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Abstract

Dynamic geometry programs provide environments where accurate construction of geometric configurations can
be done. Nevertheless, intrinsic limitations in their standard development technology mostly produce objects that are
equationally unknown and so can not be further used in constructions. In this paper, we pursue the development of
a geometric system that uses in the background the symbolic capabilities of two computer algebra systems, CoCoA
and Mathematica. The cooperation between the geometric and symbolic modules of the software is illustrated by
the computation of plane envelopes and other derived curves. These curves are described both graphically and
analytically. Since the equations of these curves are known, the system allows the construction of new elements
depending on them.
© 2004 IMACS. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Considerable attention and efforts are being given to an emerging field which can be Sgnmiealic—
Dynamic Geometry Environmerf@DGE), a synthesis of Dynamic Geometry Software (DGS) and Com-
puter Algebra Systems (CAS). We will not give a definition of CAS, but a few words must be said about the
dynamic geometry paradigm. DGS offers virtual environments where accurate construction of geometric
configurations can be carried out. The key characteristic of these systems is that unconstrained parts of
the construction can be moved and, as they do, all other elements automatically self-adjust, preserving
all dependent relationships and constrajti5].

Several authors have postulated a deeper cooperation between both types of systems in order to enhanc
the abilities of dynamic geometry programs with sophisticated algebraic algorithms. Recio and Vélez
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[16,17]have extended the automatic theorem-proving method proposed by Kapto deal with auto-

matic discovery in elementary geometry. They conclude that their method can “be regarded as the core o
a future program-[- - ] that allows, when linked simultaneously with a tool for displaying geometric con-
structions and a symbolic computation package, the interactive exploration of geometric properties”. We
have developed such a program, Discojé&fywhere a dynamic geometry environment written in Prolog
cooperates with Mathematica in order to automatize geometric discovery. Another piece of software using
the above method is Lugarfd. Lugares specializes in computing plane loci, and it uses CqdGbia

order to override current limitations of Mathematica when dealing with Groebner bases computations.
Roaned20] has also claimed boosting the cooperation betweeen DGS and CAS, having coauthored
ParamGeo, a package that links Maple and Derive with The Geometer’s Sketchpadi@SRirrently

at a beta-level version. Kortenkamp reportflii] some experiments about integrating its dynamic geom-
etry package Cinderel[d9] with other software. Cinderella is used to visualize a simulation driven by a
Mathematica notebook, or talks to JavaVig&] using its automatic loci generation to display a surface.

This paperdescribes our last findings in the development of a symbolic—dynamic geometry environment.
While the loci computed by Lugares are special objects in the graphic environment (in the sense that they
do not respond to dragging and do not support the construction of new points on them), the actual version
of the program deals with such loci as full dynamic objects: the loci are recomputed with no appreciable
delay whenever some part of a construction is moved. Furthermore, symbolic algorithms for computing
envelopes, pedals and caustics have been added. Both enhancements conclude the development of ¢
SDGE, now called GDI, a Spanish acronym for Intelligent Dynamic Geometry.

The structure of this paper is as follonSection 2compares four well-known dynamic geometry
environments and GDI when computing a single envelope, the deltoid of Steiner. We recall the basic
mathematical machinery necessary for the computation of plane envelopes and we illustrate the develope
algorithms for some curve families Bection 3 Section 4 describes how caustics and pedals can also be
computed in the system.

2. Thedeltoid of Steiner as an envelope of the Simson—Wallace lines

In an imprecise but descriptive language, the envelope of a curve fdrailyy, «) = 0 consists
of those points which belong to each pair of infinitely near curves in the family. Most DGS packages
support graphical computation of envelopes. GSP and Geometry Expert (BEXace a given curve
of the family, thus suggesting in some cases the envelope. &fjrand Cinderella employ a more
sophisticated approach since they usually return the envelope as a single curve, but this line is merely ¢
graphic object on the screen. That is, no analytic knowledge about the envelope is available, and it is a
final object in the sense that it cannot be used to construct further objects.

Fig. 1 shows the behavior of these four systems when computing a single envelope, the deltoid of
Steiner. Recall that the Simson—Wallace theorem states that given a trieBGland a pointX on its
circumcircle, the feet of the projections &fon the sides of trianglABCare collinear. The envelope of
this line family, whenX moves along the circumcircle, is the deltoid of Steiner.

