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Abstract

A rig is a ring without negatives. We analyse the free rig on a generatosubject to the
equivalencex ~ 1+ x + X2, showing that in it the non-constant polynomials form a ring. This
ring can be identified with the Gaussian integers, which thus acquire objective meaning.
© 2004 Elsevier Ltd. All rights reseved.

1. Introduction

Quotient polynomial rings serve as mathematical models in a wide variety of
applications and have beentersively studied; see, e.Buchberger and Winkle¢199§.

The corresponding situation for rigs (also known as semirings) is underdeveloped. The
interest for investigating this is that rigs provide direct mathematical models in scenarios
where additive inverses have, a primo meaning or interpretation.

One such scenario arises naturally in the context of category theory, and vyields
applications in programming and type theory. Consider the notion dfsiibutive
category: a category with finite sums and finite products with the latter distributing over
the former. In such a category, sums and products endow the set of isomorphism classes
of objects with the sucture of a rig, its so-calle@urnside rig. The Burnsile rig of a
distributive category is in fact a ring iff the category is trivial. Thus the natural algebraic
structure asing in this context is that of a rig rather than a ring.
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Fadlowing the investigations ofawvere(1991) andBlass(1999, Gateq1998 showed
that the Burnside rig of the free distributive categ®yX]/(X = p(X)) on a generatoX
equipped with an isomorphis = p(X), wherep € N[x] has non-zero constant term, is
the quotient polynomial rigN[x]/(x = p(x)) of the rig N[x] under the least congruence
identifying x and p(x). Thus the structure dfi[x]/(x = p(x)) and calculations in it give
information on the isomguhisms satisfied by objec¥ = p(X) in distributive categories.
For instance, suppose thpt, p2 € N[x] with p; = p2 in N[x]/(X = p(x)): then for all
objectsX of a distributive categorp,

X = p(X) = pu(X) = p2(X).

Moreover, every derivation of the equality in the algebiix]/(x = p(x)) yields an
isomorphism in the categorip.

The distributive categorie®[X]/(X = p(X)) can be described as categories with
objects given by types (e.g., the generator amounts to a recursively defined type) and
morphisms given by programs. The use of thelg]/(x = p(x)) in this context yields
interesting applications to pgramming and type theory; s€@re (2004 for detals.

In Fiore and Leinster(in pres$ and Fiore (2004, we started the study of the quotient
polynomial rigsN[x]/(Xx = p(x)) wherep € N[x] has a non-zero constant term;
Fiore and Leinster(in pres3 contains the case of polynomiatswith degree at least two,
andFiore (2004 encompasses all polynomials. Among other things, we showed that these
guotient polynomial rigs have a decidable word problem. The result for polynomiails
degree at least two is obtained as a consequence of the following decomposition:

N[x]/(x = p(x)) = NWZ[X]/(X — p(X)) 1)

which gives a complete and well-understood description of the rig. KHere disjoint
union and the algebraic structure of the right-hand side has additive and multiplicative
units respectively given by 0 and 1, addition extended by the obvious actidh af
Z[x]/(x — p(x)), and multiplication extended freelyThe corresponding decomposition
result fa linear p is more subtle: seEiore, 2004)

In particular, Z[x]/(x — p(x)) embeds as the set of (equivalence classes of) non-
constant polynomials itN[x]/(X = p(x)); addition and multiplication are preserved by
this embedding, but the additive and multiplicative unitZgk]/(x — p(x)) correspond,
inevitably, to elements dN[x]/(x = p(x)) other than 0 and 1. There are two remarkable
aspects to this: first, that the non-constant elements of tiN{ Ky (x = p(x)) carry aring
structure at all, and second, that this ringZig<]/(x — p(x)), which can be thus realised
by isomorphism classes of objectsitiX]/(X = p(X)).

