divisor of some monomial w 2M. Then, by

definition, degi�u� � min�degi�w�; du� �1 � i � n�. Thus, given monomial w and number du such that
du � dw where dw � dmax�w� , the corresponding involutive divisor u of w is uniquely defined. If there
are two involutive divisors u,v of w with du < dv, then it follows that

degi�u� � degi�v� � degi�w� if degi�w� � du

du < degi�v� � min�degi�w�; dv� if degi�w� > du

Hence, u is involutive divisor of v and the condition (b) is fulfilled.
The condition (c) is an easy consequence of the relation degi�u� � min�degi�v�; du� and

degi�v� � min�degi�w�; dv�.
The condition (d) holds trivially, because the division as well as Pommaret one does not depend on

monomial set U at all. &

V.P. Gerdt, Y.A. Blinkov / Mathematics and Computers in Simulation 45 (1998) 543±560 549



Proposition 3.7 For any finite monomial set U and any monomial u 2 U, the inclusion
MT�u;U� � MI�u;U� and, respectively, NMI � NMT�u;U� holds.

Proof If xi 2 NMI�u;U�, then, obviously, degi�u� < hi � maxfdegi�u�ju 2 Ug, and, hence
xi 2 NMT�u;U�. &

Example 3.8 U � fx2; xy; zg �x � y � z�. Table 1

Proposition 3.9 Divisions given by Examples 3.1±3.5 are continuous and constructive. All these

divisions except that of Pommaret are also noetherian.

Proof The proof for Thomas, Janet and Pommaret divisions is given in [22]. Consider Divisions I and
II.

Continuity. Let u be a finite set, and fuig�1�i�M� be a sequence of elements in U satisfying the
conditions (4). In accordance with Definition 2.9, we shall show that there are no coinciding elements
in the sequence for each of the two divisions. There are the following two alternatives:

�i� ui � uiÿ1 � xj; �ii� ui 6� uiÿ1 � xj (7)

Extract from the sequence fuig the subsequence ftk � uikg�1�k�K�M� of those elements which occur
in the left-hand side of relation (ii) in (7).

Division I. Show that tkjIlcm�tkÿ1; tk� and tk 6� lcm�tkÿ1; tk�. We have tk � ~wk � uikÿ1 � xjk �
tkÿ1 � ~vkÿ1 where :~wkj~vkÿ1. Indeed, suppose ~wkj~vkÿ1. Apparently, this implies the relation tk � ul � zl

where ikÿ1 � l < ik, and the variable xjl 2 NMI�ul;U�, which figures in Definition 2.9 of the sequence
{ui} , satisfies xjl j~wk and :xjl jzl. It follows that lcm�tk; ul�1� � tkxji what, in accordance with definition
of the division in Example 3.4, contradicts multiplicativity of xjl for tk. Therefore, we obtain the relation

tk � vk � tk�1 � wk�1

gcd�vk;wk�1� � gcd�vk;wk� � 1

�
(8)

where wk�1 contains more then [n/2] variables with positive exponents, and, hence, vk contains only
non-multiplicative variables for tk.

We claim now that any vj occurring in (8) with j>k as well as vk contain only non-multiplicative
variables for tk. For j � k � 1, we multiply tkvk by vk�1

tkvkuk�1 � �tk�1 � vk�1�wk�1 � �tk�2 � wk�2�wk�1;
gcd�vk;wk�1� � gcd�vk�1;wk�1� � gcd�vk�1;wk�2� � 1:

�

Table 1

Monomial Thomas Janet Pommaret Division I Division II

MT NMT MJ NMJ MP NMP MI NMI MII NMII

x2 x y,z x,y,z ± x,y,z ± x y,z x y,z

xy y x,z y,z x y,z x y x,z x,y z

z z x,y y,z x z x,y y,z x z x,y
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It yields

tkv̂kvk�1 � �tk�2 � ŵk�2�wk�1;
gcd�v̂kvk�1; ŵk�2wk�1� � 1

�
(9)

Because wk�1 contains more than [n/2] variables, the number of variables occurring in the product
v̂kvk�1 is less or equal [n/2], and thus, variables which are multiplicative for tk are not contained in vk�1.

