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GRÖBNER BASES AND REGULARITY OF REES ALGEBRAS

JÜRGEN HERZOG, DORIN POPESCU AND NGÔ VIÊT TRUNG

Introduction

Let B = k[x1, . . . , xn] be a polynomial ring over a field k and A = B/J a quotient
ring of B by a homogeneous ideal J . Let m denote the maximal graded ideal of A.
Then the Rees algebra R = A[mt] may be considered a standard graded k-algebra
and has a presentation B[y1, . . . , yn]/IJ . For instance, if A = k[x1, . . . , xn], then

R ∼= k[x1, . . . , xn, y1, . . . , yn]/(xiyj − xjyi| i, j = 1, . . . , n).

In this paper we want to compare the ideals J and IJ as well as their homological
properties.

The generators of IJ can be easily described as follows. For any homogeneous
form f =

∑

1≤i1≤···≤id≤n ai1···idxi1 · · ·xid ∈ B of degree d we set

f (k) :=
∑

1≤i1≤···≤id≤n

ai1···idxi1 · · ·xid−k
yid−k+1

· · · yid

for k = 0, . . . , d. For any subset L ⊂ B of homogeneous polynomials in S we set

L′ := {f (k)| f ∈ L, k = 0, . . . , deg f},

and let
H := {xiyj − xjyi| 1 ≤ i < j ≤ n}.

If L is a minimal system of generators of I, then L′ ∪ H is a minimal system of
generators of IJ (Proposition 1.1). We will show that if L is Gröbner basis of J for
the reverse lexicographic order induced by x1 > · · · > xn > y1 > · · · > yn, then
L′∪H is Gröbner basis of IJ (Theorem 1.3). As a consequence, if J has a quadratic
Gröbner basis, then so does IJ .

The main concern of this paper is however the regularity which is a measure for
the complexity of the resolution of a standard graded algebra (see [EiG], [BM]).
Recall that the Castelnuovo-Mumford regularity of A is defined by

reg(A) := max{bi − i| i > 0},

where bi denotes the largest degree of a generator of the ith syzygy module of
A. The regularity and related invariants of a graded k-algebra (for example, the
extremal Betti numbers introduced in [BCP]) can be expressed in terms of the
cohomological invariants ai = max{a| H i(A)a 6= 0}, where H i(A) denotes the ith
local cohomology of A with support m (see Section 2 for more details). For instance,
reg(R) = max{ai + i| i ≥ 0}. In particular, we will also study the invariant

a∗(A) := max{ai| i ≥ 0} = max{bi| i ≥ 0} − n,
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which is another kind of regularity for A [Sh], [T2], [T3]. Our results are based on
the observation that the local cohomology of R can be estimated in terms of the
local cohomology of A.

If R is the Rees algebra of an arbitrary homogeneous ideal I of A generated by
forms of the same degree, then R is still a standard k-algebra. In this case, we have
the following estimations:

a∗(A) − s ≤ a∗(R) ≤ max{a∗(A), a∗(G)},

reg(A) ≤ reg(R) ≤ max{reg(A) + 1, reg(G)},

where s is the minimal number of generators of I and G denotes the associated
graded ring of I (Theorem 3.4 and Theorem 3.5). These bounds are sharp. In
particular, if R is the Rees algebra of the graded maximal ideal of A, then

a∗(A) − n ≤ a∗(R) ≤ a∗(A),

reg(A) ≤ reg(R) ≤ reg(A) + 1.

It is shown in Theorem 5.3 and Theorem 5.7 that a∗(R) = a∗(A) if and only if
a∗(A) 6= −1 and that reg(R) = reg(A) + 1 if and only if there is an integer i such
that reg(A) = ai + i and ai ≤ −2. The proofs follow from the fact that the bigraded
components of the local cohomology of R can be expressed completely by the graded
components of the local cohomology of A (see Theorem 4.2). In particular, we can
show that reg(R) = reg(A) + 1 if reg(A) = bi − i and bi ≤ n− 2 for some index i at
which A has an extremal Betti number (Corollary 5.9). However, an example shows
that this condition is only sufficient. As applications, we compare the regularity of
the Rees algebra of the ring B/ in(I), where in(I) denotes the initial ideal of I, with
that of R and we estimate this regularity for the generic initial ideal Gin(J) with
respect to the reverse lexicographic term order.

We will also compute the projective dimension of IJ . In Proposition 4.3 we give
a precise formula for the depth of R in terms of invariants of A. In fact,

depthR = max{i| Hj
m
(A)a = 0 for a 6= −1, j < i− 1, and ai−1 < 0}.

This formula is better than Huckaba and Marley’s estimation for the depth of the
Rees algebra of an arbitrary ideal in a local ring [HM]. Inspired by a construction of
Goto [G] we give examples showing that for arbitrary positive numbers 2 ≤ r < d
there exists a standard graded k-algebra A of dimension d with depthA = r and
depthR = d + 1. In these examples R is Cohen-Macaulay, since dimR = d + 1.
Though the difference between the depth of A and of R may be large, this is not
the case for the Rees ring R∗ of a polynomial ring extension A[z] of A. Here we
have that depthR∗ = depthA + 1 if as ≥ 0 and depthA[z] = depthA + 2 if as < 0
(Corollary 4.4).

We would like to mention that if R is the Rees algebra of a homogeneous ideal
generated by forms of different degree, R is not a standard k-algebra. Since R is
a standard graded algebra over A, one can still define the Castelnuovo-Mumford
regularity and the a∗-invariant of R with respect to this grading. These invariants
have been studied recently by several authors (see e.g. [JK], [Sh], [T1], [T2]).
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1. Gröbner basis of Rees algebras

Let A be a standard graded k-algebra with graded maximal ideal m = (x1, . . . , xn).
Then A = B/J where B = k[x1, . . . , xn] is a polynomial ring, and J ⊂ B a graded
ideal. The Rees algebra R = A[mt] may be considered as a bigraded module over the
bigraded polynomial ring S = k[x1, . . . , xn, y1, . . . , yn] (where deg xi = (1, 0) and
deg yi = (1, 1) for all i) via the bigraded epimorphism φ : S → R with φ(xi) = xi

and φ(yi) = xit for i = 1, . . . , n. Let IJ denote the kernel of this epimorphism.

We are interested in the generators and the Gröbner basis of IJ . In order to
describe IJ we introduce the following notations.

Let f =
∑

1≤i1≤···≤id≤n ai1···idxi1 · · ·xid ∈ B be homogeneous of degree d. For
k = 0, . . . , d we set

f (k) =
∑

1≤i1≤···≤id≤n

ai1···idxi1 · · ·xid−k
yid−k+1

· · · yid.

Notice that f (k) is bihomogeneous of degree (d, k). For any subset L ⊂ B of homo-
geneous polynomials in S we set

L′ := {f (k)| f ∈ L, k = 0, . . . , deg f}.

We further let

H := {xiyj − xjyi| 1 ≤ i < j ≤ n}.

With these notations we have

Proposition 1.1. Let L be a (minimal) system of generators of J , then L′ ∪H is
a (minimal) system of generators of IJ .