At first sight, the computation of this envelope in GDI shows a similar curve to those of Cabri or
Cinderella. Nevertheless, there is a significant difference: a user can get the implicit equation of the curve
(Fig. 2), thus is able to place points on it, which constitutes a prerequisite for any construction using the
deltoid.
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Fig. 1. The Steiner’s deltoid in four DGE.

Envelope E=

Fig. 2. The equation and plot of a Steiner’s deltoid in GDI.
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3. The computation of envelopesin GDI
3.1. The deltoid of Steiner

The construction irFig. 2is straightforward. Three point$(.7, .2), B(0, 0) andC(0.6, —0.3) define
a triangle and the midpoints;(x1, x2), Ag(xs, x4) of the sideBC andAC are also defined. The inter-
section of the perpendicular bisectors passing thratighnd Ag is the circumcenteO(xs, xg), and a
point X (x7, xg) on the circumcircle is also constructed. Finally, the projectitfisg, x10), N(x11, X12),
P(x13, x14) Of X on the sides of the triangle are also defined. Note that some elements in the construction
are hidden for clarity. Thus, this part of the construction can be linguistically specified as follows:

A7 Midpoint(B,C),

Ag Midpoint(A,C),

I Perpendicular(ABC),
Iy Perpendicular(4,AC),
0 Intersectiond,l>),

c1 CircleCenterPoint(O,B),
X PointOnCircle(g),

I3 Perpendicular(X,AC),
M Intersectiond,AC),

Iy Perpendicular(X,BC),
N Intersection({,BC),

Is Perpendicular(X,AB),
P Intersectiond,AB),

and the coordinates of the constructed points are determined by

3 3
A7Z—(—>+X1=0, — +x,=0,

10 20
13 1
Ag.—(2—0>+X3=0, 2—C)+X4=0,
3 (—x1+xs) 3 (—x2+xs) X3— X5 X4—Xe _
0 5 10 =0 10 + 2 =0

X : —xé —xg-l- (X5—)C7)2+ (xe6 —x8)2 =0,

7/10—x9  —(1/5) + x10 X7 —X9  Xg— X10
M : =0 =0
2 + 10 ’ 10 + 2 ’
—3x11 3x12 3 (—x7+x11) 3 (—xg+ x12)
N: — =0, — =0,
10 5 5 10
p 7/10—x13  7(A/5—x14) _ 0. —7 (—x7 + x13) P hab  CRN

5 10 10 5
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If the user defines a Simson—Wallace line passsing thradigimd P, the equation of which is
(=Y + x10) (—x9 + x13) + (x — x9) (—x10+ x14) = O,

and the user selects this line, which is a member of the curve family, and theXpimimtrder to describe
the whole family, the algorithm to compute the envelope is launched. Note that Mlaed A are the
same point, so ar@ and P, and the line collapses to a point. This fact must be avoided by the user by
declaring that pointX and A can not coincide through the program optidot Equal .

Recall that when a givea is replaced by + A« in the equation of the curve familg(x, y, @) = 0,
we obtain a new curve implicitly defined by(x, y, « + Aa) = 0. The set of points that belong to both
curves satisfies

Fx,y,a+ Aa) — F(x, y,a) = 0.
Suppose thaf' is differentiable with respect tg; if this variablea can be eliminated from the system

Fx,y,0) =0

OF(x,y, )
dor B

the resulting curve implicitly defined bg(x, y) = Ois called the envelope of the curve famHgy, y, a) =
0.

If the curve family is biparametrically defined @(x, y, o, 8) = 0, where the parameters are related
by g(a, ) = 0, the elimination otr andg takes place in the system

0,

Fx,v,a,8) =0

g, p) =0

OF(x, y, a, B) 9g(a, ) 0F(x, y, o, B) 0g(e, B) 0
dor 9B 9B o

whereF andg are assumed to be differentiable.
In the case we are dealing with, the equations defining the curve family and involving the parameters
(=y + x10)(—x9 + x13) + (x — x9)(—x10 + x14) = O,

—xZ — x2+ (x5 — x7)% + (x6 — x8)°> = 0,

depend on extra variabless, xg, x9, X10, X13, X14. Since these variables can be expressed in terms of
x7, xg, the Mathematica commar@bl ve, or in case of no succedleduce, return a list of rules

— T
220
33+ 2x7+ 10xg
52 ’

X9 —
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—33+4 50x7 4+ 250x3
260 ’

7 (Tx7+ 2xg)

53 ’
2 (Tx7+ 2xg)
— 3
which are used, also renaming xg to o, 8, to rewrite the system as

X10 —

X13 —>

X14 —

—119a + 700 — 348 + 370« B + 10082 + 53x + 30a x — 3708 x
+ 265y — 370y — 308y =0,

—667540 + 855500” + 62178 + 8555082 = 0.