If we proceed, sequentially multiplying the upper equality in Eq. (9) by vk�j�j � 2; . . .�, rewriting the
right-hand side of every product in terms of tk�j�1 and cancelling the common factors, then we obtain
the equality

tkv̂k � � � v̂k�jÿ1vk�j � �tk�j�1 � ŵk�j�1�ŵk�1 � � � ŵk�jÿ1wk�j

gcd�v̂k � � � v̂k�jÿ1vk�j; ŵk�j�1ŵk�1 � � � ŵk�jÿ1wk�j� � 1

�
It proves the claim and implies ti 6� tj for i 6� j.

It remains to prove that elements of the sequence fuig�1�i�M� which occur in the left-hand side of
relation (i) in (7) are also distinct. Assume for a contradiction that there are two elements uj � uk with
j<k. In between these elements there is, obviously, an element from the left-hand side of relation (ii) in
(7). Let uim�j < im < k� be the nearest such element to uj. Considering the same non-multiplicative
prolongations of uk as those of uj in the initial sequence, one can construct a sequence such that the sub-
sequence of the left-hand sides of relation (ii) in (7) has two identical elements uik � uim with ik > im.

Division II. The above defined elements tk which occur in the left-hand side of the relation (ii) in
Eq. (7) are distinct because dmax�tk�1� < dmax�tk�. The other elements occurring in relation (i) in Eq. (7)
are also distinct since deg�uik�j� � deg�uik�jÿ1� � 1 � j � 1; . . . ; ik�1 ÿ ik ÿ 1� and

dmax�tk� � dmax�uik�1� � � � � � dmax�uik�1ÿ1�:
Constructivity. Division I. Let u � xi; u 2 U; xi 2 NMI�u;U� be a non-multiplicative prolongation

such that

u � xi � u1v� w; u1 2 U; v 2 I�u1;U�; w 2 I�u1v;U [ fu1vg�; w 6� 1:

Show that if xjjw, then xj 2 MI�u1;U�. Suppose xj 2 NMI�u1;U�. It means that there is v1 2 U
satisfying degj�u1� < degj�v1�. Because :xjjv, we have degj�u1v� < degj�v1�, and, hence, xj 2
NMI�u1v;U [ fu1vg�.

Division II. Since this division is globally defined, its constructivity is an immediate consequence of
the property (c) in Definition 2.1.

Noetherity. Division I. Its noetherity follows from Proposition 3.7 and noetherity of Thomas
division, since every Thomas completion of a set U, obviously, is also its completion with respect to
Division I.

Division II. Given a finite set U �M and u 2 U with du � dmax�u�, complete the set by the
monomial xdu

1 � � � xdu
n and all its divisors multiple of u. If we do such a completion for every u 2 U we

obtain, apparently, an involutive completion of U.&

4. Minimal involutive monomial bases

Let U be a finitely generated monomial set with respect to involutive division L. In this case, a finite
involutive completion ~U � U forms the involutive basis of the monomial ideal generated by U. A
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monomial ideal may not have the unique involutively autoreduced basis. For instance, from the
definition of Janet division given in Example 3.2 it is easy to see that any finite monomial set is Janet
autoreduced. Therefore, enlargement of a Janet basis by a prolongation of any its element and Janet
completion of the enlarged set leads to another Janet basis of the same monomial ideal. Similarly,
Thomas division and Division I do not provide uniqueness of involutively autoreduced bases whereas
Pommaret division and Division II do, as the following proposition shows.

Proposition 4.1 Let L be a globally defined involutive division. Then any monomial ideal has the

unique L-involutive basis.

Proof Assume that there are two distinct L-bases �U1 and �U2 of the monomial ideal Id(U) where U is the
finite monomial set generating the ideal and autoreduced in the sense of the conventional monomial
division. Both �U1 and �U2 are apparently involutive completions of U. It follows �U1n�U2 6� ; and
�U2n�U1 6� ;. Otherwise one sets �U1, �U2 would contain another, and, hence, could not be L-autoreduced.
Indeed, let �U2 � �U1. Then any element of u 2 �U1n�U2 is multiple of some element in U, and, in
accordance with Definition 2.5, u is involutively multiple of some element v 2 �U2.

We obtain that for any u 2 �U1n�U2 there is v 2 �U2n�U1 such that vjLu and for any v 2 �U2n�U1 there is
w 2 �U1n�U2 such that wjLv. Thus, by property (c) in Definition 2.1, given u 2 �U1n�U2 there exist
w 2 �U1n�U2 such that wjLu. Since ~U1 is L-autoreduced, it is possible only if u � w. But this implies
u � v. The obtained contradiction proves the proposition.

