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Abstract

We present a new method for solving regular boundary value problems for linear ordinary
differential equations with constant coefficients (the case of variable coefficients can be adopted
readily but is not treated here). Our approach works directly on the levelof operators and does not
transform the problem to a functional setting for determining the Green’s function.

We proceed by representing operators as noncommutative polynomials, using as indeterminates
basic operators like differentiation, integration, and boundary evaluation. The crucial step for
solving the boundary value problem is to understand the desired Green’s operator as an oblique
Moore–Penrose inverse. The resulting equations are then solved for that operator by using a suitable
noncommutative Gröbner basis that reflects the essential interactions between basic operators.

We have implemented our method as a Mathematica™ package, embedded in the
TH∃OREM∀ system developed in the group of Prof. Bruno Buchberger. We show some computations
performed by this package.
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1. Introduction

1.1. Two-point boundary value problems

In this article, we considerboundary value problems(BVPs) of the following type.1

Given a forcing functionf ∈ C∞[a,b], we want to solve

T u= f,

B0u = u0, . . . , Bn−1u = un−1 (1)

for the unknown functionu ∈ C∞[a,b]. Here[a,b] is a finite interval ofR; T is a linear
differential operator of ordern; B0, . . . , Bn−1 are boundary operators; andu0, . . . ,un−1
are constants ofC. Thedifferential operatorT is given by

T u= cn u(n) + · · · + c1 u′ + c0 u (2)

with coefficient functionsc0, . . . , cn ∈ C∞[a,b], and the boundary operatorsBi are
specified by

Bi u= pi,n−1 u(n−1)(a)+ · · · + pi,1 u′(a)+ pi,0 u(a)

+ qi,n−1 u(n−1)(b)+ · · · + qi,1 u′(b)+ qi,0 u(b), (3)

where the coefficientspi j ,qi j are again fromC. Note that initial conditions are covered by
the special choice ofp being the identity matrix andq being the zero matrix.

Analytically, the operatorT acts on the Banach space(C[a,b], || · ||∞) with dense
domain of definitionCn[a,b]; see for example (Engl and Nashed, 1981). For our purposes,
however, itis better to maintain apurely algebraic viewpoint, where thedomain ofT is the
complex vector spaceC∞[a,b], without any prescribed topology.

One can view BVPs as inhomogeneous linear ordinary differential equations (LODEs)
that are parametrized in the forcing functionf . The occurrence of the parameterf is
crucial: it means that one reallyfaces an operator problem—givenT and B0, . . . , Bn−1
with u0, . . . ,un−1, thegoal is to find an operatorG suchthatu = G f fulfi lls (1). In the
literature (Stakgold, 1979), this G is known as theGreen’s operatorof the BVP. In the
important case of semi-inhomogeneous problems (seeSection 2.1), (1) is equivalent to
T G = 1, B0G = · · · = Bn−1G = 0; thusG is characterized as a right inverse ofT that is
annihilated by all theBi .

1.2. An operator-based approach

Since we have to solve anoperator problem, it seems natural to ask for a method that
works on theoperator level, i.e. one that yields the desired Green’s operatorG for (1) by
performing calculations on variousoperators related to it.

Alternatively, one may also translate the problem to afunctional settingas done by the
standard methods in the literature (Kamke, 1983, pp. 188–190). The crucial idea here is the

1 For the sake of clarity, we will restrict ourselves to the smooth setting in the sense that all functions involved
areC∞. See the remarks inSection 2.5for passing to theCn or distributional setting.
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following: For BVPs of the form (1), G can always be written as an integral operator
having the so-called Green’s functiong as its kernel; seeCoddington and Levinson(1955).
So

Gf (x) =
∫ b

a
g(x, ξ) f (ξ) dξ (4)

for all f ∈ C∞[a,b] andx ∈ [a,b]. Hence the problem of searching for theoperator G
is reduced tofinding thefunction g. (As we will see in thenext section, our method also
extracts the Green’s functiong in a postprocessing step. However, this step is optional and
may be seen as a translation to the functional formulation of BVPs.)

While the classical translation approach does have its merits, we would like to point out
someadvantagesof our new approach:

• It has a greaterpotential of generalization. For example, the whole theory of Green’s
functions presupposes linear differential operators, and it is far less perspicuous for
partial differential equations. (Of course, our method cannot be applied to these
problems in the form presented here. However, we can already see some possibilities
for adapting it; seeSection 4for a brief discussion of generalizations.)
• From aconceptual point of view, it is more satisfying to solve a problem at the level

where it is actually stated. Even though one can often solve a problem by transforming
it to differentdomains, a uniform solution method has the additional benefit of structural
simplicity and clarity.
• Besides this, our method may be superior in terms ofcomplexity. We have not

yet embarked on a rigorous analysis of this issue, but there are some indications
pointing in this direction: The formula given inKamke (1983, p. 189) involves
Gaussian elimination with functional entries. At least for the important special
case of constant-coefficient LODEs considered in this article, our approach avoids
that.2

1.3. Previous work

The present article summarizes the essential points of the author’sPh.D. thesis
(Rosenkranz, 2003a) supervised by Bruno Buchberger (first advisor) and Heinz W. Engl
(second advisor). It originated in the stimulating atmosphere of the symbolic-numeric
“Hilbert Seminars” organized jointly by the two advisors. Some early ideas were published
in Rosenkranz et al.(2003a), using a purely heuristic approach without implementation:
noncommutative Gröbner bases were computed by the MMA packageNCAlgebrafrom
UCSD (Helton and Miller, 2004; Helton et al., 1998) on a per-problem basis rather than
using a fixed Gröbner basis. A sketchy overview of the thesis was also presented in a poster
at ISSAC’03, to be published as a four-page survey inRosenkranz(2003).