In this companion paper tBiore and Leinster(in pres$ andFiore (2009 we analyse
one important example of the abosguation in detail: the casp(x) = 1 + x + x2.
There are various reasons for doing this. One is that we can establish the decomposition
(1) in avery simple, though insightful, manner, and can prove the further result (akin to
the situation in the theory of Gbiher bases for rings) that the word problem can be solved
by a finite strongly normalising reduction system. Whether this kind of result holds in
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generdlity is open. Another motivation, which gives name to this paper, is to show that the
ring of Gaussian integers

ZIX]/(1+ x> Z Z[i]={m+ni [mneZ} CC

has objective meaning in the sense that it arises as the set of isomorphism classes of objects
in a distributive category with the algebraic operations of addition and multiplication
corresponding respectively to the categatioperations of sum and product. (Recall from
above that the additive and ttiplicative units cannot aris & the initial and terminal
objects.) We leave open the problem of finding a distributive category with Burnside rig
N[x]/(x = 1+ x 4+ x2) which would provide the Gaussian integers with an even more
direct (e.g. combinatorial, geometric, or topological) objective meaning.

Section 2presents theeasults of the paper, whils$ection 3gives an aplication to
programming and type theory using the following argument (which we invite the reader
to consider before studying the rest of th@eg. Since, as we will see shortly, the identity
x = x° holds inN[x]/(x = 1+ x + x?), it follows that in any distributive category the
implication

XZ14+X4+X2= X=X 2)

holds. In particular, for the distributive category of sets and functions (with additive
structure given by the empty set and disjoint union, and multiplicative structure given
by the singleton and cartesian product) the sa#lofzkin trees (that is, unlabelled planar
unary- and/or binary-branching trees) clearly satisfies the hypothesis of the impli@tion (
Thus, there is an isomorphism in the language of distributive categories (not merely in set
theory) between the seté Motzkin trees and five-tuples of Motzkin trees.

2. Results

Arigis a setR equipped with elements 0 and 1 and binary operatioasd- suchthat
(R, 0, +) is a cmommutative monoid(R, 1, -) is a monoid, and the distributive laws

ab+ac=a(b+c) ba+ca=((b+ca

hold for alla, b, c € R.

The free rig on a generator is the et of polynomialsN[x] with naturd number
coefficients equipped with the usual additiand multiplication of polynomials and their
respective units. The main object of study in this paper is the quotient polynomial rig

NIX]/(X = 1+ X + X?)

defined as the quotient riy[x]/ ~, where~ is the snallest congruence on the g x]
satisfyingx ~ 1+ x + x2.

While studying the work ofBlass(1995 we notced that there is an unfolding/folding
procedure that works well as a calculational heuristic method for establishing many
identities in quotient polynomial rigiN[x]/(x = p(x)). In exploring the quotient
polynomial rigN[x]/(x = 1+ x 4+ x?) we on observed that the generatobehaves
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very muchlike the imaginary unit. For instance, we have~ x°. This can be seen from
the following calculation, exemplifying the uaifiing/folding procedure referred to above,
in which an unfolding step replac&8*! with x" + x"*1 + x"2 (n > 0) whilst a folding
step does the opposite.

X ~ 14+x+x2 (unfoldingx)
~ 14+ x+x+x?>+x%  (unfoldingx?, aiming at cancelling 1l
~ X+ x4+ x3 (cancelling 1 an&? by folding 1+ x + x?)
~ X+ x+x24+x34x*  (unfoldingx?, aiming at cancelling)
~ X+ x24+x4 (cancellingx andx? by folding x + x2 + x3)
~ x4+ x2+x34+x*+ x5 (unfoldingx*, aiming at cancelling)
~ x2 4 x* 4 x5 (cancellingx andx? by folding x + x2 + x3)
~ x?+x34+ x4+ x5+ x5 (unfoldingx#, aiming at cancelling®)
~ x4 x4 x5 (cancellingx? andx* by folding x2 + x3 + x%)
~ x3 4+ x4+ x°4+ x5+ x8 (unfoldingx®, aiming at cancelling®)
~ x4 x5 4 x8 (cancellingx® andx® by folding x3 + x* + x°)
~ x5 (cancellingx* andx® by folding x* + x5 + x5).

The reasons for which this calculation goes through are explained by the following
proposition.
Let—1=x20=1+ -1, and 1= 1+ 0in N[x].

Proposition1. (1) Forn> 0,x"0 ~ 0.

(2) For all non-constant pin N[x], p+ 0~ p.

(3) For all non-zero pin N[x], pO ~ O.

(4) For all non-constant p in N[x], p1~ p.

(5) For all non-zero pinN[x], p+ —1p ~ 0.