Definition 4.2 Let L be an involutive division, and Id(U) be a monomial ideal. Then its L-involutive
basis �U will be called minimal if for any other involutive basis �V of the same ideal the inclusion �U � �V holds.

Proposition 4.3 If U �M is a finitely generated set with respect to a constructive involutive division,

then monomial ideal Id(U) has the minimal involutive basis.

Proof The proof follows immediately from Proposition 2.7 and existence of the minimal involutive
completion for a finitely generated set [22].

If L is constructive, then to compute the minimal involutive basis for an ideal generated by a given
finite monomial set one can use the following algorithm which is a slightly modified version of
algorithm InvolutiveCompletion in paper [22].

Algorithm MinimalInvolutiveMonomialBasis:
Input: U, a finite monomial set
Output: �U, minimal involutive basis of Id(U)
begin 1

�U :� Autoreduce�U� 2
choose any admissible monomial ordering � 3
while exist u 2 �U and x 2 NML�u; �U� s.t. 4

u�x has no involutive divisors in �U do 5
choose such u, x with the lowest u � x w:r:t: � 6
�U :� �U [ fu � xg 7

end 8
end 9
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The proof of correctness and termination, for a finitely generated set, of this algorithm is the same as
that of algorithm InvolutiveCompletion [22] if Proposition 2.7 is taken into account. In effect, the
below algorithm constructs the minimal involutive completion of an autoreduced, in the sense of the
conventional monomial division, initial monomial set. This autoreduction is just done in line 2 of the
algorithm.

Example 4.4 (Continuation of Example 3.8). The minimal involutive bases of the ideal generated by
the set U � �x2; xy; z� �x � y � z� are given by

�UT � fx2; xy; z; xz; yz; x2y; xyz; x2z; x2yzg
�UJ � fx2; xy; z; xzg
�UP � fx2; xy; z; xz; yz; y2z; . . . ; ykz; . . .g
�UI � fx2; xy; z; xz; x2y; xyz; x2z; x2yzg
�UII � fx2; xy; z; xz; yz; xyzg

where k 2 N�k > 2�, and subscripts in the left-hand sides stand for different involutive divisions
considered in Section 3. This example explicitly shows that Pommaret division is not noetherian.
However, for another ordering z � x � y the set U is finitely generated, and then �UP � U:

One should note that selection of a L-irreducible non-multiplicative prolongation which is lowest
with respect to an admissible monomial ordering and which we call normal is of fundamental
importance for the above algorithm. We demonstrate this fact by the following example.

Example 4.5 Let U � fx2; xz; yg and L be Pommaret division with x � y � z. By the normal selection
strategy, the lowest irreducible non-multiplicative prolongation is y � x with respect to any admissible
monomial ordering. Enlargement of U by xy gives the Pommaret basis �U � fx2; xy; xz; yg of ideal Id(U)
which is obviously minimal. This shows that U is a finitely generated set. However, if we would take
first the prolongation xz�y which is involutively irreducible modulo U, but not lowest, then we might
obtain the infinite chain of irreducible prolongations:

xz! xyz! xy2z � � � ! xykz! � � �
Definition 4.6 Let L be a constructive involutive division, U be a finite monomial set and V �
Autoreduce(U). Then set U will be called (Lÿ) compact if U � V or U is obtained from V in the course
of the above algorithm. As an immediate consequence of this definition we have the following
corollary.

Corollary 4.7 If U �M is finitely generated set with respect to a constructive involutive division L,
then a compact involutive basis of ideal Id(U) is minimal.

5. Minimal involutive bases of polynomial ideals

In paper [22], we proposed the next algorithm InvolutiveBasis for computation of involutive bases of
polynomial ideals. In the algorithm the initial polynomial set F is subject, first of all, to the
conventional autoreduction in line 2. Next are two main steps which are sequentially made:
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(i) By the normal strategy, a non-multiplicative prolongation g�x of element g in the intermediate
basis G with the lowest lm(g�x) is selected in line 5. If there are several different non-multiplicative
prolongations with the same leading term, then any of them may be selected.
(ii) If h � NFL�g � x;G� 6� 0, then G is enlarged by h, and the involutive autoreduction of the
enlarged set is done in line 8.