Proof. Let P = k[x1, . . . , xn, x1t, . . . , xnt] ⊂ k[x1, . . . , xn, t], and φ1 : S → P ,
φ2 : P → R be the k-algebra homomorphisms given by φ1(xi) = xi, φ1(yi) = xit,
and φ2(xi) = x̄i, φ2(xit) = x̄it for i = 1, . . . , n. We have φ = φ2 ◦ φ1, and since φ
is bigraded, the ideal IJ is bigraded. We clearly have L′ ∪ H ⊂ IJ . Let f ∈ IJ be
bigraded with deg f = (a, b). Then φ1(f) = f(x, xt) = f(x, x)tb, and so 0 = φ(f) =
f(x̄, x̄)tb, that is, f(x̄, x̄) = 0. Therefore, there exist homogeneous elements gi ∈ B
and fi ∈ J such that f(x, x) =

∑m
i=1 gifi. Let bi = min{deg fi, b}. Then

φ1(f) = f(x, x)tb =
m

∑

i=1

(git
b−bi)(fit

bi) = φ1(
m

∑

i=1

g
(b−bi)
i f

(bi)
i ),

and so f ∈ L′ ∪H , since Kerφ1 is generated by H .

Now let L be a minimal system of generators of J . We first show that φ1(L
′) is

a minimal system of generators of the ideal LJ = φ1(IJ) in P . Indeed, φ1(L
′) =
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{fit
b| fi ∈ L, b = 0, . . . , deg fi}. Suppose this is not a minimal system of genera-

tors of LJ . Then there exists an equation

fit
b =

∑

j

∑

k

(fjt
bjk)(gjkt

cjk),

where bjk ≤ deg fj , bjk + cjk = b and fjt
bjk 6= fit

b for all j and k, and where all
summands are bihomogeneous of degree (d, b) with d = deg fi. Notice that the right
hand sum contains no summand of the form (fit

bik)(gikt
cik). In fact, otherwise we

would have deg gikt
cik = (0, b − bik), and so bik = b which is impossible. It follows

that fi =
∑

j 6=i(
∑

k gjk)fj, a contradiction.

Now suppose that L′ ∪ H is not a minimal system of generators of IJ . If one

of the f
(k)
i is a linear combination of the other elements of L′ ∪ H , then φ1(L

′) is
not a minimal system of generators of LJ , a contradiction. Next suppose one of
the elements of H , say, x1y2 − x2y1 is a linear combination of the other elements
of L′ ∪ H . Only the elements of bidegree (2, 1) can be involved in such a linear
combination. In other words,

x1y2 − x2y1 =
∑

λff
(1) + h with λ ∈ k.

Here the sum is taken over all f ∈ L with deg f = 2, and h is a k-linear combination
of the polynomials xiyj − xjyi different from x1y2 − x2y1. Since the monomial x2y1

does not appear in any polynomial on the right hand side of the equation, we get a
contradiction.

We will now compute a Gröbner basis of IJ . For the proof we will use the following
Gröbner basis criterion.

Lemma 1.2. Let Q = k[x1, . . . , xr] be the polynomial ring, I ⊂ Q a graded ideal
and L a finite subset of homogeneous elements of I. Given a term order <, there
exists a unique monomial k-basis C of Q/(in(L)) (which we call a “standard basis”
with respect to < and L). This k-basis C is a system of generators for the k-vector
space Q/I, and L is a Gröbner basis of I with respect to <, if and only if C is a
k-basis of Q/I.

Theorem 1.3. Let < be the reverse lexicographic order induced by x1 > · · · > xn >
y1 > · · · > yn. If L is a Gröbner basis of J with respect to the term order < restricted
to B, then L′ ∪H is a Gröbner basis of IJ with respect to <.

Proof. Let C be a standard basis of B with respect to < and L, and set

C ′ := {u(k)| u ∈ C, k = 0, . . . , deg u}.

We will show that

(i) C ′ is a standard basis with respect to < and L′ ∪H , and
(ii) C ′ is a k-basis of R.

Let v be a monomial of T which does not belong to the ideal (in(L′)∪ in(H)). Since
v 6∈ (in(H)), it follows that v = u(k) for some monomial u ∈ S. Suppose that
u 6∈ C. Then u ∈ in(L), and since in(L′) = in(L)′ it follows that u(k) ∈ (in(L′)), a
contradiction. Thus u ∈ C, and hence v ∈ C ′.
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Conversely, if v ∈ C ′, then v = u(k) for some u ∈ C. Monomials of the form u(k)

cannot be multiples of monomials of in(H). Suppose u(k) is a multiple of a monomial
w ∈ in(L)′. Then w = v(l) for some v ∈ in(L) and some l, and v(l) divides u(k). It
follows that v divides u, a contradiction. This proves (i).

Let Ci = {u ∈ C| deg u = i}, and similarly C ′
i = {u ∈ C ′| deg u = i}. Since C

is a k-basis of A, it follows that |Ci| = dimk Ai, and since C ′
i = {u(k)| u ∈ C, k =

0, . . . , i}, it follows that |C ′
i| = (i+ 1)|Ci| = (i+ 1) dimk Ai. It is easy to show that

dimk Ri = (i+ 1) dimk Ai, |C
′
i| = dimk Ri for all i. This shows that the elements of

C ′ are k-linearly independent, and proves (ii). Hence the desired conclusion follows
from Lemma 1.2.

Corollary 1.4. If J has a quadratic Gröbner basis, then so does IJ .

We would like to remark that if L is a reduced Gröbner basis, then L′ ∪H need
not be reduced.

Example. Let A = k[x1, x2, x3]/(x1x2 − x2
3). Then L = {x1x2 − x2

3} is a reduced
Gröbner basis of J , but L′ ∪H is not reduced, since x1y2 = in(x1y2 − x3y3) appears
in x1y2 − x2y1.

2. Regularity and local cohomology of graded algebras

The aim of this section is to prepare some facts on the relationships between the
regularities and local cohomology modules of a graded module.

Let B = k[x1, . . . , xn] be a polynomial ring over a field k. Let E be a finitely
graded module over B. Let F : 0 → Fr → · · · → F1 → F0 → E → 0 be a minimal
free resolution of E. For all integer i we denote by bi(E) the largest degree of the
generators of Fi, where bi(E) := −∞ for i < 0 or i > r. The Castelnuovo-Mumford
regularity of E [EiG] is defined by

reg(E) := max{bi(E) − i| i ≥ 0}.

This notion is refined by D. Bayer, H. Charalambous, and S. Popescu [BCP] as
follows. For any integer j let

j- reg(E) := max{bi(E) − i| i ≥ j}.

Similarly, we can define the invariants

b∗(E) := max{bi(E)| i ≥ 0},

b∗j (E) := max{bi(E)| i ≥ j}.

It is known that these invariants can be also characterized by means of the graded
local cohomology modules of E.