(6) For all non-constant p, g in N[x] and for any r in N[x], the cancellation law

pP+r~aq+r=p~q

holds.
(7) For pinN[x]JandninN, p~nifandonlyif p=n.
Proof. (1) XO=x+x3~14+x+x2+x3~1+x2=0.
(2) Sincex + 0 ~ x, we also have that

Xn+1 +Q ~ Xn+1 + XnQ — Xn(X +Q) ~ Xn+1

foralln > 0.
(3) We have from (2) thatO ~ Ofor alln > 1. Hence,

(me>9= S0 ~ Y0~ 0

iel iel iel

for all finite non-emptyl .
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(4) Follows from (2) and (3).
(5) Follows from (3).
(6) Forp, g non-constant andnon-zero we have that
p+r~q+r = p+r+-=-r ~q+r+-=1Ir
= p+0~q+0
= p~q.
(7) Consider the unique rig homomorphism froffx]/(x = 1 + x + x2) to the rig of
countable cardinals mappingto Ro. O

In the light of the proposition, the previous derivatiorxof x° in N[x]/(x = 1+ X + x?)
amounts to the following one:

X~ X +0x%+x3) = X+ X2+ x3 + x* + x5 = 0(x + x?) + x> ~ x°.

Theorem 2. The subset of N[x]/(x = 1+ x + x?) consisting of (equivalence classes of)
non-constant polynomials, equipped with the usual addition and multiplication but with
additive unit 0 and multiplicative unit 1, is a ring; negatives are given by multiplication
with —1. Further, thisring is (isomorphic to) the ring of Gaussian integers.

Proof. The first partis a corollary d?roposition 1For the gcond part, writdR for the ring
in question; then thesomorphism igyiven by the restriction to R of the unique generator-
preserving rig homomorphisii[x]/(x = 14 x+x?) — Z[x]/(1+ x?) and by the unique
generator-preservingng homomorphisnZ[x]/(1 + x?) — R. O

Explicitly, the isomorphism in the proof amounts to the mappings below.

R — ZJi] Z[il - R
p(x) — p@G) HM=En — £Im+xinx (m,n e N).

It follows that the Gaussian integers are representéd[ifi/(x = 1 + x + x2) by the
polynomials

m+ 1+ x% m+nx (n#0), m+nx3 (n # 0), mx? + nx, mx?+ nx3 (3)
wherem, n € N are not both 0.

Remark. Proposition {7) andTheorem 2ogether inply thatN[x]/(x = 1 + X + x?) is
formed by extending the addition and multiplication of the figandZ[i] to their disjoint
union

NW (Z x Z)

with additive and multiplicative units respectively given by 0 and 1, and with addition
extended by the obvious action &f onZ[i ]:

L4+ (MmN =m,n)+£={+m,n) ZeN,mne?Z)),
and multiplication extended freely:

Z.(m,n):(m,n)%:Z(m,n) (¢ e N,m,n € Z).
V4
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Corollary 3. For all non-constant p and q in N[x] the following are equivalent.

1. p=qin N[x]/(X = 1+ X + x?).
2. p=qin Z[x]/(1+ x?).
3. pi)=q@)inZ[i].

Corollary 4. Theword problemin N[x]/(x = 1+ X + x2) isdecidable.

Proof. Given two polynomials inN[x], if they are both non-constant then evaluate them
ati and test for equality iZ[i ]; otherwise, byProposition {7), they are equalentif and
only if they are equal. O

Our analysis yields an algorithm for obtaining a derivation of the equality of two
polynomials inN[x]/(x = 1+ x + x?). Indeed, for non-constart andq in N[x] use
the division algorithm irZ[x] to obtain

PO) — A = (w1(X) — w2(X))(L+ X?) +71(X)

with w1, w2 in N[x] and with remainder satisfyingr = 0 or 0 < dedqr) < 1. By
Corollay 3, p andq are equal ifN[x]/(x = 1+ x + x?) ifandonly if r = 0. In that case
we can obtain a derivation of the equality by noticing that

PX) + (W1(X) + w2(X)X ~ PX) + W)X + w2(X) (L + X + x?)
= q(X) + w1(X) (1 + X + X?) + wa(X)X
~ q(X) + (wi(X) + w2(X))X

and tha derivingp ~ g using the candkation law (Proposition 16)).