In order to apply the criterion in line 7 for elimination of superfluous involutive reductions and also
to avoid repeated prolongations, the auxiliary set T of triples (g, u, P) is used. Here g 2G, and u is either
the lowest, with respect to the ordering �, leading monomial in lm(G) such that g was produced by
non-multiplicative prolongations of f2G with u�lm(f), or u�lm(g) if there is no such f in G. Those
variables in NML(g,G) have been chosen in line 5 collected in set P.

Algorithm Involutive Basis:

Input: F, a finite polynomial set
Output: G, an involutive basis of the ideal Id(F)

begin 1
G : Autoreduce (F); T:� ; 2
for each g 2 G do T :� T [ {(g, lm (g), ;)} 3
while exist (g, u, P) 2T and x 2 NML(lm(g), lm (G))\P do 4

choose such (g, u, P), x with the lowest lm(g)�x w.r.t. � 5
T:� T \{(g,u,P)} [{(g,u,P [{x})} 6
if Criterion(g�x,u,T) is false then h:� NFL(g�x,G) 7

if h 6� 0 then G:� AutoreduceL(G[{h}) 8
if lm(h) � lm(g�x) then T:�T [ {(h,u,;)} 9
else T :� T [ f�h; lm�h�; ;�g 10

Q :� T ; T :� ; 11
for each g 2G do 12

if exist (f, u, P)2 Q s.t. lm(f) � lm(g) then 13
choose g1 2 G s.t. lm�g1�jLu 14
T:� T[ {(g, lm(g1), P)} 15

else T :� T [ f�g; lm�g�; ;�g 16
end 17

end 18

Criterion (g,u,T) is true provided that if there is (f,v,D) 2 T such that lm�f �jLlm�g� and
lcm�u; v� � lm�g�. Correctness of this criterion, which is just the involutive form [22] of the
Buchberger's chain criterion, is provided by Theorem 2.19.

Definition 5.1 Given a constructive division L, a finite involutive basis G of ideal Id(G) is called
minimal if lt(G) is the minimal involutive basis of the monomial ideal generated by flt�f �jf 2 Id�G�g.

Theorem 5.2 A monic minimal involutive basis is unique.

Proof Assume for a contradiction that a polynomial ideal Id(F) has two distinct monic minimal
involutive bases G1 and G2. Their minimality means that lm(G1) � lm(G2). Since G1 and G2 are distinct
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there are g1 2G1 and g2 2 G2 such that lt(g1)�lt(g2) but g16�g2. Since g1 ÿg22Id(F), by Theorem 2.18,
we have NFL(g1ÿg2, G1) � NFL (g1ÿg2, G2) � 0. Therefore, at least one of the sets G1, G2 is not
involutively autoreduced, and, hence, in accordance with Definition 2.16, it cannot be involutive basis.
&

For a globally defined involutive division, by Proposition 4.1, this proof, obviously, is also valid for
polynomial ideals with infinite involutive bases. Therefore, we have the following corollary.

Corollary 5.3 Given a globally defined involutive division, every polynomial ideal has the unique

involutive basis.

Thus, given a globally defined involutive division L, the output of algorithm InvolutiveBasis, in the
case of its termination, is unique for a given polynomial ideal irrespective of an ideal generating set F in
the input.

However, even though the algorithm may not terminate it is still able to compute a GroÈbner basis as
the following proposition shows.

Proposition 5.4 Let L be a continuous involutive division and G be an intermediate polynomial basis
generated by algorithm InvolutiveBasis. If the ordering � is degree compatible, then i a finite number

of steps G becomes a GroÈbner basis.

Proof Let the current prolongation g�x is such that h � NFL�g � G� 6� 0. Then at the second main step of
the algorithm (step (ii) as described above), the intermediate polynomial set is enlarged by h. In so
doing there are two alternatives:

�a� lm�h� � lm�g � x�; �b� lm�h� � lm�g � x�:
In the latter case, lm(g �x) is involutively reducible by some lt�f � 2 lt�G�, that is, lm�g� � x �

lm�f � � w. Then, by Theorem 2.14 and Corollary 2.15 we have the equality NFL�g � x;G� �
NFL�S�f ; g�;G� where S�f ; g� � g � xÿ f � w is an S-polynomial.

In this case, unlike the case (a), the monomial ideal Id(lm(G)) is changed. Indeed, let there is a
polynomial h12G such that lm(h) is multiple of lm(h1) but not involutively multiple, that is, lm(h)�lm
(h1) �(lm(h)/lm(h1)). By the normal selection strategy, set G satisfies the condition (6) of partial
involutivity up to the monomial lm(h) with respect to the ordering � what implies NFL(h,F)�0.