Let A = B/J be any graded quotient ring of B. Let E now be a finitely generated
module over A. Let m denote the maximal graded ideal of A. For any integer i we
denote by H i

m
(E) the ith local cohomology module of E. Since H i

m
(E) is a graded

artinian A-module, H i
m
(E)a = 0 for a large enough. Therefore we can consider the

largest non-vanishing degree ai(E) := max{a| H i
m
(E)a 6= 0}, where ai(E) = −∞ if

5



H i
m
(E) = 0. Note that H i

m
(E) = 0 for i < 0 and i > d := dimE and that ad(E) is

the a-invariant of E [GW]. For any integer j we define

a∗j (E) := max{ai(E)| i ≤ j},

regj(E) := max{ai(E) + i| i ≤ j}.

In particular, we set
a∗(E) := max{ai(E)| i ≥ 0}.

These cohomological invariants do not depend on the presentation of A. See [Sh],
[T1], [T2], [T3] for more information on these invariants.

Theorem 2.1. [T3, Theorem 3.1] For any integer j we have

(i) b∗j (E) = a∗n−j(E) + n,

(ii) j- reg(E) = regn−j(E).

Theorem 2.1 has the following immediate consequence.

Corollary 2.2. (i) b∗(E) = max{ai(E)| i ≥ 0} + n = a∗(E) + n,

(ii) reg(E) = max{ai(E) + i| i ≥ 0} [EG, Theorem 1.2].

¿From Theorem 2.1 we also obtain the following relationship between the invari-
ants bj(E) and an−j(E). Following [BCP] we say that E has an extremal Betti
number at j if bj(E) − j > bi(E) − i for all i > j or, equivalently, j- reg(E) >
(j + 1)- reg(E).

Corollary 2.3. Assume that E has an extremal Betti number at j. Then bj(E) =
an−j(E) + n.

Proof. By the assumption, j- reg(E) = bj(E) − j. By Theorem 2.1,

regn−j(E) = j- reg(E) > (j + 1)- reg(E) = regn−j−1(E).

Therefore, regn−j(E) = an−j(E)+n−j. ¿From this it follows that bj(E) = an−j(E)+
n.

For later applications we also prepare some facts on the regularity of polynomial
extensions and quotient modules.

Lemma 2.4. Let A[z] be a polynomial ring over A in one variable. Let n denote
the maximal graded ideal of A[z]. Put E[z] = E ⊗ A[z] and E[z−1] = E ⊗ A[z−1].
For every integer i ≥ 1 we have

H i
n
(E[z]) = H i−1

m
(E)(1)[z−1].

Proof. By local duality (see e.g. [BH, Theorem 3.6.19]) we know that

H i
m
(E) = Extn−i

B (E,B(−n))∨,

H i
n
(E[z]) = Extn+1−i

B[z] (E[z], B[z](−n − 1))∨,

where ∨ denotes the Matlis duality. Since B −→ B[z] is a flat extension, we have

Extn+1−i
B[z] (E[z], B[z]) = Extn+1−i

B (E,B)[z].

6



From this it follows that

H i
n
(E[z]) = Extn+1−i

B (E,B(−n− 1))∨[z−1]

= Extn+1−i
B (E,B(−n))∨(1)[z−1] = H i−1

m
(E)(1)[z−1].

Proposition 2.5. With the above notation we have

(i) ai(E[z]) = ai−1(E) − 1 for all i ≥ 0,

(ii) a∗(E[z]) = a(E) − 1,

(iii) reg(E[z]) = reg(E).

Proof. By Lemma 2.4 we have

H i
n
(E[z])n =

⊕

a≥n−1

H i−1
m

(E)a.

Hence (i) is immediate. The formulas (ii) and (iii) are consequences of (i).

Proposition 2.6. Assume that depthE > 0 and f ∈ A is a regular form of degree
c for E. Then

(i) a∗(E/fE) = a∗(E) + c,

(ii) reg(E/fE) = reg(E) + c− 1.

Proof. From the exact sequence 0 −→ E(−c)
f

−→ E −→ E/fE −→ 0 we obtain the
following exact sequence of local cohomology modules:

H i
m
(E)a −→ H i

m
(E/fE)a −→ H i+1

m
(E)a−c −→ H i+1

m
(E)a .

From this it immediately follows that ai(E/fE) ≤ max{ai(E), ai+1(E) + c}. For
a ≥ ai(E/fE), the map H i+1

m
(E)a−c −→ H i+1

m
(E)a is injective. Since H i+1

m
(E)a =

0 for all large a, this injective map yields H i+1
m

(E)a−c = 0. Therefore, we get
ai+1(E) + c ≤ ai(E). Taking the maxima over i of the inequalities

ai+1(E) + c ≤ ai(E/fE) ≤ max{ai(E), ai+1(E) + c}

we will get (i). For (ii) we only need to take the maxima over i of the inequalities

ai+1(E) + i+ c ≤ ai(E/fE) + i ≤ max{ai(E) + i, ai+1(E) + i+ c}.

3. Rees algebras of ideals generated by forms of the same degree

Let A be a standard graded algebra over a field. Let I = (f1, . . . , fs) be a
homogeneous ideal in A such that f1, . . . , fm have the same degree. Then the Rees
algebra R = A[It] can be considered as a standard N-graded algebra over k. Let M
denote the maximal graded ideal of R.

7



Let m = (x̄1, . . . , x̄n) be the maximal homogeneous ideal of A. We can refine the
N-graded structure of R by a bigrading with

bideg x̄i = (1, 0), i = 1, . . . , r,

bideg fjt = (1, 1), j = 1, . . . , s.

It is easy to verify that if z ∈ R is a bihomogeneous element with bideg z = (a, b),
then deg z = a. There is also the natural bigrading bideg x̄i = (1, 0) and bideg fjt =
(0, 1). But we shall see that the first bigrading is more suitable for our investigation.

Let E be any bigraded R-module. Then E has the natural Z-graded structure
Ea =

⊕

b∈Z E(a,b). In particular, H i
M(E) is both a bigraded R-module and a Z-graded

R-module with

H i
M(E)a =

⊕

b∈Z

H i
M(E)(a,b).

Let R+ denote the ideal of R generated by the elements fjt. Let G = ⊕n≥0I
n/In+1

be the associated graded ring of I. To estimate ai(R) we consider the following two
short exact sequences of bigraded R-modules:

0 −→ R+ −→ R −→ A −→ 0,

0 −→ R+(0, 1) −→ R −→ G −→ 0.

¿From the above short exact sequences we obtain the following long exact se-
quences of bigraded local cohomology modules:

· · · −→ H i−1
M (A)(a,b) −→ H i

M(R+)(a,b) −→ H i
M(R)(a,b) −→ H i

M(A)(a,b) −→ · · · (1)

· · · −→ H i−1
M (G)(a,b) −→ H i

M(R+)(a,b+1) −→ H i
M(R)(a,b) −→ H i

M(G)(a,b) −→ · · · (2)

These sequences allow us to study the vanishing of the bigraded local cohomology
modules of R by means of those of A and G.

Lemma 3.1. For a fixed integer a assume that there is an integer b0 such that

(i) H i−1
M (A)(a,b) = 0 for b ≥ b0,

(ii) H i
M(G)(a,b) = 0 for b > b0.