Example5. Since 2+i2 = i%inZ[i], it follows that 2+-x2 = x*in N[x]/(x = 1+X+X2).
A derivation of this equality using the above method follows.
24 X2~ 24 X2+ 24 XX + —12 + x®)x
~ 24 X2+ 22X+ X214 x 4+ %) + =12+ x®)x
=x* 4+ 20+ x +x%) + X2 + =12 + x)x
~ x4 (24 xP)x + —1(2 + x?)x
~ x4,

It is interesting to note that a more direct derivation of the above can be obtained by the
unfolding/folding procedure:

24 x2~1+14+x+x2+x3%  (unfoldingx?, aiming at cancelling 1L

~1+4x+x3 (cancelling 1 an&? by folding 1+ x + x2)
~14+x4+x24+x3+x* (unfoldingx®, aiming at cancelling 11

~ X4 x3 4 x4 (cancelling 1 an&? by folding 1+ x + x2)
~X+x%+x3+x*+x* (unfoldingx®, aiming at cancelling)

~x2 4 x4 x4 (cancellingx andx? by folding x + x2 + x3)
~x2 4+ x3 + x* + x* + x° (unfoldingx#, aiming at cancelling?)

~x3 4 x4 x5 (cancellingx? andx* by folding x2 + x3 + x%)

~ x4 (cancellingx® andx® by folding x3 + x* + x5).
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Theorem 6. Two polynomialsin N[x] are equal in N[x]/(x = 1+ x + x?) if and only if
they have the same normal form in the following strongly normalising reduction system:

x4 — 2+ x2
X+ x3 — 1+ x2
X"+1+x2—>x" (1<n<3).

Proof. The reduction system is terminating, as whenevpr— q we have that
p(2) > q(2). Further, all citical pairs are joinable and so the reduction system is also
confluent.

To conclude the proof we show that the normal forms are exactly given by the constants
together with the polynomial representatid®) of the Gaissian integers. That is, the
normal forms are the polynomials

m+ 1+ x2, m -+ nx, m + nx3, mx2 + nx, mx2 + nx3

withm, n € N.

By successive agigations of the first reduction rule (in the form af™** — 2x™ +
x™+2) every polynomial reduces to one of degree less than or equal to 3. Further, since
a+ bx 4+ cx2+ dx3(a, b, ¢, d € N) reduces to

(a+ min(b, d)) + (¢ + min(b, d)x? + (b = d)x + (d = b)x3,

normal forms are either of the form @+ ¢x%+ nx3 or (i) k4 ¢x?>+ nx with k, £, n € N.
We analyse each case in turn.

(i) If n = 0then the polynomialis of the fortk+ ¢x2; in whichcase, if¢ > kit reduces
to (¢ — k)x2, and if¢ < k it reduces tdk if £ = 0 and to(k — £) + 1+ x2if £ # 0.
If n # 0 then the polynomial reduces tk — ¢) + (£ — k)x2 + nx3 which is either
of the formm + nx3 or mx2 + nx3 with m, n € N.

(i) If n = 0 then the polynomial is of the fork + ¢x2, and we areri the stuation of
the first case above.
If n # 0 then the polynomial reduces tk — ¢) + (£ — k)x2 4+ nx which is either of
the formm + nx or mx2 + nx with m, n € N. O

It follows that the word problem itN[x]/(x = 1+ x + x2) is decidable in polynomial
time.

Example7. (1) Form> 1, we have thax™4 — 2x™M 4 xM+2 . xM 4 xM-1 4 ym+1
— x™. Hence, as we saw in the introductior?, = x in N[x]/(x = 1 + X + X2).

(2) InN[x]/(x = 1+ x + x?), we have thak(1 + x3)8 ~ 16x. Indeed,(1 + x3)2 =
14 2x34x8 —* 14+ 2x3+x2 — 2x3. It follows that(1+ x3)* ~ 4x8 —* 4x2 and
s0(1+x3)8 ~ 16x* —* 32+ 16x2 —* 17+ x2. Findly, x(1+x3)8 ~ 17x+x3 —
16x + 1+ x2 — 16x.

