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Abstract

A rig is a ring without negatives. We analyse the free rig on a generatorx subject to the
equivalencex ∼ 1 + x + x2, showing that in it the non-constant polynomials form a ring. This
ring can be identified with the Gaussian integers, which thus acquire objective meaning.
© 2004 Elsevier Ltd. All rights reserved.

1. Introduction

Quotient polynomial rings serve as mathematical models in a wide variety of
applications and have been extensively studied; see, e.g.Buchberger and Winkler(1998).
The corresponding situation for rigs (also known as semirings) is underdeveloped. The
interest for investigating this is that rigs provide direct mathematical models in scenarios
where additive inverses have, a priori, no meaning or interpretation.

One such scenario arises naturally in the context of category theory, and yields
applications in programming and type theory. Consider the notion of adistributive
category: a category with finite sums and finite products with the latter distributing over
the former. In such a category, sums and products endow the set of isomorphism classes
of objects with the structure of a rig, its so-calledBurnside rig. The Burnside rig of a
distributive category is in fact a ring iff the category is trivial. Thus the natural algebraic
structure arising in this context is that of a rig rather than a ring.
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Following the investigations ofLawvere(1991) andBlass(1995), Gates(1998) showed
that the Burnside rig of the free distributive categoryD[X]/(X ∼= p(X)) on a generatorX
equipped with an isomorphismX ∼= p(X), wherep ∈ N[x] has non-zero constant term, is
the quotient polynomial rigN[x]/(x = p(x)) of the rig N[x] under the least congruence
identifying x and p(x). Thus the structure ofN[x]/(x = p(x)) and calculations in it give
information on the isomorphisms satisfied by objectsX ∼= p(X) in distributive categories.
For instance, suppose thatp1, p2 ∈ N[x] with p1 = p2 in N[x]/(x = p(x)): then for all
objectsX of a distributive categoryD,

X ∼= p(X) p1(X) ∼= p2(X).

Moreover, every derivation of the equality in the algebraN[x]/(x = p(x)) yields an
isomorphism in the categoryD.

The distributive categoriesD[X]/(X ∼= p(X)) can be described as categories with
objects given by types (e.g., the generator amounts to a recursively defined type) and
morphisms given by programs. The use of the rigN[x]/(x = p(x)) in this context yields
interesting applications to programming and type theory; seeFiore(2004) for details.

In Fiore and Leinster(in press) andFiore (2004), we started the study of the quotient
polynomial rigsN[x]/(x = p(x)) where p ∈ N[x] has a non-zero constant term;
Fiore and Leinster(in press) contains the case of polynomialsp with degree at least two,
andFiore(2004) encompasses all polynomials. Among other things, we showed that these
quotient polynomial rigs have a decidable word problem. The result for polynomialsp of
degree at least two is obtained as a consequence of the following decomposition:

N[x]/(x = p(x)) ∼= N � Z[x]/(x − p(x)) (1)

which gives a complete and well-understood description of the rig. Here� is disjoint
union and the algebraic structure of the right-hand side has additive and multiplicative
units respectively given by 0 and 1, addition extended by the obvious action ofN on
Z[x]/(x − p(x)), and multiplication extended freely.(The corresponding decomposition
result for linear p is more subtle: seeFiore, 2004.)

In particular,Z[x]/(x − p(x)) embeds as the set of (equivalence classes of) non-
constant polynomials inN[x]/(x = p(x)); addition and multiplication are preserved by
this embedding, but the additive and multiplicative units ofZ[x]/(x − p(x)) correspond,
inevitably, to elements ofN[x]/(x = p(x)) other than 0 and 1. There are two remarkable
aspects to this: first, that the non-constant elements of the rigN[x]/(x = p(x)) carry a ring
structure at all, and second, that this ring isZ[x]/(x − p(x)), which can be thus realised
by isomorphism classes of objects inD[X]/(X ∼= p(X)).