Then H i
M(R)(a,b) = 0 for b ≥ b0.

Proof. The assumptions (i) and (ii) implies that for b ≥ b0,

(i’) H i
M(R+)(a,b) −→ H i

M(R)(a,b) is injective,

(ii’) H i
M(R+)(a,b+1) −→ H i

M(R)(a,b) is surjective.

Since H i
M(R) is an artinian R-module, H i

M(R)(a,b) = 0 for b large enough. Once we
have H i

M(R)(a,b+1) = 0 for some integer b ≥ b0, we can use (i’) and (ii’) to deduce
first that H i

M(R+)(a,b+1) = 0 and then that H i
M(R)(a,b) = 0. This can be continued

until b = b0.

Proposition 3.2. ai(R) ≤ max{ai−1(A), ai(G)}.

8



Proof. Fix an arbitrary integer a > max{ai−1(A), ai(G)}. Since a > ai−1(A),
H i−1

M (A)a = 0. Therefore,

H i−1
M (A)(a,b) = 0 for all b.

Since a > ai(G), H i
M(G)a = 0. Therefore,

H i
M(G)(a,b) = 0 for all b.

By Lemma 3.1 we obtain H i
M(R)(a,b) = 0 for all b. That implies H i

M(R)a = 0 or,
equivalently, ai(R) ≤ max{ai−1(A), ai(G)}.

On the other hand, there is the following relation between the maximal shifts of
the terms of the minimal free resolutions of A and R.

Proposition 3.3. bi(R) ≥ bi(A).

Proof. We consider a minimal free resolution F : 0 −→ Fl −→ · · · −→ F0 −→ R
of R as a bigraded module over the polynomial ring S := k[X1, . . . , Xn, Y1, . . . , Ys].
Let F

∗ denote the exact sequence:

0 −→
⊕

a∈Z

(Fl)(a,0) −→ · · · −→
⊕

a∈Z

(F0)(a,0) −→
⊕

a∈Z

R(a,0) = A

It is clear that F
∗ is a free resolution of A as a graded module over the polynomial

ring B = k[X1, . . . , Xn].

To estimate the shifts of the twisted free modules of F
∗ we consider a twisted free

S-module S(−c,−d). Then (S(−c,−d))(a,0) = S(a−c,−d) is a direct sum of
(

s−d−1
s−1

)

copies of Ba−c+d = B(−(c − d))a, where we set
(

s−d−1
s−1

)

= 0 if d > 0. Therefore,

⊕a(S(−c,−d))(a,0) is the direct sum of
(

s−d−1
s−1

)

copies of B(−(c− d)). If S(−c,−d)

runs over all twisted free modules of Fi, then bi(R) = max{c} ≥ max{c− d}. Since
max{c−d} is the maximum shift of the ith term of F

∗, we have max{c−d} ≥ bi(A).
So we obtain bi(R) ≥ bi(A).

¿From the above propositions we can easily derive upper and lower bounds for
a∗(R) and reg(R) in terms of A and G.

Theorem 3.4. Let s denote the minimal number generators of I. Then

a∗(A) − s ≤ a∗(R) ≤ max{a∗(A), a∗(G)}.

Proof. By definition we have a∗(E) = max{ai(E)| i ≥ 0} for any finitely generated
graded R-module E. Therefore, from Proposition 3.2 we immediately obtain the
upper bound a∗(R) ≤ max{a∗(A), a∗(G)}. On the other hand, by Corollary 2.2 we
have

a∗(A) = max{bi(A)| i ≥ 0} − n,

a∗(R) = max{bi(R)| i ≥ 0} − n− s.

Therefore, from Proposition 3.3 we can immediately deduce the lower bound a∗(A)−
s ≤ a∗(R).

Theorem 3.5. reg(A) ≤ reg(R) ≤ max{reg(A) + 1, reg(G)}

9



Proof. By Corollary 2.2 we have reg(E) = max{ai(E) + i| i ≥ 0} for any finitely
generated graded R-module E. By Proposition 3.2, ai(R) + i ≤ max{ai−1(A) +
i, ai(G)+ i}. Hence we get the upper bound reg(R) ≤ max{reg(A)+ 1, reg(G)}. On
the other hand, using Proposition 3.3 we obtain the lower bound

reg(A) = max{bi(A) + i| i ≥ 0}

≤ max{bi(R) + i| i ≥ 0} = reg(R).

Corollary 3.6. Let I be an ideal generated by a regular sequence of s forms of
degree c. Then

(i) a∗(A) − s ≤ a∗(R) ≤ a∗(A) + s(c− 1),

(ii) reg(A) ≤ reg(R) ≤ max{reg(A) + 1, reg(A) + s(c− 1)}.

Proof. We have G ∼= (A/I)[z1, . . . , zs], where z1, . . . , zs are indeterminates. By
Proposition 2.5, this implies a∗(G) = a∗(A/I) − s and reg(G) = reg(A/I). On the
other hand, Proposition 2.6 gives a∗(A/I) = a∗(A) + sc and reg(A/I) = reg(A) +
s(c−1). Therefore, a∗(G) = a∗(A)+ s(c−1) and reg(G) = reg(A)+ s(c−1). Hence
the conclusion follows from Theorem 3.4 and Theorem 3.5.

The following example shows that the above upper and lower bounds for a∗(R)
and reg(R) are sharp.

Example. Let A = k[x1, . . . , xn] and I = (x1, . . . , xn). By Proposition 2.5 we have
a∗(A) = −n and reg(A) = 0. In the next sections we shall see that

a∗(R) =

{

−2 for n = 1,
−n for n > 1.

reg(R) =

{

0 for n = 1,
1 for n > 1.

4. Local cohomology of Rees algebras of maximal graded ideals

Let A be a standard graded algebra over a field k. Let m be the maximal graded
ideal of A. From now on, R will denote the Rees algebra A[mt].

We first note that R has a bigraded automorphism ψ induced by the map ψ(x) =
xt and ψ(xt) = x for any element x ∈ m. It is clear that if f ∈ R is a bihomogeneous
element with bideg f = (a, b), then bidegψ(f) = (a, a− b). In particular, ψ induces
an isomorphism between A and G as R-modules.

Since A concentrates only in degree of the form (a, 0), we have

H i
M(A)(a,b) =

{

0 for b 6= 0,
H i

m
(A)a for b = 0.

¿From this it follows that

H i
M(G)(a,b) =

{

0 for b 6= a,
H i

m
(A)a for b = a.

10



Therefore, using (1) and (2) we obtain

H i
M(R+)(a,b)

∼= H i
M(R)(a,b) for b 6= 0, (3)

H i
M(R+)(a,b+1)

∼= H i
M(R)(a,b) for b 6= a. (4)

The following lemma gives a complete description of the bigraded local cohomol-
ogy modules of R in terms of those of A.

Lemma 4.1. For any integer a we have

H i
M(R)(a,b) =



















0 if b ≥ max{0, a+ 1},
H i

m
(A)a if 0 ≤ b < max{0, a+ 1},

H i−1
m

(A)a if min{0, a+ 1} ≤ b < 0,
0 if b < min{0, a+ 1}.