Exact solution methodsfor linear BVPs are of course not new as we have already
pointed out (Kamke, 1983; Coddington and Levinson, 1955; Stakgold, 1979). But as far as

2 Notethat the matrix inverse inLemma 2involves only numbers.
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we know, all these methods typically work on a functional level in the sense discussed in
Section 1.2.

Originally we got the inspiration for our method from the paperHelton et al.(1998),
which describes the use of noncommutative Gröbner bases forsimplifying huge terms
arising in operator control theory. Using a lexicographic term ordering, however, it is clear
that Gröbner bases can do more than that—solving systems of operator equations. And
this is essentially what we did on a per-problem basis in our early paperRosenkranz et al.
(2003a); for details, see the remarks at the end ofSection 2.1and the explanations after
Theorem 4in Section 2.5.

Operator-based methods are routinely used in symbolic summation and integration
of holonomic functions; seeZeilberger(1990), Chyzak and Salvy(1997) andPaule and
Strehl (2003). Noncommutative Gröbner bases are applied there for elimination in Ore
algebras of operators. But to all our knowledge, the case of BVPs has not yet been
analyzed in this frame; we believe that such an investigation could be very profitable. In
fact, we plan to come back to this issue in extending our method—see the discussion in
Section 4.

1.4. Structure of the article

In Section 2, we describe our new method in detail:Section 2.1introduces the key
concept used in our approach—the noncommutative polynomial ring modeling the relevant
operators; besides that we clarify some issues of notation. The fundamental tool to be
employed for solving the BVP is the oblique Moore–Penrose inverse; we discuss it in
Section 2.2. As we will see there, one can take care of the given boundary conditions by
choosing an appropriate nullspace projector for the Moore–Penrose inverse; this is carried
out systematically inSection 2.3. Foractually solving the given BVP, we will end up with
the problem of right inversion, which is treated inSection 2.4. Finally, we will have to
simplify the resulting solution operator; as explained inSection 2.5, this will eventually
drive us to a convergent term rewriting system or—in other words—to a noncommutative
Gröbner basis; we conclude this subsection with a correctness proof of the solution
algorithm.

In Section 3, we solve several sample BVPs byour implementation. InSection 3.1,
we start out with a briefdescription of the overall program structure. The first example,
presented at some length inSection 3.2, is the classical problem of steady heat conduction
in a homogeneous rod. As an example with an exponential Green’s function we consider
damped oscillations inSection 3.3. A fourth-order equation is treated inSection 3.4,
where the physical background is the description of the transverse deflection in a
beam.

In theConclusion, we will address various potential generalizations of our method. On
a rather direct line of thought, one may consider relaxing several restrictions inherent in the
presentation given here—vector versus scalarequations, partial versus ordinary, nonlinear
versus linear, underdetermined versus regular problems, integro-differential equations
versus purely differential ones. Beyond these direct generalizations, however, we will
sketch the contours of what could be a whole new field of computer algebra—a field that
we have called “symbolicfunctional analysis”.
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2. The solution method

2.1. General set-up

The solution method to be described applies to BVPs of the form (1), subjectto the
following restrictions:

• We assume that the BVP isregular in the sense that there must be a unique solution.
This implies that the boundary conditions mustbe consistent and linearly independent.
(See the end ofSection 3.5for a short example of what happens otherwise.)
• We will only cover the semi-inhomogeneouscase, meaning thatu0, . . . ,un−1 are

zero. This involves no loss of generality because any fully inhomogeneous problem
can be decomposed into such a semi-inhomogeneous one and a rather trivial BVP
with homogeneous differential equation and inhomogeneous boundary conditions; see
Stakgold(1979, p.43).
• In this article we focus on linear differential operators with constant coefficients, moving

entirely along the lines ofRosenkranz(2003a). However, our method also works for
linear differential operators with variable coefficients: All the results stated here remain
valid, with the notable exception ofSection 2.4, where wewill briefly indicate the
necessary modifications. For a more detailed treatment, we refer the reader to the
technicalreport (Rosenkranz, 2003b).

Before we proceed, we establish the followingimplicit lambda convention. Whenever
we use a termτ (usually but not necessarily containing a free occurrence ofx) in place of
a function, we mean the mappingx �→ τ or, in computer-science notation,3 the lambda
termλx.τ . Hence the differentiation operatorD acting on functions actually means∂/∂x.