Furthermore, by Theorem 2.18, NFL(S(g1, g2), G) � NF(S(g1, g2), G) � 0 for any S-polynomial
S(g1, g2), (g1, g2 2G) with lcm(lm(g1),(lm (g2))�lm(g�x).

It remains to prove that every S(g1, g2) such that NF(S(g1, g2), G)6�0 is computed at some step of the
algorithm. Since set G is L-autoreduced, monomial u�lcm(lm(g1), lm(g2)) cannot be involutively
multiple of both lm(g1), lm(g2). Hence, by degree compatibility of the ordering �, in a finite number of
steps at least one of g1, g2 will be non-multiplicatively prolonged to a polynomial g with lm(g)�u. Let g
be obtained by non-multiplicatively prolongations of g1, and the current prolongation be g with
u�lm(g1)�(u/lm(g1)). If u is involutively multiple of lm(g2) or lm(g3), where g3 is a polynomial obtained
in the course of the algorithm by non-multiplicative prolongations of g2, then we are done.

Otherwise, there is to be ~g 2 G such that u � lm�~g� � lm�g2� � �u=lm�g2��, and one of the two
polynomials g; ~g will be constructed before the another. Since their leading monomials coincide, the
leading monomial of the latter will be involutively reducible by the leading monomial of the former. &
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Though, by Corollary 5.3, algorithm InvolutiveBasis, if it terminates, computes the minimal
involutive basis for a globally defined involutive division it may not be the case for arbitrary involutive
division. If we use, for instance, any of divisions in Example 3.1±3.2 and 3.4, then, given a polynomial
ideal Id(F), the algorithm output depends on the structure of input generating set F.

Example 5.5 Let F � fx2yÿ 1; xy2 ÿ 1; y4 ÿ 1g. The lexicorgraphical Janet basis for x � y � z

computed by algorithm InvolutiveBasis is

fx2yÿ 1; x2 ÿ 1; xy2 ÿ 1; xyÿ 1; xÿ 1; y4 ÿ 1; y3 ÿ 1; y2 ÿ 1; yÿ 1g
The reduced GroÈbner basis fxÿ 1; yÿ 1g of Id(F) is also the minimal Janet basis.

Proposition 5.6 If algorithm InvolutiveBasis takes a reduced GroÈbner basis as input it produces a

minimal involutive basis for a constructive involutive division.

Proof Let g� x be a non-multiplicative prolongation of element g in intermediate polynomial set G, and
h � NFL�g � x;G�. We note that either h�0 or lm�h� � lm�g � x�. Otherwise, as shown in the proof of
Proposition 5.4, lm(h) would not belong to monomial ideal Id(lm(G)) � Id(lm(F)). Thus, the output
monomial set lm(G) is constructed just as it would be done by applying algorithm MinimalInvo-
lutiveMonomialBasis to lm(F). It follows that lm(G) is the minimal basis of Id(lm(F)). &

The next algorithm constructs a minimal involutive basis, and generally deals with less number of
intermediate polynomials than algorithm InvolutiveBasis causing the computational efficiency to
increase.

Theorem 5.7 Let F be a finite subset of R and L be a constructive involutive division. Suppose ordering
� is degree compatible. Then algorithm MinimalInvolutiveBasis computes a minimal involutive basis

of Id(F) if this basis is finite. If L is noetherian, then the basis is computed for any ordering.

Proof Correctness. First of all, we recall that correctness of the involutive criterion which is verified in
lines 14, 23 follows from Theorem 2.19. As distinct from the algorithm InvolutiveBasis here are two
disjoint subsets T and Q of the triples. They are built in such a way that lm�g� � lm�f � for any g in
�g; u;P� 2 T and f in �f ; v;D� 2 Q. Let ~G be a polynomial set fgj�g; u;P� 2 Qg. First of all, we claim
the ideal Id�G [ ~G� is an invariant of the repeat-loop. Indeed, it is trivially true upon initialization.
Inside the loop, if a polynomial is removed from G in lines 18 and 28, then it is added to ~G. On the
other hand, removal of a triple from Q, that is, the corresponding polynomial from ~G in line 11, does
not change G iff NFL(g,G) � 0.