Proof. By (3) and (4), H i−1
M (A)(a,b) = 0 for b > 0 and H i

M(G)(a,b) = 0 for b ≥ a+ 1.
Therefore, using Lemma 3.1 we get H i

M(R)(a,b) = 0 for b ≥ max{0, a + 1}. By the
above automorphism of R, this implies H i

M(R)(a,b) = 0 for a− b ≥ max{0, a+1} or,
equivalently, for b < min{0, a+ 1}.

To prove that H i
M(R)(a,b) = H i

m
(A)a for 0 ≤ b < max{0, a + 1} we may assume

that a + 1 > 0. By (2) we have the exact sequence

H i
M(R+)(a,a+1) −→ H i

M(R)(a,a) −→ H i
M(G)(a,a) −→ H i+1

M (R+)(a,a+1).

By (5) we have Hj
M(R+)(a,a+1)

∼= Hj
M(R)(a,a+1) = 0 for all j. Therefore,

H i
M(R)(a,a)

∼= H i
M(G)(a,a) = H i

m
(A)a.

Using (5) and (6) we obtain H i
M(R)(a,b)

∼= H i
M(R)(a,b+1) for 0 ≤ b < a. Thus,

H i
M(R)(a,b)

∼= H i
m
(A)a for 0 ≤ b < a + 1 = max{0, a+ 1}.

To prove that H i
M(R)(a,b) = H i−1

m
(A)a for min{0, a+ 1} ≤ b < 0 we may assume

that a + 1 < 0. By (1) we have the exact sequence

H i−1
M (R)(a,0) −→ H i−1

M (A)(a,0) −→ H i
M(R+)(a,0) −→ H i

M(R)(a,0).

Since a + 1 < 0, we have Hj
M(R)(a,0) = 0 for all j. Therefore,

H i
M(R+)(a,0)

∼= H i−1
M (A)(a,0) = H i−1

m
(A)a.

By (2) we have the exact sequence

H i−1
M (G)(a,−1) −→ H i

M(R+)(a,0) −→ H i
M(R)(a,−1) −→ H i

M(G)(a,−1).

By (4) we have Hj
M(G)(a,−1) = 0 for all j. Therefore,

H i
M(R)(a,−1)

∼= H i
M(R+)(a,0)

∼= H i−1
m

(A)a.

Using (5) and (6) we obtain H i
M(R)(a,b)

∼= H i
M(R)(a,b+1) for a + 1 ≤ b < −1. Thus,

H i
M(R)(a,b)

∼= H i−1
m

(A)a for min{0, a+ 1} = a+ 1 ≤ b ≤ −1.

The above lemma on the bigraded local cohomology modules of R can be formu-
lated for the N-graded structure as follows.

11



Theorem 4.2.

H i
M(R)a =











⊕

a+1 copiesH
i
m
(A)a if a ≥ 0,

0 if a = −1,
⊕

−(a+1) copiesH
i−1
m

(A)a if a ≤ −2.

Proof. The statement follows from the formula

H i
M(R)a =

⊕

b∈Z

H i
M(R)(a,b)

and Lemma 4.1. Indeed, if a ≥ 0, max{0, a + 1} = a + 1 and min{0, a + 1} = 0.
Therefore,

H i
M(R)(a,b) =











0 for b ≥ a+ 1,
H i

m
(A)a for 0 ≤ b ≤ a,

0 for b < 0.

If a = −1, max{0, a + 1} = min{0, a + 1} = 0. Hence H i
M(R)(−1,b) = 0 for all b. If

a ≤ −2, we have

H i
M(R)(a,b) =











0 for b ≥ 0,
H i−1

m
(A)a for a+ 1 ≤ b < 0,

0 for b ≤ a.

In the following we will denote aj(A) by aj for all j. An immediate consequence
of Theorem 4.2 is the following formula for the depth of the Rees algebra (see [HM]
for the depth of the Rees algebra of an arbitrary ideal).

Proposition 4.3.

depthR = max{i| Hj
m
(A)a = 0 for a 6= −1, j < i− 1, and ai−1 < 0}.

In particular, depthR ≥ depthA.

Proof. We have H i
M(R) = 0 if and only if H i−1

m
(A)a = 0 for a ≤ −2 and H i

m
(A)a = 0

for a ≥ 0. Putting this in the formula

depthR = max{i| Hj
M(R) = 0 for j < i}.

we obtain the conclusion.

If depthA = 0, we must have depthR = 0. If depthA = 1, we can not have
H1

m
(A)a = 0 for a 6= −1. For, we have H1

m
(A)−1

∼= H0
m
(A/xA)0 = 0, where x

is a regular linear form of A. Therefore, Proposition 4.3 gives depthR = 1 if
depthA = 1. If depthA ≥ 2, depthR can be arbitrarily large than depthA.

Example. Let 2 ≤ r < d be arbitrary positive numbers. We will construct a graded
algebra A with depthA = r and depthR = d+1 (i.e. R is a Cohen-Macaulay ring).

Let T = k[x1, . . . , xd] and n the maximal graded ideal of T . Let E be the rth
syzygy module of k over T . Then H i

n
(E) = 0 for i 6= r, d,

Hr
n
(E)a =

{

0 for a 6= 0,
k for a = 0,

and Hd
n
(E) = Hd

n
(T ).
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Let C be the idealization of the graded T -module E(r−1) (see e.g. [N, p.2]). Since
E is generated by elements of degree r, E(r−1) is generated by elements of degree 1.
Hence C is a standard graded algebra over k. By the construction of the idealization
we have a natural exact sequence of the form 0 → E(r − 1) → C → T −→ 0,
where all homomorphisms have degree 0. Let mC denote the maximal graded ideal
of C. Then H i

mC
(C) = H i

n
(E(r − 1)) for i 6= d and there is the exact sequence

Hd
n
(E(r − 1)) −→ Hd

mC
(C) −→ Hd

n
(T ) −→ 0. From this it follows that H i

mC
(C) = 0

for i 6= r, d,

Hr
mC

(C)a =

{

0 for a 6= 1 − r,
k for a = 1 − r,

and ad(C) = ad(T ) = −d.

Now let A be the (r− 1)th Veronese subring of C. Then H i
m
(A)a = H i

mC
(C)a(r−1)

[GW, Theorem 3.1.1]. Hence H i
m
(A) = 0 for i 6= r, d,

Hr
m
(A)a =

{

0 for a 6= −1,
k for a = −1,

and ad ≤ −1. Therefore, depthA = r and depthR = d+ 1 by Proposition 4.3.

Remark. The above example is inspired by Goto’s construction of Buchsbaum local
rings of minimal multiplicity with local cohomology modules of given lengths [G,
Example (4.11)(2)]. Evans and Griffith [EvG] have constructed graded domains A
whose local cohomology modules H i

m
(A), i < d, are isomorphic to given graded

modules of finite length with a shifting. Since the shift could not be computed
explicitly, we can not use their construction for our purpose.