In order to apply computer algebra methods, we will eventually model operators by
noncommutative polynomials, so let us try to write the operators involved in a polynomial
form. For example, consider thedifferential operatorinformally represented byT =
x3 D2 + ex D + sinx. The coefficient functionsc2 = x3, c1 = ex, c0 = sinx can be seen
asmultiplication operatorsin the following sense:4 any f ∈ C∞[a,b] induces anoperator
M f defined byM f u = f u for all u ∈ C∞[a,b]. Using this notation, the above operator
has to be written asT = 	x3
D2+	ex
D+	sinx
, wherejuxtaposition denotes operator
composition (note that this is consistent with the power notation for differentiation) and
	 f 
 is a shorthand forM f . In this way, any linear differential operator can be written as a
noncommutative polynomial in the indeterminatesD andM f with f ranging over a certain
function domain yet to be fixed.

Turning toboundary operators, we have to introduce two more indeterminates. For the
above operatorT , atypical boundary operator could beB0u = 2u′(a)−3u(a)+7u′(b). Let
us write L andR for evaluation at the left and right boundary, respectively, soLu = u(a)

3 If necessary, we will designate mappings by the notationx �→ τ ratherthanλx.τ , so any further occurrences
of λ do not have the meaning of the lambda quantifier.

4 Note that in the following equality juxtaposition on the left-hand side denotes operator application, whereas it
denotes the pointwise multiplication of functions on the right-hand side—an abuse of language commonly found
in the literature.
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andRu= u(b) for all u ∈ C∞[a,b]. (Notethat by the implicit lambda convention, these
boundary operators actually map functions to functions, namely the constant functions
having the corresponding boundary value.) With this notation, the boundary operatorB0 is
represented by the noncommutative polynomial 2L D − 3L + 7RD.

It is now clear how to formulate the differential and boundary operators of (1) in terms
of noncommutative polynomials in the indeterminatesD, 	 f 
, L, R. But this will clearly
not be sufficient for representing the operatorG supposed to solve (1), since the latter
must involve integration. Hence we introduce the following operatorA for computing the
antiderivative

Af =
∫ x

a
f (ξ) dξ

of any function f ∈ C∞[a,b]. Sincewe know that then-th derivative of the Green’s
function jumps along the diagonal, we will also include the dual ofA, namely the operator

B f =
∫ b

x
f (ξ) dξ,

such that the integral (4) can be patched by addingA and B portions (seeSection 3for
examples).

Let us now formally introduce the underlyingpolynomial ring. The domainF used
for parametrizing the multiplication operators will be introduced inSection 2.5. For
the moment, it is sufficient to think of it as theC-algebraExp with basisExp# =
{xneλx | n ∈ N ∧ λ ∈ C}; we call this the polyexponential algebraExp. (Every algebra
A considered here is assumed to include the notion of a distinguished basis referred to
asA#.)

Definition 1. Let F be an analytic algebra. Then the noncommutative polynomial ring

C〈{D, A, B, L, R} ∪ {	 f 
| f ∈ F#}〉
is called the ring ofanalytic polynomialsoverF, denoted byAn(F).

Strictly speaking, we should from now on distinguish between theformal operators in
An(F) and theactual operatorsin L(C∞[a,b],C∞[a,b]). Most of the time, however, it
is either clear which of the two concepts we mean or a certain statement is true for both
of them. In order not to overload notation, we will therefore abstain from making this
difference explicit—except forTheorem 5, where itis really crucial. If the reader desires a
more rigorous treatment, she may want to consultRosenkranz(2003a).

Using the ring An(F), the operator-theoretic formulation of (1) can be written
as a system of polynomial equations. However, this implies also that all the basic
operators occurring as indeterminates are void of any analytic meaning. Therefore
we have to add appropriate interaction equalitiesfor algebraically capturing their
essential properties. For example, the interaction between differentiation and multiplication
operators is stated in the well-known “Leibniz equality”. For other operator interactions,
the corresponding equalities are less obvious, and completeness questions (confluence,
termination, adequacy) become urgent.
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For the moment, however, let us postpone these issues toSection 2.5, where we show
the full polynomial system along with the corresponding completeness theorems. So we
assume we have an appropriate reduction system, which we can employ for solving the
given polynomial systemT G = 1 and B0G = · · · = Bn−1G = 0. In principle,
we could merge these equations with the interaction equalities, impose a lexicographic
term order, and feed the resulting system into a noncommutative Gröbner basis solver;
this is essentially what we have done inRosenkranz et al.(2003a). However, we can
do much better than that by using ageneric preprocessing strategythat avoids the costly
computation of a new Gröbner basis for each BVP of type (1).

2.2. The Moore–Penrose inverse

The key to solving the given polynomial system is the so-calledMoore–Penrose
inverse, alsoknown as generalized inverse: Introduced by Moore inMoore (1920), the
concept of generalized inverse received almost no attention until its rediscovery by Penrose
in Penrose (1955, 1956); see for exampleNashed(1976) and Engl et al. (1996) for
a modern treatment. The Moore–Penrose inverse provides a substitute for inverting a
nonbijective linear operator in anyvector space—including the spaceC∞[a,b] used in our
case.

Why would we want to do this? For a linear differential operatorT , we have to solve
T G = 1 for G, subject to the additional conditionsB0G = · · · = Bn−1G = 0, which
serve to determine the solution uniquely. So we seek a special right inverseG of T . The
usual way of seeing this is thatG is thefull inverse(not just right inverse) of the operator
T by restricting the domain of the latter to those functions inC∞[a,b] that fulfill the given
boundary conditions.