In this companion paper toFiore and Leinster(in press) andFiore (2004) we analyse
one important example of the abovesituation in detail: the casep(x) = 1 + x + x2.
There are various reasons for doing this. One is that we can establish the decomposition
(1) in a very simple, though insightful, manner, and can prove the further result (akin to
the situation in the theory of Gr¨obner bases for rings) that the word problem can be solved
by a finite strongly normalising reduction system. Whether this kind of result holds in
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generality is open. Another motivation, which gives name to this paper, is to show that the
ring of Gaussian integers

Z[x]/(1 + x2) ∼= Z[i ] = {m + ni | m, n ∈ Z} ⊆ C

has objective meaning in the sense that it arises as the set of isomorphism classes of objects
in a distributive category with the algebraic operations of addition and multiplication
corresponding respectively to the categorical operations of sum and product. (Recall from
above that the additive and multiplicative units cannot arise as the initial and terminal
objects.) We leave open the problem of finding a distributive category with Burnside rig
N[x]/(x = 1 + x + x2) which would provide the Gaussian integers with an even more
direct (e.g. combinatorial, geometric, or topological) objective meaning.

Section 2presents the results of the paper, whilstSection 3gives an application to
programming and type theory using the following argument (which we invite the reader
to consider before studying the rest of the paper). Since, as we will see shortly, the identity
x = x5 holds inN[x]/(x = 1 + x + x2), it follows that in any distributive category the
implication

X ∼= 1 + X + X2 X ∼= X5 (2)

holds. In particular, for the distributive category of sets and functions (with additive
structure given by the empty set and disjoint union, and multiplicative structure given
by the singleton and cartesian product) the set ofMotzkin trees (that is, unlabelled planar
unary- and/or binary-branching trees) clearly satisfies the hypothesis of the implication (2).
Thus, there is an isomorphism in the language of distributive categories (not merely in set
theory) between the sets of Motzkin trees and five-tuples of Motzkin trees.

2. Results

A rig is a setR equipped with elements 0 and 1 and binary operations+ and· suchthat
(R, 0,+) is a commutative monoid,(R, 1, ·) is a monoid, and the distributive laws

0 = a0 0 = 0a
ab + ac = a(b + c) ba + ca = (b + c)a

hold for all a, b, c ∈ R.
The free rig on a generatorx is the set of polynomialsN[x] with natural number

coefficients equipped with the usual addition and multiplication of polynomials and their
respective units. The main object of study in this paper is the quotient polynomial rig

N[x]/(x = 1 + x + x2)

defined as the quotient rigN[x]/ ∼, where∼ is the smallest congruence on the rigN[x]
satisfyingx ∼ 1 + x + x2.

While studying the work ofBlass(1995) we noticed that there is an unfolding/folding
procedure that works well as a calculational heuristic method for establishing many
identities in quotient polynomial rigsN[x]/(x = p(x)). In exploring the quotient
polynomial rigN[x]/(x = 1 + x + x2) we soon observed that the generatorx behaves
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very muchlike the imaginary unit. For instance, we havex ∼ x5. This can be seen from
the following calculation, exemplifying the unfolding/folding procedure referred to above,
in which an unfolding step replacesxn+1 with xn + xn+1 + xn+2 (n ≥ 0) whilst a folding
step does the opposite.

x ∼ 1 + x + x2 (unfoldingx)

∼ 1 + x + x + x2 + x3 (unfoldingx2, aiming at cancelling 1)
∼ x + x + x3 (cancelling 1 andx2 by folding 1+ x + x2)

∼ x + x + x2 + x3 + x4 (unfoldingx3, aiming at cancellingx)

∼ x + x2 + x4 (cancellingx andx3 by folding x + x2 + x3)

∼ x + x2 + x3 + x4 + x5 (unfoldingx4, aiming at cancellingx)

∼ x2 + x4 + x5 (cancellingx andx3 by folding x + x2 + x3)

∼ x2 + x3 + x4 + x5 + x5 (unfoldingx4, aiming at cancellingx2)

∼ x3 + x5 + x5 (cancellingx2 andx4 by folding x2 + x3 + x4)

∼ x3 + x4 + x5 + x5 + x6 (unfoldingx5, aiming at cancellingx3)

∼ x4 + x5 + x6 (cancellingx3 andx5 by folding x3 + x4 + x5)

∼ x5 (cancellingx4 andx6 by folding x4 + x5 + x6).

The reasons for which this calculation goes through are explained by the following
proposition.