Despite the eventually big difference between the depths of a given ring and its
Rees algebra, the depth of the Rees algebra of a polynomial extension A[z] of A is
rather rigid.

Corollary 4.4. Let R∗ denote the Rees algebra of a polynomial ring A[z] over A in
one variable. Put s = depthA. Then

depthR∗ =

{

s+ 1 if as ≥ 0,
s+ 2 if as < 0.

Proof. By Proposition 2.4, H i
n
(A[z]) = 0 if H i−1

m
(A) = 0 and H i

n
(A[z]) is a module

of infinite length with ai(A[z]) = ai−1 − 1 if H i−1
m

(A) 6= 0. As a consequence,
H i

n
(A[z])a = 0 for a 6= −1 if and only if H i−1

m
(A) = 0. Therefore,

depthR∗ = max{i| Hj
n
(A[z])a = 0 for a 6= −1, j < i− 1, and ai−1 < 0}

= max{i| Hj
m
(A) = 0 for j < i− 2, and ai−2 < 0}

Since s = max{i| Hj
m
(A) = 0 for j < i}, we get

max{i| Hj
m
(A) = 0 for j < i− 2, and ai−2 < 0} =

{

s+ 1 if as ≥ 0,
s+ 2 if as < 0.

13



The following criterion for the Cohen-Macaulayness of R can be also derived
from a more general criterion for the Cohen-Macaulayness of the Rees algebra of an
arbitrary ideal of Trung and Ikeda [TI].

Corollary 4.5. R is a Cohen-Macaulay ring if and only if Hj
m
(A)a = 0 for a 6= −1,

j < d, and ad < 0.

Proof. This follows from Proposition 4.3 (the case depthR = d+ 1).

Another consequence of Theorem 4.2 is the following formula for ai(R). This
formula is crucial for the estimation of a∗(R) and reg(R) in the next section.

Proposition 4.6.

ai(R) =

{

ai if ai ≥ 0,
max{a| a ≤ −2 and H i−1

m
(A)a 6= 0} if ai < 0.

In particular, ai(R) = ai−1 if ai−1 ≤ −2 and ai < 0.

Proof. Note that Hj
m
(A)a = 0 for a > aj and H i

m
(A)aj

6= 0 if aj 6= −∞. If ai ≥ 0,
using Theorem 4.2 we get H i

M(R)a = 0 for a > ai and H i
M(R)ai

6= 0, hence ai(R) =
ai. If ai < 0, we get H i

M(A)a = 0 for a ≥ −1. For a ≤ −2, H i
M(R)a 6= 0 if and only

if H i−1
m

(A)a 6= 0. Therefore, ai(R) = max{a| a ≤ −2 and H i−1
m

(A)a 6= 0}, which is
exactly ai−1 if ai−1 ≤ −2.

From Proposition 4.6 we immediately obtain the following bounds for ai(R).

Corollary 4.7. (i) ai(R) ≤ max{ai−1, ai} for i ≤ d,

(ii) ad+1(R) ≤ min{−2, ad}.

Example. Let A = k[x1, . . . , xn]. We know that ai = −∞ for i 6= n and an = −n
with Hn

m
(A)a 6= 0 for a ≤ −n. Therefore, ai(R) = −∞ for i 6= n+ 1 and

an+1(R) =

{

−2 if n = 1,
−n if n > 1.

One may expect that ai(R) = −2 if ai−1 > −2 and ai < 0. But the following
example shows that is not always the case.

Example. Let ∆ be the simplicial complex on ten vertices {1, . . . , 10} with the
maximal faces

{1, 2, 6}, {2, 6, 7}, {2, 3, 7}, {3, 7, 8}, {3, 4, 8}, {4, 5, 8}, {1, 4, 5}, {9, 10}.

Note that ∆ is topologically the disjoint union of a circle and a point.
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Let T = k[x1, . . . , x10] and n the maximal graded ideal of T . Let I be the
monomial ideal of ∆ in T :

I = (x2x10, x2x9, x2x8, x2x5, x2x4, x3x10, x3x9, x3x5,

x1x3, x5x10, x4x10, x1x10, x5x9, x4x9, x1x9, x1x8, x8x9, x8x10,

x1x7, x4x7, x5x7, x7x9, x7x10, x3x6, x4x6, x5x6, x6x8, x6x9, x6x10).

By Hochster’s formula for the local cohomology modules of the Stanley-Reisner ring
k[∆] = T/I (see e.g. [BH, Theorem 5.8]) we have H0

n
(k[∆]) = 0,

H1
n
(k[∆])a =

{

0 for a 6= 0,
k for a = 0,

H2
n
(k[∆])a =

{

0 for a > 0 and a = −1,
k for a = 0 and a ≤ −2,

and H3
n
(k[∆])a = 0 for a > −2, while H3

n
(k[∆])a 6= 0 for a ≤ −2. From the short

exact sequence 0 −→ I −→ T −→ k[∆] −→ 0 we get H i
n
(I) = 0 for i 6= 2, 3, 4, 10,

H2
n
(I)a =

{

0 for a 6= 0,
k for a = 0,

H3
n
(I)a =

{

0 for a > 0 and a = −1,
k for a = 0 and a ≤ −2,

and H4
n
(I)a = 0 for a > −2, H4

n
(I)a 6= 0 for a ≤ −2, H10

n
(I)a = 0 for a > −10,

H10
n

(I)a 6= 0 for a ≤ −10.

Let A be the idealization of the graded T -module I(1) (see e.g. [N, p.2]). Since
I(1) is generated by elements of degree 1, A is a standard graded algebra over k.
By the construction of the idealization we have a natural exact sequence of the
form 0 −→ I(1) −→ A −→ T −→ 0, where all homomorphisms are of degree 0.
This exact sequence yields H i

m
(A) = H i

n
(I(1)) for i 6= 10 and the exact sequence

Hd
n
(I(1)) −→ Hd

m
(A) −→ Hd

n
(T ) −→ 0. Using the above formula for H i

n
(I) we get

H i
m
(A) = 0 for i 6= 2, 3, 4, 10,

H2
m
(A)a =

{

0 for a 6= −1,
k for a = −1,
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H3
n
(A)a =

{

0 for a > −1 and a = −2,
k for a = −1 and a ≤ −3,

and H4
m
(A)a = 0 for a > −3, H4

m
(A)a 6= 0 for a ≤ −3, H10

m
(A)a = 0 for a > −10,

H10
n

(A)−10 6= 0. In particular, ai = −∞ for i 6= 2, 3, 4, 10, a2 = a3 = −1, a4 = −3,
a10 = −10. Applying Proposition 4.6 we obtain ai(R) = −∞ for i 6= 4, 5, 11 and
a4(R) = a5(R) = −3, a11(R) = −10. In particular, a4(R) = −3 though a3 = −1
and a4 = −3 < 0.

5. Regularity of Rees algebras of maximal graded ideals

As in the last section, let R = A[mt] be the Rees algebra of the maximal graded
ideal m of a standard graded algebra A over a field. The goal of this section is to
estimate a∗(R) and reg(R) in terms of a∗(A) and reg(A).