Though theoretically elegant, this interpretation is not adequate for our purposes
since it encodes the boundary conditions in thedomain, which is not readily available
for computation. It is therefore more promising to see the given operatorT as
nonbijective, having all ofC∞[a,b] as its domain—just like the basic operators
D, A, B, L, R, 	 f 
. Doing this, we can employ the Moore–Penrose theory for finding
generalized inversesof T . In general, there will be many such inverses, so we must
find some means of singling out the unique one that fulfills the given boundary
conditions.

This can be achieved by usingoblique Moore–Penrose inverses(Nashed, 1976, pp. 57–
61). The idea isthe following: An arbitrary linear operatorT between two vector spaces
X andY may fail to be injective, so its nullspaceN is typically nontrivial. In order to cure
this, one takes a complementM: choose a projectorP ontoN and setM = (1− P)X. The
operatorT |M is then invertible as a map fromX to the rangeR. Furthermore,T may fail
to be surjective, soR will typically not exhaust all ofY. For repairing this, one chooses a
projectorQ ontoR, calls the corresponding complementS= (1−Q)Y and adjoinsSas a
nullspace to(T |M )−1. Theresulting operator is called the oblique Moore–Penrose inverse
of T with respect to the nullspace projectorP and range projectorQ; it is denoted by
T†

P,Q. The freedom in choosing these projectors is crucial for incorporating the boundary
conditions.
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What makes the Moore–Penrose inverse particularly attractive for symbolic
computation is that it can be characterized uniquely by the four so-calledMoore–Penrose
equations.5 Let us briefly recall them here for reference purposes.

Theorem 1. Let X and Y be vector spaces, T a linear operator from X to Y . Choose
projectors P and Q to the nullspace and range of T , respectively, and let M and S be
the corresponding complements. Then the oblique Moore–Penrose inverse is characterized
uniquely as the linear operator T† from Y to X that fulfills the equations

T T†T = T, (5)

T†T T† = T†, (6)

T†T = 1− P, (7)

T T† = Q. (8)

Furthermore, T† has nullspace S and range M.

In our setting,it is already clear thatQ must be the identity operator 1, because any
linear differential operator is surjective onC∞[a,b]. But then (5) and (6) obviously follow
from (8). So we are left with the two Eqs. (7) and (8). It turns out, however, that we can
even restrict ourselves to (7) because (8) follows from it as we will show now.

Lemma 1. Theoperator equation T G= 1 follows from GT= 1− P, where P is some
nullspace projector for the linear differential operator T .

Proof. Let T∗ be any right inverse ofT (there is always a right inverse or—in
other words—a fundamental solution forT , and wewill construct aparticular one in
Section 2.4). Then premultiplyingGT = 1− P by T and postmultiplying byT∗ yields
T GT T∗ = T T∗ − T PT∗. Now by the choice of T∗ we haveT T∗ = 1; and sinceP
projects onto the nullspace ofT , we haveT P = 0. HenceT G= 1 as claimed. �

As a consequence, we need only consider the equationGT = 1− P, but we must take
care to chooseP in such a way that theboundary conditions B0 G = · · · = Bn−1 G = 0 are
fulfi lled. Then we can be sure thatG is actually the Green’s operator: Since it is uniquely
determined, it must coincide with the single Moore–Penrose inverse ofT corresponding to
that choice ofP that incorporates the boundary conditions.

2.3. Computation of the nullspace projector

For thatpurpose, we use the fact mentioned at the end ofTheorem 1, namely that the
range ofG is given by

(1− P)C∞[a,b] = {v − P v | v ∈ C∞[a,b]}.
So if we want to ensure that the solutionu = G f respects the boundary conditions
B0u = · · · = Bn−1u = 0 for any f ∈ C∞[a,b], it suffices to constructP in such a

5 Quoting (Steinberg, private communcation): “Functional analysis was developed to make analysis look like
algebra (usually algebras of operatorslooking like matrices), so using functional analysis to do analysis problems
in computer algebra is natural”.
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way that all the v − Pv respect them—so we have to require

B0Pv = B1v

· · · (9)

Bn−1Pv = Bn−1v

for all v ∈ C∞[a,b]. This amounts to a smalllinear interpolationproblem, to be solved
in the next lemma.

For the sake of convenience, let us introduce somematrix notation (we will use
overhat symbols for denoting vectors andmatrices). We write D̂n for the operator-
valued vector (1, D, D2, . . . , Dn−1). With this notation, the vector boundary operator
B̂ = (B0, . . . , Bn−1) can be written as(Ll̂ + Rr̂ )D̂n for suitable coefficient matrices
l̂ , r̂ ∈ Rn×n. In fact, using the notation of (3), these matrices are given by

l̂ =



p1,0 p1,1 · · · p1,n−1
...

...
. . .

...

pn,0 pn,1 · · · pn,n−1


 , r̂ =




q1,0 q1,1 · · · q1,n−1
...

...
. . .

...

qn,0 qn,1 · · · qn,n−1


 .

We are now ready to state a conciseformula for computing the nullspace projectorin
terms ofl̂ , r̂ and a fundamental matrix forT .