Let −1 = x2, 0 = 1 + −1, and 1= 1 + 0 in N[x].
Proposition 1. (1) For n ≥ 0, xn0 ∼ 0.

(2) For all non-constant p in N[x], p + 0 ∼ p.
(3) For all non-zero p in N[x], p0 ∼ 0.
(4) For all non-constant p in N[x], p1 ∼ p.
(5) For all non-zero p in N[x], p + −1p ∼ 0.
(6) For all non-constant p, q in N[x] and for any r in N[x], the cancellation law

p + r ∼ q + r p ∼ q

holds.
(7) For p in N[x] and n in N, p ∼ n if and only if p = n.

Proof. (1) x0 = x + x3 ∼ 1 + x + x2 + x3 ∼ 1 + x2 = 0.
(2) Sincex + 0 ∼ x , we also have that

xn+1 + 0 ∼ xn+1 + xn0 = xn(x + 0) ∼ xn+1

for all n ≥ 0.
(3) We have from (2) thatn0 ∼ 0 for all n ≥ 1. Hence,(∑

i∈I

xni

)
0 =

∑
i∈I

(xni 0) ∼
∑
i∈I

0 ∼ 0

for all finite non-emptyI .
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(4) Follows from (2) and (3).
(5) Follows from (3).
(6) For p, q non-constant andr non-zero we have that

p + r ∼ q + r p + r + −1r ∼ q + r + −1r

p + 0 ∼ q + 0

p ∼ q.

(7) Consider the unique rig homomorphism fromN[x]/(x = 1 + x + x2) to the rig of
countable cardinals mappingx to ℵ0. �

In the light of the proposition, the previous derivation ofx = x5 in N[x]/(x = 1+ x + x2)

amounts to the following one:

x ∼ x + 0(x2 + x3) = x + x2 + x3 + x4 + x5 = 0(x + x2) + x5 ∼ x5.

Theorem 2. The subset of N[x]/(x = 1 + x + x2) consisting of (equivalence classes of)
non-constant polynomials, equipped with the usual addition and multiplication but with
additive unit 0 and multiplicative unit 1, is a ring; negatives are given by multiplication
with −1. Further, this ring is (isomorphic to) the ring of Gaussian integers.

Proof. The first part is a corollary ofProposition 1. For the second part, writeR for the ring
in question; then the isomorphism isgiven by the restriction toR of the unique generator-
preserving rig homomorphismN[x]/(x = 1+ x + x2) → Z[x]/(1+ x2) and by the unique
generator-preservingring homomorphismZ[x]/(1 + x2) → R. �

Explicitly, the isomorphism in the proof amounts to the mappings below.

R → Z[i ] Z[i ] → R
p(x) 	→ p(i) ±m ± ni 	→ ±1m + ±1nx (m, n ∈ N).

It follows that the Gaussian integers are represented inN[x]/(x = 1 + x + x2) by the
polynomials

m + 1 + x2, m + nx (n 
= 0), m + nx3 (n 
= 0), mx2 + nx, mx2 + nx3 (3)

wherem, n ∈ N are not both 0.

Remark. Proposition 1(7) andTheorem 2together imply thatN[x]/(x = 1 + x + x2) is
formed by extending the addition and multiplication of the rigsN andZ[i ] to their disjoint
union

N � (Z × Z)

with additive and multiplicative units respectively given by 0 and 1, and with addition
extended by the obvious action ofN onZ[i ]:

� + (m, n) = (m, n) + � = (� + m, n) (� ∈ N, m, n ∈ Z),

and multiplication extended freely:

� · (m, n) = (m, n) · � =
∑

�

(m, n) (� ∈ N, m, n ∈ Z).
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Corollary 3. For all non-constant p and q in N[x] the following are equivalent.

1. p = q in N[x]/(x = 1 + x + x2).
2. p = q in Z[x]/(1 + x2).
3. p(i) = q(i) in Z[i ].

Corollary 4. The word problem in N[x]/(x = 1 + x + x2) is decidable.