Let n be the embedding dimension of A, that is, n = dimk A1. We can consider
A as a module over the polynomial ring B = k[x1, . . . , xn] and R as a module over
the polynomial ring S = k[x1, . . . , xn, y1, . . . , yn].

We have the following relationships between the invariants a∗j (A) and a∗j(R).

Proposition 5.1. For any integer j ≥ 0 we have

(i) a∗j−n(A) − n ≤ a∗j (R) ≤ a∗j(A).

(ii) a∗j (R) = a∗j(A) if and only if a∗j(A) ≥ 0 or a∗j−1(A) = a∗j(A) ≤ −2.

Proof. By Theorem 2.1(i) and Proposition 3.3 we have

a∗j(R) = b∗2n−j(R) − 2n ≥ b∗2n−j(A) − 2n = a∗j−n(A) − n.

Since G ∼= A, Theorem 3.5 implies ai(R) ≤ max{ai−1(A), ai(A)} for all i. From this
it follows that a∗j (R) ≤ a∗j(A). So we obtain (i).

To prove (ii) we choose i ≤ j such that a∗j(A) = ai.

If a∗j (A) ≥ 0, then ai(R) = ai by Corollary 4.6. Hence a∗j(R) ≥ ai(R) = a∗j(A).
By (i) this implies a∗j (R) = a∗j(A).

If a∗j (A) = −1, ai(R) ≤ −2 for all i ≤ j by Proposition 4.6. Hence a∗j (R) ≤ −2 <
a∗j (A).

If a∗j−1(A) = a∗j (A) ≤ −2, we may assume that i < j. Then ai+1 ≤ ai ≤ −2.
Hence ai+1(R) = ai by Proposition 4.6. Thus, a∗j (R) ≥ ai+1(R) = a∗j (A). By (i) this
implies a∗j (R) = a∗j (A).

If a∗j−1(A) < a∗j (A) ≤ −2, we have aj−1 < aj = a∗j(A) ≤ −2. By Proposition
4.6, this implies aj(R) = aj−1 < a∗j(A). By (i), a∗j−1(R) ≤ a∗j−1(A). Therefore,
a∗j (R) = max{a∗j−1(R), aj(R)} < a∗j(A). So we have proved (ii).

Proposition 5.1 can be formulated in terms of the maximal shifts of the minimal
free resolution of A as follows.

Corollary 5.2. For any integer j ≥ 0 we have

(i) b∗j (A) ≤ b∗j (R) ≤ b∗j−n(A) + n,

(ii) b∗j (R) = b∗j−n(A)+n if and only if b∗j−n(A) ≥ n or b∗j−n+1(A) = b∗j−n(A) ≤ n− 2.
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Proof. By Theorem 2.1(i) we have

b∗j (A) = a∗n−j(A) + n, b∗j (R) = a∗2n−j(R) + 2n, b∗j−n(A) = a∗2n−j(A) + n.

Therefore, the conclusion follows from Proposition 5.1.

Theorem 5.3. (i) a∗(A) − n ≤ a∗(R) ≤ a∗(A).

(ii) a∗(R) = a∗(A) if and only if a∗(A) 6= −1.

Proof. From Proposition 5.1(i) we immediately obtain (i). To prove (ii) we assume
first that a∗(A) 6= −1. Choose j such that a∗(A) = a∗j−1(A) = a∗j (A). Then
a∗j (R) = a∗j (A) by Proposition 5.1(ii). It follows that

a∗(R) ≥ a∗j (A) = a∗(A).

By (i) this implies a∗(R) = a∗(A). Now assume that a∗(A) = −1. Then a∗j(A) ≤ −1
for all j. If a∗j(A) ≤ −2, we have a∗j (R) ≤ a∗j (A) ≤ −2 by Theorem 5.1(i). If
a∗j (A) = −1, then Theorem 5.1(ii) implies a∗j (R) < a∗j(A). Thus, a∗(R) ≤ −2. So
we have proved that a∗(R) = a∗(A) if and only if a∗(A) 6= −1.

Example. Let A = k[x1, . . . , xn]. From the formula for ai(A) and ai(R) in the last
section we get a∗(A) = −n while

a∗(R) =

{

−2 for n = 1,
−n for n > 1.

If a∗(A) = −1, we may expect that a∗(R) = −2. But that is not always the case.
For instance, in the last example of Section 4 we have a∗(A) = −1 and a∗(R) = −3.

We may also formulate Theorem 5.3 in terms of the maximal shifts of the minimal
free resolution of A as follows.

Corollary 5.4. (i) b∗(A) ≤ b∗(R) ≤ b∗(A) + n.

(ii) b∗(R) = b∗(A) + n if and only if b∗(A) 6= n− 1.

Proof. By Corollary 2.2(i) we have b∗(A) = a∗(A) + n and b∗(R) = a∗(R) + 2n.
Hence the conclusion follows from Theorem 5.3.

Now we study the relationships between the partial regularities of a given graded
algebra A and its Rees algebra R.

Proposition 5.5. For any integer j ≥ 0 we have

(i) regj−n(A) ≤ regj(R) ≤ regj(A) + 1.

(ii) regj(R) = regj(A)+1 if and only if there is an integer i < j such that regj(A) =
ai + i and ai ≤ −2.

Proof. By Theorem 2.1(ii) and Proposition 3.3 we have

regj(R) = (2n− j)- reg(R) ≥ (2n− j)- reg(A) = regj−n(A).

Since G ∼= A, Theorem 3.5 implies ai(R) ≤ max{ai−1(A), ai(A)} for all i. From this
it follows that regj(R) ≤ regj(A) + 1. So we obtain (i).
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To prove (ii) we assume first that regj(R) = regj(A) + 1. Let i ≤ j be an integer
such that regj(R) = ai(R) + i. Then ai(R) = regj(A) − i + 1. On the other
hand, ai(R) ≤ max{ai−1, ai} by Proposition 3.2. Since ai−1 ≤ regj(A) − i + 1 and
ai ≤ regj(A) − i, we must have ai(R) = ai−1. This implies regj(A) = ai−1 + i − 1
and, by Proposition 4.6, ai−1 ≤ −2.

Conversely, assume that there is an integer i < j such that regj(A) = ai + i and
ai ≤ −2. Then ai+1 + i+ 1 ≤ ai + i. Therefore, ai+1 ≤ ai − 1 < 0. By Corollary 4.6,
we get ai+1(R) = ai. Hence

regj(R) ≥ ai+1(R) + i+ 1 = ai + i+ 1 = regj(A) + 1.

By (i) this implies regj(R) = regj(A).

We may formulate Proposition 5.5(i) for the partial regularity j- reg(R) of Bayer,
Charalambous, and Popescu (see Section 1). But, unlike the estimation for b∗j (R), we
are not able to express the condition of Proposition 5.5(ii) in terms of the maximal
shifts of the minimal free resolution of A.

Corollary 5.6. For any integer j ≥ 0 we have

(i) j- reg(A) ≤ j- reg(R) ≤ (j − n)- reg(A) + 1.