Lemma 2. Letŵ be a fundamental matrix for the linear differential operator T , and letl̂ , r̂
be the boundary matrices corresponding to B0, . . . , Bn−1 as introduced above. Compute

Projŵ(l̂ , r̂ ) = 	ŵ1
 (l̂ ŵ← + r̂ ŵ→)−1(Ll̂ + Rr̂ )D̂n,

whereŵ1 denotes the first row of̂w andŵ← andŵ→ arise fromŵ by evaluation at a and
b, respectively. ThenProjŵ(l̂ , r̂ ) is a projector onto the nullspace of T that fulfills(9).

Proof. Let T be an operator of the form (2) and letB0, . . . , Bn−1 be boundary operators
of the form (3) with corresponding boundary matricesl̂ , r̂ . Furthermore, letϕ1, . . . , ϕn be
a fundamental system forT ; hence the fundamental matrix̂w has rows(ϕ(i )1 , . . . , ϕ

(i )
n ) for

i = 0, . . . ,n− 1.
We will now set up a generic linear operatorP that projects onto the nullspace of

T and then fit it against the conditions (9). Take an arbitraryv ∈ C∞[a,b]. Sincethe
nullspace ofT is spanned byϕ1, . . . , ϕn, we must havePv = c1(v)ϕ1 + · · · + cn(v)ϕn

for some coefficientsc1, . . . , cn ∈ C depending onv. Writing this in vector form, we have
Pv = ŵ1ĉ(v), whichyields the matrix equation̂Bŵ1ĉ(v) = B̂v upon substitution in (9).
Now

B̂ŵ1 = (Ll̂ + Rr̂ )D̂nŵ1 = (Ll̂ + Rr̂ )ŵ = l̂ ŵ← + r̂ ŵ→,

soĉ(v) = (l̂ ŵ←+r̂ ŵ→)−1B̂v, whichyieldsP = Projŵ(l̂ , r̂ ) as claimed in the lemma.�

Note that that thematrix inversionoccurringin the Lemma 2involves only a matrix
of numerical constants rather than functional terms. This is crucial for complexity
considerations.
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2.4. Right inversion

We havenow reduced the BVP (1) to thesingle equationGT = 1− P, whereP is
the nullspaceprojector Proĵw(l̂ , r̂ ) specified inLemma 2with ŵ the fundamental matrix
for T andl̂ , r̂ theboundary matrices corresponding toB0, . . . , Bn−1. In order tosolve this
equation forG, it suffices to find aright inverse T∗ of T ; thenG is obtained as(1− P)T∗.
We will constructone particular such right inverse, which we will denote byT�.

It turns out that one can always find right inverses ofT that can be written in a form
analogous to (4) with a binary functiong∗; in the literature (Kamke, 1983, p. 74), this
function is known as thefundamental solutionof the inhomogeneous differential equation
T u= f . The fundamental solution plays a role somewhat similar to the Green’s function:
When applying the corresponding integral operator to the forcing functionf , it yields a
solutionu of the inhomogeneous equation, but it doesnot incorporate boundary conditions.
In Section 2.5, we will show how to recover such a fundamental solution from the right
inverseT� considered here.

As announced inSection 2.1, we will stick to the important special case of linear
differentialoperators with constant coefficientsalong the lines ofRosenkranz(2003a). The
general case of variable coefficients is treated in full detail inRosenkranz(2003b), and we
will also make a few remarks about it here.

Lemma 3. If T is of the form(2) with constant coefficient functions c0, . . . , cn, the
operator

T� =
n∏

i=1

	eλi x
A	e−λi x


is a right inverse, ifλ1, . . . , λn ∈ C are the roots of the characteristic polynomial of T
(repeated according to their multiplicities).

Proof. For arbitrary λ ∈ C, the differential operatorD − λ has 	eλx
A	e−λx
 as a
right inverse as one can see by straightforward computation, using the product rule of
differentiation and the fundamental theorem of calculus (seeSection 2.5for a precise
listing of admissible reduction rules). The formula then follows since

T = (D − λ1) · · · (D − λn)

and operator composition is associative.�

As mentioned before, it is also possible to derive a similar though somewhat
more complicated formula for linear differential operators withvariable coefficients;
seeRosenkranz(2003b) for the details. The crucial idea is to iterate a procedure that is
typically called “reduction of order” in the literature (Coddington and Levinson, 1955,
p. 84). As opposed to the case of constant coefficients, though, the analytic algebra needed
for the formulation ofT� will in general go beyond the polyexponential algebraExp.

It should be emphasized, however, that the formula given above is particularlysimple,
taking advantage of the special structure oflinear differential operators with constant
coefficients. There seems to be no such advantage when applying the procedure from
Kamke(1983) to this important special case.
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2.5. The reduction system

Using the above results, we can compute the desired Green’s operatorG as(1− P)T�,
where P is again Proĵw(l̂ , r̂ ) as in Lemma 2and T� is the right inverse specified in
Lemma 3. However, we might obtainG in a somewhatunconventional form: for example,
in the BVP for the heat equation (seeSection 3.2), we haveT = D2 andB0 = L, B1 = R.
In this case,Lemma 2yields P = 	1− x
L + 	x
R, while Lemma 3gives us of course
T� = A2. Hence we haveG = (1− 	1− x
 L + 	x
 R) A2. Written in this form, the
Green’s operatorG uses double integration, and we cannot compare it with the classical
kernelrepresentation (4) for reading off the Green’s functiong associated with it.