3. An application

We monclude the paper with an application to programming and type theory.
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As briefly mentioned in the introduction, the rij[x]/(x = 1 + x + x? has
straghtforward objective realisation by types; deiere (20049 for details. Indeed, in the
programming language ML, the generator is realised by the type of Motzkin trees defined
as follows:

datatype X =e | s of X | m of X * X

Importartly, calculations in the rig translate as programs that establish isomorphisms be-
tween the associated types. Thus, for instance, the identity® in N[x]/(X = 1+X+x?)
entails an isomorphism (in the language of distributive categories) between Motzkin trees
and five-tuples of Motzkin trees, and using the methods of this paper a program realising it
can be automatically constructed. We illustrate this by working this example out manually.

First, consider the second derivatiorirample Sestablishing the identity* = 2+ x2
in N[x]/(x = 1+ x + x?). It yields an isomgphism between

type X4 = X * X * X * X

and
datatype U =01 | 02 | p of X * X

given explicitly by the following program:

val foldl: X4 -> U = fn t => case t of

(e, e, e, e) => o1l
| Ce, e, e, sCe) ) => 02
| Ce, e, e, s(s(t)) ) =>p(e, t)

| Ce, e, e, s(m(t1,t2)) ) => p( s(t1), t2 )

| Ce, e, e, m(t1,t2) ) => p( m(e,tl), t2 )

| Ce, e, s(tl), t2) => p( m(s(e),tl), t2 )

| (e, e, m(t1,t2), t3 ) => p( m(s(s(t1)),t2), t3 )

| Ce, s(t1), t2, t3) => p( m(s(m(e,t1)),t2), t3 )

| (e, m(t1,t2), t3, t4 ) => p( m(s(m(s(t1),t2)),t3), t4 )
| C s(t1), t2, t3, t4 ) => p( m(m(t1,t2),t3), t4 )

| ( m(t1,t2), t3, t4, t5 ) => p( m(s(m(m(t1,t2),t3)),t4), t5 )
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Now, following Example T1), we exhibit an isomorphism between the tyges U andX.
A program corresponding to the derivation
X2+X) =2X+ X3~ 142X+ x>+ x3~ 1+ X+ X%~ X
follows.
val fold2: X * U -> X = fn t => case t of

(t, ol) => s(t)
| Ce, 02 ) = e
| (s(t), 02) => m(e,t)

| ( m(t1,t2), 02 ) => m(s(t1),t2)

| Ct1, p(t2,t3) ) => m(m(t1,t2),t3)

Finally, an isanorphism between the typé&s* X4 andX can be given by composing the
previous programs:

val fold: X * X4 -> X = fn t => case t of

( t1, t2to5 ) => fold2( t1, foldl( t2to5 ) )

Acknowledgements

Our calculations fell into place after a conversation with Bill Lawvere in which he
mentioned a result of Steve Schanuel tha infinte-dimensional elements (s&ehauel
1997 of some quotient polynomial rigs actually form a ring. This led to the results of
this paper and the generalisations presented elsewfiere @gnd Leinsterin press Fiore
2004. Marcelo Fiore was supported by an EPSRC Advanced Research Fellowship.

References

Blass, A., 1995. Seven trees in one. J. Pure Appl. Algebra 103, 1-21.

Buchberger, B., Winkler, F. (Eds.), 1998. @hrier bases and applications. In: Proc. of the
International Conference “33 Years of Groebner Bases”. London Mathematical Society Lecture
Note Seies, vol. 251. Cambridge University Press, Cambridge, UK.

Fiore, M., 2004. Isomorphisms of generic recursive polynomial types. In: Proc. of the 31st Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. ACM Press,
pp. 77-88.

Fiore, M., Leinster, T., 2002. Objects of categories as complex humbers. Adv. Math. (in press).

Gaes, R., 1998. On the generic solution RYX) = X in distributive catgories. J. Pure Appl.
Algebra 125, 191-212.



716 M. Fiore, T. Leinster / Journal of Symbolic Computation 37 (2004) 707716

Lawvere, F.W., 1991. Some thoughts on the future of category theory. In: Proc. Como 1990. Lecture
Notes in Mathematics, vol. 1488. Springer-Verlag, Berlin, pp. 1-13.

Schanuel, S.H., 1991. Negative sets have Euler characteristic and dimension. In: Proc. Como 1990.
Lecture Notes in Mathematics, vol. 1488. Springer-Verlag, Berlin, pp. 379-385.



	An objective representation of the Gaussian integers
	Introduction
	Results
	An application
	Acknowledgements
	References