Proof. Given two polynomials inN[x], if they are both non-constant then evaluate them
at i and test for equality inZ[i ]; otherwise, byProposition 1(7), they are equivalentif and
only if they are equal. �

Our analysis yields an algorithm for obtaining a derivation of the equality of two
polynomials inN[x]/(x = 1 + x + x2). Indeed, for non-constantp andq in N[x] use
the division algorithm inZ[x] to obtain

p(x) − q(x) = (w1(x) − w2(x))(1 + x2) + r(x)

with w1, w2 in N[x] and with remainderr satisfyingr = 0 or 0 ≤ deg(r) ≤ 1. By
Corollary 3, p andq are equal inN[x]/(x = 1 + x + x2) if andonly if r = 0. In that case
we can obtain a derivation of the equality by noticing that

p(x) + (w1(x) + w2(x))x ∼ p(x) + w1(x)x + w2(x)(1 + x + x2)

= q(x) + w1(x)(1 + x + x2) + w2(x)x

∼ q(x) + (w1(x) + w2(x))x

and then derivingp ∼ q using the cancellation law (Proposition 1(6)).

Example 5. Since 2+i2 = i4 in Z[i ], it follows that 2+x2 = x4 in N[x]/(x = 1+x +x2).
A derivation of this equality using the above method follows.

2 + x2 ∼ 2 + x2 + (2 + x2)x + −1(2 + x2)x

∼ 2 + x2 + 2x + x2(1 + x + x2) + −1(2 + x2)x

= x4 + 2(1 + x + x2) + x2x + −1(2 + x2)x

∼ x4 + (2 + x2)x + −1(2 + x2)x

∼ x4.

It is interesting to note that a more direct derivation of the above can be obtained by the
unfolding/folding procedure:

2 + x2 ∼ 1 + 1 + x + x2 + x3 (unfoldingx2, aiming at cancelling 1)
∼ 1 + x + x3 (cancelling 1 andx2 by folding 1+ x + x2)

∼ 1 + x + x2 + x3 + x4 (unfoldingx3, aiming at cancelling 1)
∼ x + x3 + x4 (cancelling 1 andx2 by folding 1+ x + x2)

∼ x + x2 + x3 + x4 + x4 (unfoldingx3, aiming at cancellingx)

∼ x2 + x4 + x4 (cancellingx andx3 by folding x + x2 + x3)

∼ x2 + x3 + x4 + x4 + x5 (unfoldingx4, aiming at cancellingx2)

∼ x3 + x4 + x5 (cancellingx2 andx4 by folding x2 + x3 + x4)

∼ x4 (cancellingx3 andx5 by folding x3 + x4 + x5).
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Theorem 6. Two polynomials in N[x] are equal in N[x]/(x = 1 + x + x2) if and only if
they have the same normal form in the following strongly normalising reduction system:


x4 → 2 + x2

x + x3 → 1 + x2

xn + 1 + x2 → xn (1 ≤ n ≤ 3).

Proof. The reduction system is terminating, as wheneverp → q we have that
p(2) > q(2). Further, all critical pairs are joinable and so the reduction system is also
confluent.

To conclude the proof we show that the normal forms are exactly given by the constants
together with the polynomial representation (3) of the Gaussian integers. That is, the
normal forms are the polynomials

m + 1 + x2, m + nx, m + nx3, mx2 + nx, mx2 + nx3

with m, n ∈ N.
By successive applications of the first reduction rule (in the form ofxm+4 → 2xm +

xm+2) every polynomial reduces to one of degree less than or equal to 3. Further, since
a + bx + cx2 + dx3(a, b, c, d ∈ N) reduces to

(a + min(b, d)) + (c + min(b, d))x2 + (b −. d)x + (d −. b)x3,

normal forms are either of the form (i)k + �x2 + nx3 or (ii) k + �x2 + nx with k, �, n ∈ N.
We analyse each case in turn.

(i) If n = 0 then the polynomial is of the formk +�x2; in whichcase, if� > k it reduces
to (� − k)x2, and if� ≤ k it reduces tok if � = 0 and to(k − �) + 1 + x2 if � 
= 0.

If n 
= 0 then the polynomial reduces to(k −. �) + (� −. k)x2 + nx3 which is either
of the formm + nx3 or mx2 + nx3 with m, n ∈ N.