Using theobvious simplificationL A = 0, we can also rewriteG into A2 + 	x
RA2.
The representation via the Green’s function inSection 3.2is a third possibility. In
general, there are many different polynomials inAn(Exp) with the same interpretation
as an operator onC∞[a,b]. Our goal is to organize rewriting in such a way that there
is always auniquefinal result, which will moreover correspond to the classical kernel
representation.

But beforedoing so, we would like to point out that the issue of representations is
actually peripheral to the original problem of solving a BVP of the form (1): whatever
representation ofG we take, when we apply it to a given forcing functionf , we will end
up with the unique solutionu = G f of the BVP—as long as the reduction system issound
in the sense to be discussed now.

In order to realize our goal, we have to set up an appropriate reduction system on the ring
of analytic polynomials. As usual, the reductions are first specified for a set of monomials
and then extended in the obvious way—see for exampleBergman(1978). The reduction
system should have the following fivekey properties:

• It must besoundin the sense that each polynomial equality becomes a valid identity of
operators when interpreted as discussed before.
• It must beadequatein the sense that it provides “enough” reductions for algebraizing

all the analytic knowledge relevant here.
• In order to solve the problem of unique representation addressed above, we require it to

beconfluent: there isno more than one normal form.
• Besides this, every simplification should terminate, i.e. the reduction system must be

noetherian: there is atleastone normal form.
• The normal forms of the reduction system should correspond exactly to the Green’s

functions of the classicalkernel representation (4). Hence we will also refer to these
normal forms asGreen’s polynomials.

The reduction system inTable 1—we have called it the Green’s system—fulfills all
these requirements. For a completeproof of this statement, seeRosenkranz(2003a); here
we will only give a rough outline of the main steps in this proof.

First of all, let us clarify the role of theanalytic algebraF already mentioned in
Definition 1; the variablesf andg in Table 1range over its basisF#. Analytic algebras are
simply algebras with a few additional operations fufilling certain axioms that make them
behave similarly to their analytic models—just like differential algebras, which can be seen
as halfway between plain algebras and analytic algebras.
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Definition 2. An algebraF is called ananalytic algebraiff it has five linear operations:6

differentation′ : F→ F, integral
∫ ∗ : F→ F, cointegral

∫
∗ : F→ F, left boundary value

← : F→ C, right boundary value→ : F→ C such that the seven axioms

( f g)′ = f ′g+ f g′,∫ ∗ f ′ = f − f←,∫
∗ f ′ = f→ − f,

(
∫ ∗ f )′ = f,

(
∫
∗ f )′ = − f,

( f g)← = f←g←,
( f g)→ = f→g→

are fulfilled.

We observe thatthe above axiomsare very natural:7 the first is the product rule
for differentiation, thus making analytic algebras a special case of differential algebras
(where this axiom is usually called the Leibniz rule). The next four axioms state that the
integral and the negative cointegral are oblique Moore–Penrose inverses of differentiation,
having as nullspace projectors the left and right boundary value, respectively (with trivial
range projectors in both cases); cf. the Moore–Penrose equations inTheorem 1. So the
operations← and→ serve to choose among the oblique Moore–Penrose inverses by
fixing the integration constant. The last two axioms stipulate thatf �→ (x �→ f←) and
f �→ (x �→ f→) be homomorphisms in the algebraF.

As mentioned before, a typical choice forF is the polyexponentialsExp. It can easily
be verified that they form an analytic algebra. Of course its operations will in general
transform basis elements to nonbasis elements; for example,xex ∈ Exp# becomes
ex + xex ∈ Exp \Exp# under differentiation. So strictly speaking, the right-hand sides
of Table 1 may not be polynomials ofAn(F). Therefore the reduction rules must be
understood as containing an implicitbasis reductionafter applying them: Any occurrence
of a monomial· · · 	 f 
 · · · with f ∈ F\F# is replaced by

∑
ci · · · 	 fi 
 · · · , where

∑
ci fi

is the basis expansion off with nonzero coefficientsci ∈ C and basis functionsfi ∈ F#.
The axioms for analytic algebras play a crucial role inestablishing the confluenceof

the Green’s system. What we have actuallyproved is that for every analytic algebraF, the
system ofTable 1establishes a confluent reduction on the ring of analytic polynomials
An(F). It is enough to consider the caseF# = F, asone can easily see. By Lemma 1.2
of Bergman(1978), it suffices to prove that all overlap ambiguities of the reduction system
are resolvable (in general, one also has to consider inclusion ambiguities, but by inspecting

6 Note that these operations correspond—in the given order—to the indeterminatesD, A, B, L , R of An(F),
while each elementf ∈ Fcorresponds to the multiplication operator	 f 
.