Furthermore, set T is handled by the lower while-loop in lines 19±29 just as it done in algorithm
InvolutiveBasis except for restriction in line 20 and the set contraction in lines 27±28. In the latter
cases, all the elements in G with lm�g� � lm�h�, where h is the normal form of the current
prolongation, are moved to G. Thus, this while-loop preserves the property of partial involutivity up to
monomial v � lm�h� for the intermediate set G, in accordance with Theorems 2.17 and 2.18, if there is
a partially involutive set in the input of the loop. Besides, two elements with coinciding leading terms
obviously never occur in set ~G.

In what follows polynomials in ~G, if ~G 6� ;, are successively selected in accordance with the normal
strategy; taken out of the set and L-reduced modulo G. The upper while-loop in lines 9±13 proceeds
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until the normal form h of the selected polynomial does not vanish. Then set G is enlarged by h in line
14. The repeat-loop terminates when set ~G becomes empty in line 11 and the lower while-loop does
not lead to appearance of new elements in this set. It means that the output set G is an involutive basis
of ideal Id(G)�Id(F).

Algorithm MinimalInvolutiveBasis:

Input: F, a finite polynomial set
Output: G, the minimal involutive basis of the ideal Id(F)
begin

F:� 60> Autoreduce�F�
choose g 2 F with the lowest lm�g� w.r.t. �
T :� f�g; lm�g�; ;�g; Q :� ;; G :� fgg
for each f 2 Fnfgg do
Q :� Q [ f�f ; lm�f �; ;�g
repeat

h:�0
while Q 6�; and h�0 do

choose g in �g; u;P� 2 Q with the lowest lm(g) w.r.t. �
Q :� Qnf�g; u;P�g
if Criterion(g,u,T) is false then h :� NFL�g;G�

end
if h 6�0 then G :� G [ fhg

if lm�h� � lm�g� then T :� T [ f�h; u;P�g
else T :� T [ f�h; lm�h�; ;�g

for each f in �f ; v;D� 2 T s.t. lm�f � � lm�h� do
T :� Tnf�f ; v;D�g; Q :� Q [ f�f ; v;D�g; G :� Gnffg

while exist �g; u;P� 2 T and x 2 NML�g;G�nP and, if Q 6�;,
s.t. lm�g � x� � lm�f � for all f in �f ; v;D� 2 Q do
choose such �g; u;P�; x with the lowest lm�g� � x w.r.t. �
T :� Tnf�g; u;P�g [ f�g; u;P [ fxg�g
if Criterion(g�x,u,T) is false then h :� NFL�g � x;G�

if h 6�0 then G :� G [ fhg
if lm�h� � lm�g � x� then T :� T [ f�h; u; ;�g
else T :� T [ f�h; lm�h�; ;�g

for each f in �f ; v;D� 2 T with lm�f � � lm�h� do
T :� Tnf�f ; v;D�g; Q :� Q [ f�f ; v;D�g; G :� Gnffg

end
until Q 6� ;

end

Now, by Corollary 4.7, to prove minimality of the output basis it is sufficient to show that the lower
while-loop always ends up with L-autoreduced polynomial set G such that lt�G� is compact. As we
have already seen, this loop preserves partial involutivity. Initially there is a single polynomial which
has the minimal leading monomial, and, therefore, its handling in the loop produces a compact leading
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monomial set.
Suppose a partially involutive polynomial set G with compact lm(G) was produced by the lower

while-loop, and then it is enlarged by h � NFL�g;G� in line 14 when G is partially involutive up to
some monomial v � lm�g�.

If lm(h) � lm(g), then, by restriction in line 20, lm(h)�lm(f) for all f2G. By property (d) in
Definition 2.1, we obtain that NML�lm�f �; lm�G1 � G [ fhg�� � NML�lm�f �; lm�G�� for any f2G.

Let lm(h) has no conventional divisors in lm(G). Then, starting with the set G0 � Autoreduce (G1),
completing G0 with irreducible non-multiplicative prolongations of its elements by the normal strategy,
we construct set G2� G1 partially involutive up to the monomial v and with compact lm(G2). If we start
now with set lm(G1) and complete it, if necessary, with irreducible non-multiplicative prolongations of
its elements in order to obtain a partially involutive set up to v, then we arrive at the same set G2.
Indeed, even in the presence of extra intermediate elements, if G2\G1 6�;, there cannot occur reduction
of an element p2G either by an element in G or by an extra element. The former reduction is
impossible by property (d) of involutive division. The latter reduction, if it would hold, by properties
(c)±(d) and by Theorem 2.18, would lead to reducibility of p in the earlier set G when h has not been
added yet.