(ii) If n = 0 then the polynomial is of the formk + �x2, and we are in the situation of
the first case above.

If n 
= 0 then the polynomial reduces to(k −. �) + (� −. k)x2 + nx which is either of
the formm + nx or mx2 + nx with m, n ∈ N. �

It follows that the word problem inN[x]/(x = 1 + x + x2) is decidable in polynomial
time.

Example 7. (1) Form ≥ 1, we have thatxm+4 → 2xm + xm+2 → xm + xm−1 + xm+1

→ xm . Hence, as we saw in the introduction,x5 = x in N[x]/(x = 1 + x + x2).
(2) In N[x]/(x = 1 + x + x2), we have thatx(1 + x3)8 ∼ 16x . Indeed,(1 + x3)2 =

1+2x3 + x6 →∗ 1+2x3 + x2 → 2x3. It follows that(1+ x3)4 ∼ 4x6 →∗ 4x2 and
so(1+ x3)8 ∼ 16x4 →∗ 32+16x2 →∗ 17+ x2. Finally, x(1+ x3)8 ∼ 17x + x3 →
16x + 1 + x2 → 16x .

3. An application

We conclude the paper with an application to programming and type theory.
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As briefly mentioned in the introduction, the rigN[x]/(x = 1 + x + x2) has
straightforward objective realisation by types; seeFiore (2004) for details. Indeed, in the
programming language ML, the generator is realised by the type of Motzkin trees defined
as follows:

Importantly, calculations in the rig translate as programs that establish isomorphisms be-
tween the associated types. Thus, for instance, the identityx = x5 in N[x]/(x = 1+x+x2)

entails an isomorphism (in the language of distributive categories) between Motzkin trees
and five-tuples of Motzkin trees, and using the methods of this paper a program realising it
can be automatically constructed. We illustrate this by working this example out manually.

First, consider the second derivation inExample 5establishing the identityx4 = 2+ x2

in N[x]/(x = 1 + x + x2). It yields an isomorphism between

and

given explicitly by the following program:
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Now, followingExample 7(1), we exhibit an isomorphism between the typesX * U andX.
A program corresponding to the derivation

x(2 + x2) = 2x + x3 ∼ 1 + 2x + x2 + x3 ∼ 1 + x + x2 ∼ x

follows.

Finally, an isomorphism between the typesX * X4 andX can be given by composing the
previous programs:

Acknowledgements

Our calculations fell into place after a conversation with Bill Lawvere in which he
mentioned a result of Steve Schanuel that the infinite-dimensional elements (seeSchanuel,
1991) of some quotient polynomial rigs actually form a ring. This led to the results of
this paper and the generalisations presented elsewhere (Fiore and Leinster, in press; Fiore,
2004). Marcelo Fiore was supported by an EPSRC Advanced Research Fellowship.

References

Blass, A., 1995. Seven trees in one. J. Pure Appl. Algebra 103, 1–21.
Buchberger, B., Winkler, F. (Eds.), 1998. Gr¨obner bases and applications. In: Proc. of the

International Conference “33 Years of Groebner Bases”. London Mathematical Society Lecture
Note Series, vol. 251. Cambridge University Press, Cambridge, UK.

Fiore, M., 2004. Isomorphisms of generic recursive polynomial types. In: Proc. of the 31st Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. ACM Press,
pp. 77–88.

Fiore, M., Leinster, T., 2002. Objects of categories as complex numbers. Adv. Math. (in press).
Gates, R., 1998. On the generic solution toP(X) ∼= X in distributive categories. J. Pure Appl.

Algebra 125, 191–212.



716 M. Fiore, T. Leinster / Journal of Symbolic Computation 37 (2004) 707–716

Lawvere, F.W., 1991. Some thoughts on the future of category theory. In: Proc. Como 1990. Lecture
Notes in Mathematics, vol. 1488. Springer-Verlag, Berlin, pp. 1–13.

Schanuel, S.H., 1991. Negative sets have Euler characteristic and dimension. In: Proc. Como 1990.
Lecture Notes in Mathematics, vol. 1488. Springer-Verlag, Berlin, pp. 379–385.


	An objective representation of the Gaussian integers
	Introduction
	Results
	An application
	Acknowledgements
	References