7 We haveobtained these axioms by starting the confluence proof with an empy list of axioms, gradually
adding whatever properties we needed in order to overcome failing proofs. In the end, we simplified the resulting
requirements, coming up with the above axioms. This procedure is an instance of what Bruno Buchberger has
called theLazy Thinking Pardadigm. It is implemented in TH∃OREM∀ for various provers on natural numbers
and tuples; seeBuchberger(2003).
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Table 1
The Green’s system

Equalities for Equalities for contracting
algebraic simplification: integration operators:

	 f 
 	g
 → 	 f g
 A	 f 
 A→ 	∫ ∗ f 
 A− A	∫ ∗ f 

Equalities for isolating A	 f 
 B→ 	∫ ∗ f 
 B + A	∫ ∗ f 

differential operators: B 	 f 
 A→ 	∫∗ f 
 A+ B 	∫∗ f 


D A→ 1 B 	 f 
 B→ 	∫∗ f 
 B− B 	∫∗ f 

D B→−1 A A→ 	∫ ∗1
 A− A	∫ ∗1

D 	 f 
 → 	 f 
 D + 	 f ′
 A B→ 	∫ ∗1
 B+ A	∫ ∗1

D L → 0 B A→ 	∫∗1
 A+ B 	∫∗1

D R→ 0 B B→ 	∫∗1
 B − B 	∫∗1


Equalities for isolating Equalities for absorbing
boundary operators: integration operators:

L A→ 0 A	 f 
 D→− f← L + 	 f 
 − A	 f ′

R A→ A+ B B 	 f 
 D→ f→ R− 	 f 
 − B 	 f ′

L B→ A+ B A D→−L + 1

R B→ 0 B D→ R− 1

L 	 f 
 → f← L A	 f 
 L → 	∫ ∗ f 
 L

R	 f 
 → f→ R B 	 f 
 L → 	∫∗ f 
 L

L L → L A	 f 
 R→ 	∫ ∗ f 
 R

L R→ R B 	 f 
 R→ 	∫∗ f 
 R

R L→ L A L→ 	∫ ∗1
 L

R R→ R B L→ 	∫∗1
 L

A R→ 	∫ ∗1
 R

B R→ 	∫∗1
 R

Table 1we see that we donot have any inclusions). We do this in the usual manner by
showing that the S-polynomialw2 p1− p2w1 reduces to 0 for any pair of rulesww1→ p1
andw2w→ p2.

It turns out that there are 233 S-polynomials to be considered, and the task of doing
all these reductions is rather daunting. It is therefore preferable toautomate the proof.
As we have implemented the whole algorithm for computing Green’s operators in the
TH∃OREM∀ system (seeSection 3.1for some details), it seems natural to do this also
in TH∃OREM∀—a neat example of how this system offers support on various levels:
here, on the object level of computation (using the reduction system for computing as
explained below) as well as on the meta level of proof (verifying properties of the system,
like confluence in our case). For the general philosophy of treating object and meta levels,
seeBuchberger(1999).
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Table 2
Fragment of the confluence proof

The rules DA and AMA yield the S-polynomial:

	 f 
A− D
⌈∫ ∗ f

⌉
A+ D A

⌈∫ ∗ f
⌉ (...)
↓=

	 f 
A− D
⌈∫ ∗ f

⌉
A+ D A

⌈∫ ∗ f
⌉ (D A)
↓=

⌈∫ ∗ f
⌉+ 	 f 
A− D

⌈∫ ∗ f
⌉

A

(DM)
↓=

⌈∫ ∗ f
⌉+ 	 f 
A−

⌈ (∫ ∗ f
)
’

⌉
A− ⌈∫ ∗ f

⌉
D A

(da)
↓=

⌈∫ ∗ f
⌉− ⌈∫ ∗ f

⌉
D A

(D A)
↓=

0 �
· · ·

The rules DA and AMA yield the S-polynomial:

A	 f 
A+ B	 f 
A− R
⌈∫ ∗ f

⌉
A+ R A

⌈∫ ∗ f
⌉ (...)
↓=

A	 f 
A+ B	 f 
A− R
⌈∫ ∗ f

⌉
A+ R A

⌈∫ ∗ f
⌉ (RA)
↓=

A
⌈∫ ∗ f

⌉+ B
⌈∫ ∗ f

⌉+ A	 f 
A+ B	 f 
A− R	∫ ∗ f 
 A

(RM)↓=

A
⌈∫ ∗ f

⌉+ B
⌈∫ ∗ f

⌉− (∫ ∗ f
)→ R A+ A	 f 
A+ B	 f 
A

(ra)
↓=

A
⌈∫ ∗ f

⌉+ B
⌈∫ ∗ f

⌉− (∮ f ) R A + A	 f 
A+ B	 f 
A
(RA)
↓=

−(∮ f )A− (∮ f )B+ A
⌈∫ ∗ f

⌉+ B
⌈∫ ∗ f

⌉+ A	 f 
A + B	 f 
A
(AM A)
↓=

−(∮ f )A− (∮ f )B+ B
⌈∫ ∗ f

⌉+ ⌈∫ ∗ f
⌉

A+ B	 f 
A
(BM A)
↓=

−(∮ f )A− (∮ f )B+ B
⌈∫ ∗ f

⌉+ B

⌈ ∫
∗ f

⌉
+ ⌈∫ ∗ f

⌉
A+

⌈ ∫
∗ f

⌉
A

(b)
↓=

0 �

For theautomated proof, we had to hand-prove some auxiliary equalities that are valid
in any analytic algebraF. These equalities are mainly integral theorems like∫ ∗