Both equations, together with the corresponding differential equation for biparametric curve families,
are passed to CoCoA, where variabtes3 are eliminated via Groebner bases. The reason for using
CoCoA is its superior performance for polynomial elimination when compared with Mathematica. The
responses of CoCoA were at least ten times faster than those of Mathematica in some empiric tests that w
have conducted. Furthermore, there are cases where Mathematica could not eliminate the parameters
a reasonable amount of time (1 h), while CoCoA succeeded in seconds. So our strategy consists of usin
CoCoA whenever possible, and giving Mathematica a chance if there are non-polynomial equations in
the system.

The equation resulting from the elimination is passed to Mathematica, where a graphic object is
generated via the packag& aphi cs‘ I nplicitPl ot'. Since some equations can be extremely
complicated and hard to graph in the interval of time indicated by the user, two methods are used. First,
theCont our Pl ot method treats the equation as a function in three--dimensional space, and generates
a contour of the equation cutting through the plane wheeguals zero. This method handles a great
variety of cases, but may generate rough graphs, especially around singularities or intersections of the
curve. If there is time left, the second method uSekve to find solutions to the equation at each point
in thex range and generates a smoother graph. This last graphic object, if it can be computed, or the first
one, is returned to GDI as a list of points which are scaled to the current window size. The deltoid of
Steiner obtained by th€ont our Pl ot method is shown iffrig. 3, while the other method returns the
plotin Fig. 2

3.2. The envelope of Giering—Guzman lines

our previous paper on this tofd2], we showed how a recent generalization of Simson—Steiner theorems
due to de Guzmaf®] could be easily computed with the old version of our SDGE. This extension states
that given a triangl&BCand three directions, not all three equal nor parallel to the triangle sides, the locus
of pointsX such that their projection®, N, P along the three directions determine a triangle of oriented
areak, is a conic. Besides this theorem, de Guzman has studied the deltoid of gigaring a simpler
method than the original one of Steirj2d] to prove that it is a tricuspidal hypocycloid. Surprisingly, as
far as we know de Guzman did not consider connecting both works to study the envelope of lines passing
throughM, N, P (that is, wherk = 0).
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Fig. 3. A rough plot of the deltoid.

A major difference between GDI and other DGEs consists of the ability of the former to compute
the locus of a point moving along a path whose parametric equations are unkbt®@wiihis case is
perfectly illustrated with the above mentioned extension of Simson—Steiner theorems. In an analogous
manner to that of the preceding subsection, once the conic of de Guzman is obtaihed @ point
X on the conic is constructed and also the feet of two projections ffaim the triangle sidesy and
N for instance. The envelope of the family of linB¥N when X moves along the conic is shown in
Figs. 4 and For an ellipse (18128 + 2229y + 460772 — 18128 — 47706y = 0) and a hyperbola
(332322 + 71460y — 93672 — 33232 — 33805 = 0).

Since GDI can work without a rectangular coordinate system, we tried to find the equation of this
envelope in the general case. Given an arbitrary triaAgI€, with verticesA (0, 0), B(1, 0), C(u1, u)

(there is no lost of generality in this assumption), the locus is a conic described by 154 terms. Not having

The envelope of line 30 when point 25 is moving on object:

-3072353290156800 - 25995181437496320%% + 156042942045439488°%°2 -
222534963808881 664”3 + 778919570221 70368 4 - 41074842231319104% -
1623601941434650344 %%y + 6293327012297 270407 2% +
191550278246268480% "3y + 2033648885106813780% "2 -
523876342318943304*y "2 + 51372921 7700559924« 22 -
1961724030458489328*"3 + 486674562113046320%%"3 +
503223855427 2063334

Fig. 4. An ellipse and the envelope of their Giering—Gamines.
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The envelope of line 30 when point 25 is moving on object:
861932678516100 - 13308995464805680% - 157406427710583344% ™2 -
2527767549038851 843 + 4384103286851 7606444 - 44300267777520296% +
222457828211293807 24y - 3756810334343534560%% " 2% +

1885459923437811 8404 3y - 2338397974509190935%y"2 +
512561245969199616%:*y"2 + 178004044194887 2432242 +
2042093920276503282% "3 - 53144869712451 8040”3 + 4831233878850823 "4