If lm(h) is multiple of some element in lm(G), then continuation of processing with G1 in the lower
while-loop yields a partially involutive polynomial set up to lm(h). In doing so, h is involutively
reduced either to zero, or to a polynomial which changes the monomial ideal Id(lm(G)), as we have
shown in the proof of Proposition 5.4. Correspondingly, G, after contraction in lines 27±28, is reset to
the partially involutive form with the compact leading monomial set.

In the case when lm(h)�lm(g), the elimination which is done in line 18 converts, apparently, the
situation into one of two alternatives we have just considered.

Thus, the repeat-loop, if it terminates, ends up with an involutive set G with compact lm(G), that is,
with the minimal involutive basis.

Termination. As it shown in the proof of Proposition 5.4, there may be a finite number of cases when
polynomial g chosen in lines 10 or prolongation g�x chosen in line 21 have reducible leading
monomials. It implies finitely many redistribution of triples between T and Q done in lines 18 and 28. If
Id(F) has the finite minimal involutive basis, and ordering � is degree compatible, then the lower
while-loop terminates irrespective of Q is empty set or not. This follows immediately from Propositions
5.4, 5.6 and compactness of lm(G). Since the upper while-loop is obviously terminates, and set Q is
refreshed finitely many times, in a finite number of steps the algorithm arrives at Q�; in line 30.

If involutive division L is noetherian then the algorithm terminates for any ordering � because the
lower while-loop terminates for the same reason as the while-loop does in algorithm InvolutiveBasis
[22].

6. Conclusion

As we noted above, algorithm MinimalInvolutiveBasis deals, generally, with less number of
intermediate polynomials then algorithm InvolutiveBasis. Besides, if involutive division L is not
globally defined, then we may not obtain the minimal involutive basis in the output of the latter
algorithm. But even for globally defined divisions the former algorithm avoids the involutive
autoreduction done in the latter algorithm at every step of the intermediate set enlargement. That is why
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we expect higher efficiency of algorithm MinimalInvolutiveBasis with respect to algorithm
IvolutiveBasis for arbitrary involutive division.

One could also construct the minimal involutive basis by computing the reduced GroÈbner basis and
then enlarging it by non-multiplicative prolongations of its elements until the leading monomial set
becomes involutive. To construct the reduced GroÈbner basis one can use the Buchberger algorithm or
perform the conventional autoreduction of an involutive basis computed by algorithm InvolutiveBasis.
However, unlike Buchberger algorithm, algorithm MinimalInvolutiveBasis benefits from the
involutive technique, and as we have argued is favored over the use of algorithm InvolutiveBasis
for intermediate computation.

In paper [24] for constructing Janet bases for linear partial differential equations one more algorithm
is described. Its analog in commutative algebra contains two basic subalgorithms which are
successively performed: completion of a polynomial set by non-multiplicative prolongations of its
elements until the set of leading monomials becomes involutive or complete (see footnote at page 4);
the conventional autoreduction of the obtained set. In this case due to the second subalgorithm the
output Janet bases are minimal. However, such an algorithmic procedure is far short of optimum from
the computational point of view. In so doing one has to perform the repeated prolongations and deal
with all the possible S-polynomials. In our algorithm MinimalInvolutiveBasis the repeated
prolongations are eliminated by storing in the triple sets T and Q those non-multiplicative variables
which have been used for a given polynomial. Furthermore, the use of the involutive analogue of the
Buchberger's chain criterion allows one to cut considerably the number of computed S-polynomials.

The algorithms described in this paper just as Zharkov and Blinkov algorithm [25] can be extended to
systems of linear systems of partial differential equations [26], and also to some classes of nonlinear
systems. Being uniquely defined, minimal involutive bases much like reduced GroÈbner bases can be
considered as canonical ones for polynomial and differential ideals. The corresponding form of partial
differential equation systems is just the standard [28] one. By transforming a given system into this
form one can determine the dimension of the solution space and a set of initial conditions providing the
existence of a uniquely defined and locally holomorphic solution [17,27±29]. Involutive algorithmic
ideas may be also rather fruitful in constructing the canonical bases for finitely generated ideals in free
Lie algebras and superalgebras [30].
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