(ii) j- reg(R) = (j − n)- reg(A) + 1 if (j − n)- reg(A) = bi(A) − i and bi(A) ≤ n− 2
for some index i > j − n at which A has an extremal Betti number.

Proof. By Theorem 2.1(ii) we have

j- reg(A) = regn−j(A), j- reg(R) = reg2n−j(R), (j − n)- reg(A) = reg2n−j(A).

Therefore, (i) follows from Proposition 5.5(i). For (ii) we have bi(A) = an−i + n by
Corollary 2.3, hence reg2n−j(A) = an−i + n− i and an−i ≤ −2. By Theorem 5.5(ii)
this implies reg2n−j(R) = reg2n−j(A) + 1. Thus, j- reg(R) = (j− n)- reg(A) + 1.

The following result which is an immediate consequence of Proposition 5.5 gives
precise information on the value of the regularity of the Rees algebra of the maximal
graded ideal.

Theorem 5.7. (i) reg(A) ≤ reg(R) ≤ reg(A) + 1.

(ii) reg(R) = reg(A)+ 1 if and only if there is an integer i such that reg(A) = ai + i
and ai ≤ −2.

Example. Let A = k[x1, . . . , xn]. We have reg(A) = 0 with ai = −∞ for i < n
and an = −n. Therefore,

reg(R) =

{

0 for n = 1,
1 for n > 1.

Let T = A[z1, . . . , zs] be a polynomial ring over A. Let Rs denote the Rees algebra
of T with respect to the maximal graded ideal. It is well known that reg(T ) = reg(A).
However, the regularities of the Rees algebras Rs and R need not to be the same.
In fact, it may happen that reg(R) = reg(A) but reg(Rs) = reg(A) + 1.
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Corollary 5.8. Let i = max{j| reg(A) = aj + j}. Put c = max{0, ai − 2}. Then

reg(Rs) =

{

reg(A) for s < c,
reg(A) + 1 for s ≥ c.

Proof. By Proposition 2.5 we have aj+s(T ) = aj − s for all j ≥ 0. Since reg(T ) =
reg(A), we have reg(T ) = aj+s(T ) + (j + s) if and only if reg(A) = aj + j. If
s < c, then aj − s > ai − c ≥ −2 for all j with reg(A) = aj + j. ¿From this it
follows that aj+s(T ) > −2 for all j with reg(T ) = aj+s(T ) + (j + s). If s ≥ c, then
reg(T ) = ai+s(T ) + (i+ s) with ai+s(T ) = ai − s ≤ −2. Now we only need to apply
Theorem 5.7(ii) to get the conclusion.

There is the following sufficient condition for the equality reg(R) = reg(A) + 1 in
terms of the maximal shifts of the minimal free resolution of A.

Corollary 5.9. reg(R) = reg(A) + 1 if reg(A) = bi(A) − i and bi(A) ≤ n − 2 for
some index i at which A has an extremal Betti number.

Proof. By Corollary 2.3 we have bi(A) = an−i + n, hence reg(A) = an−i(A) + n− i
and an−i ≤ −2. By Proposition 5.5 this implies reg(R) = reg(A) + 1.

Corollary 5.9 is not a necessary condition for the equality reg(R) = reg(A) + 1.

Example. Let A = k[∆], where ∆ is the simplicial complex on 7 vertices {1, 2, 3, 4,
5, 6, 7} with the maximal faces {1, 2, 3}, {4, 5, 6} and {5, 6, 7}. Using Hochster’s
formula for the local cohomology modules of k[∆] (see e.g. [BH, Theorem 5.8]) we
get H i

m
(A) = 0 for i 6= 1, 3, H1

m
(A)a = 0 for a 6= 0, H3

m
(A)a 6= 0 for a ≤ −2 and

H3
m
(A)a = 0 for a > −2. From this it follows that ai(A) = −∞ for i 6= 1, 3, a1(A) = 0

and a3(A) = −2. Therefore, reg(A) = 1 and, by Theorem 5.7, reg(R) = 2. On the
other hand, A has a 2-linear R-resolution since reg(A) = 1. Hence the condition
that reg(A) = bi(A) − i, and that A has an extremal Betti number at i is satisfied
for i = 6. But we have b6(A) = 7 > n− 2 = 5.

As applications, we will study the regularity of the Rees algebra Rin := B[mint] of
the algebra Ain := B/(in(J)), where in(J) denotes the initial ideal of J with respect
to an arbitrary term order and min is the maximal graded ideal of Ain.

Proposition 5.10. (i) ai(R) ≤ ai(Rin) for all i ≥ 0,

(ii) a∗(R) ≤ a∗(Rin),

(iii) reg(R) ≤ reg(Rin).

Proof. We only need to prove (i). Note that ai ≤ ai(Ain) by [Sb, Theorem 3.3]. If
ai ≥ 0, then ai(Ain) ≥ 0. Applying Proposition 4.6 we obtain

ai(R) = ai ≤ ai(Ain) = ai(Rin).

If ai < 0 and ai(Ain) < 0, then

ai(R) = max{a| a ≤ −2 and H i−1
m

(A)a 6= 0}

≤ max{a| a ≤ −2 and H i−1
m

(Ain)a 6= 0} = ai(Rin).
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If ai < 0 and ai(Ain) ≥ 0, we apply Proposition 4.6 again to see that

ai(R) ≤ −2 < ai(Ain) = ai(Rin).

For the generic initial ideal Gin(J) of I with respect to the reverse lexicographic
term order, we set AGin := B/Gin(J) and RGin := B[mGint], where mGin is the
maximal graded ideal of AGin. The following results show that in this case, a∗(RGin)
and reg(RGin) share the same lower and upper bounds of a∗(R) and reg(R) as in
Theorem 5.3 and Theorem 5.7. In particular, reg(RGin) differs from reg(R) at most
by 1.

Proposition 5.11. (i) a∗(A) − n ≤ a∗(RGin) ≤ a∗(A),

(ii) a∗(RGin) = a∗(A) if and only if a∗(A) 6= −1.

Proof. By [T3, Corollary 1.4] we have a∗(B/Gin(J)) = a∗(A). Therefore, the con-
clusion follows from Theorem 5.3.

Proposition 5.12. (i) reg(A) ≤ reg(RGin) ≤ reg(A) + 1,

(ii) reg(RGin) = reg(A) + 1 if there is an integer i such that reg(A) = ai + i and
ai(A) ≤ −2.

Proof. By [T3, Corollary 1.4] we have reg(AGin) = reg(A). Therefore, (i) fol-
lows from Theorem 4.3(i). By Theorem 5.7(ii), the condition of (ii) implies that
reg(R) = reg(A)+1. By Proposition 5.10, we have reg(R) ≤ reg(RGin) ≤ reg(A)+1.
Therefore, reg(RGin) = reg(A) + 1.

Remark. In spite of the above results one may ask whether a∗(R) = a∗(RGin)
and reg(R) = reg(RGin) always hold. Unfortunately, we were unable to settle this
question.
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