Fig. 5. A hyperbola and the envelope of their Giering—Gaartines.

the graph of the locus, we could not continue using GDI. A point on this conic and the feet of two
projections were considered in order to get the polynomial system for elimination. Nevertheless, CoCoA
could not eliminate variables after a couple of days. Another attempt to solve the problem with resultants
was also unfruitfu[4]. Finally, we found that the problem had been solved some years ago. Using affine
and projective geometries, Gieriifig] proved that the envelope is a Steiner's hypocycloid, a rational
curve of fourth order and third class, which is tangent to the sides of the triABgle

3.3. The offset curve of a parabola

Let us consider a circle centered at a point moving along a parabola. The envelope of this family of
circles is known as an offset curve of the parabélig(6). Graphing this envelope is a difficult task in
most DGEs or CAD systems. Furthermore, its equation remains unknown in these systems, while it is
easily obtained by GDI.
4. Computation of caustics and pedals

4.1. Caustics by reflection

Given a light ray from a poinK to a point ? moving along a simple curv€, the envelope of the
reflected rays is the catacaustic@frelative toX. The symmetrical point of X with respect to the
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The envelope of line 22 when point 16 is moving on object:

-98241995691 + 7527168000072 - 118200000000%¢ "4 + 625000000006 +
82185840000y - 10912500000 2"y - 187500000000 4"y + 1548030600002 +
108300000000 2% "2 + 62500000000%"4*y"2 - 2042000000007 "3 -
1250000000007 2% "3 + 6250000000074

Fig. 6. The offset curve of a parabola.

normal line of the curv& at P can be used to define the family of line¥. The envelope of these lines
is the catacaustic.

Itis usually difficult to trace the tangent or normal lines at a point of a general simple curve in a purely
geometric context. Thus, standard DGE approaches to caustic generation rely heavily on this prerequisite
knowledge. If the curve is as simple as a circle, the reflected rays are easily obtained due to the coincidence
between the radius and the normal line. Nevertheless, tracing the normal line at a point on a general conic
with ruler and compass is a hard task for a non-expert user.

Since the equation of any constructible curve in GDI is known, the operation of computing normal
lines is an elementary one calling Mathematica. GDI computes caustics by selecting a simpl€ curve
and a pointX. The normal line of” at an internally constructed poiftis used to define the symmetrical
pointY of X with respect to this line, and finally the algorithm for finding the envelope of the line family
PYis launchedFig. 7shows the caustics found by GDI given the ellipsé-8 4y? = 12 (obtained as the
locus of the points whose distanceg1900) and(—1, 0) sum to 2) for three positions of the light source.

Their equations are a quartic if the source is on the conic, and two sextics in the other cases.

4.2. Pedals

Recall that a pedal curve is the locus of the feet of perpendiculars that fall from a fixed point upon the
tangent lines to a given curve. Furthermore, the envelope of perpendiculars to lines joining the fixed point
and a point moving along the curve and passing the point on the curve is called the negative pedal of the
curve with respect to the fixed point.

Combining the call to the CAS for computing normal lines with the capabilities of the system for
obtaining loci of points and envelopes of curve families, both positive and negative pedals can be obtained.
The pedal of the parabola2= x? with respect to its vertex is a cissoid of Diocles, and the negative pedal
of this cissoid with respect to the same point is the original paratsida §).
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Fig. 7. Caustics of the ellipse3+ 4y? = 12 relative toX (.5, 0), X (2, 0) andX (3, 0).

The negative pedal of line 17 with respect ta the point 1 is:
w22y

The positive pedal of line 16 with respect to the point 1 is:

BV T T il

Fig. 8. The pedal curve of a parabola with respect to its vei@e®), point 1, is a cissoid. The negative pedal of the cissoid is
the original parabola.
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5. Summary

We described how envelopes of family curves and other derived curves can be automatically computed
within a graphical interface. We found that the implementation of the algorithm of Buchbergerin CoCoA
is efficient for common elimination tasks in the domain of plane geometry with numeric coordinates. Nev-
ertheless, the complexity of some problems involving more than a few variables exceeds the capabilities
of current elimination algorithms.

In this paper, we complete the description of GDI, a dynamic geometry environment which uses the
symbolic abilities of two computer algebra systems, CoCoA and Mathematica. The system may be
downloaded (for academic purposes) from José L. Valcarce by writing to the given e-mail address.
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