( f (
∫ ∗ f )) = 1

2

(∫ ∗
f

)2

;

seeRosenkranz(2003a) for details. Tables 2and3 show a small fragment of theactual
confluence proof(everything in thesetables is verbatim TH∃OREM∀ output), which
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Table 3
Fragment of the confluence proof (cont’d)

The rules BR and RR yield the S-polynomial:

−B R+ ⌈∫
∗ 1

⌉
R2

(...)
↓=

−B R+
⌈ ∫
∗ 1

⌉
R2

(b)
↓=

−B R+ (∮ 1) R2 − ⌈∫ ∗ 1
⌉

R2
(RR)
↓=

(
∮

1)R− B R− ⌈∫ ∗ 1
⌉

R2
(RR)
↓=

(
∮

1)R− B R − ⌈∫ ∗ 1
⌉

R

(BR)↓=

(
∮

1)R−
⌈ ∫
∗ 1

⌉
R− ⌈∫ ∗ 1

⌉
R

(b)
↓=

0 �

�
√

Computed 233 S-polynomials in 129 seconds.
�
√

Reduced them in 3144 seconds.
�
√

All of them reduced to zero!
���

Table 4
Grammar of Green’s polynomials

Production rule Name
M ::= AIA |AD |ABD Monomial operator
I ::= A | B Integral operator
A ::= 1 | 	 f 
 Algebraic operator
B ::= L | R Boundary operator
D ::= 1 | DD Differential operator

covers approximately 2000 lines altogether. In every intermediate expression, the redex
is framed by the system in order to improvereadability. The uppercase letters above the
equality symbol refer to the corresponding rules ofTable 1(the names are derived from the
monomial on the left-hand side, with multiplication operators generically denoted by the
letter M); the lowercase letters refer to the auxiliary equalities. The expression

∮
f , with

f ∈ F, is an abbreviation for the “definite integral”
∫ ∗ f + ∫

∗ f .
For establishing theterminationof the Green’s system, we have given two different

proofs inRosenkranz(2003a). The more intuitive proof uses the idea of various termination
terms associated with the rules. For example,several rulesdecrease the “differential
weight” (the number of occurrences of the indeterminateD), whereas none of the rules
increases it. The other proof proceeds on a morealgebraic line: We set up a suitable graded
lexicographic ordering on the word monoidΩ∗ overΩ = {D, A, B, L, R,M}, which is
then extended to a well-ordering on the system of finite subsets ofΩ∗. This well-ordering
induces a noetherian strict partial order onAn(F) by identifying all	 f 
 with M and taking
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the support of the resulting polynomial. Hence it suffices to prove that the reductions are
compatible with this induced order—which is easily achieved.

Summarizing the previous two results, we have proved convergence (confluence and
termination) for the Green’s system.

Theorem 2. For any analytic algebraF, the system inTable 1 constitutes a convergent
rewrite system on the ring of analytic polynomialsAn(F).

As mentioned before, we can also characterize thenormal forms (which always exist
and are unique by the preceding theorem), and they will turn out to be precise analogs of
the Green’sfunctions.

Definition 3. A polynomial of An(F) is said to be aGreen’s polynomial iff all its
monomials are produced by the ruleM of the grammar inTable 4. We denote the set
of Green’s polynomials byGr↓(F).

Theorem 3. Thenormal forms ofAn(F) with respect to the reduction system specified in
Table1 are precisely the Green’s polynomialsGr↓(F).

The proof of the preceding theorem is rather straightforward, albeit slightly technical. It
is easy to see that any Green’s polynomial is indeed irreducible. For proving the converse,
one takes an arbitrary monomialp ∈ An(F)\Gr↓(F) and shows that it is reducible, using
a case distinction on the first letters ofp. Despite its rather technical proof, the statement
of the theorem is actuallyvery intuitive: Any linear integro-differential-boundary operator
must be a superposition of purely integral or differential or boundary operators (algebraic
operators can be seen as zero-order differential operators). This is clear: on the monomial
level, integration and differentiation cancel each other, and boundary evaluation collapses
the functional range to a single point.

It is now easy to see why a Green’s polynomial allows us to read off the corresponding
Green’s function. Since we know that the “differential weight” is invariant under the
Green’s system, the normal form of a Green’s operator cannot be of typeAD or ABD;
hence it must be of typeAIA. So each monomial has the form	 f 
A	g
 or 	 f 
B	g
,
where f or g may also be 1; it contributes the term f (x)g(ξ) to the “upper” or “lower”
part of a Green’s function defined by the case distinction

g(x, ξ) =
{

upper(x, ξ) if a ≤ ξ ≤ x ≤ b,

lower(x, ξ) if a ≤ x ≤ ξ ≤ b,

reflecting the characteristic jump on the diagonal of[a,b] × [a,b].
One can also extract a binary functionh from the right inverseT� of the given

differential operatorT just as one extracts the Green’s functiong from the corresponding
Green’s operatorG. In theliterature, the functionh is known as thefundamental solution
of the differential equationT u= f . Its role is similar tog, except that it ignores boundary
conditions: for any forcing functionf , the convolution defined by (4), with h instead of
g, yields somesolutionu of the differential equationT u = f . Comparing thiswith the
relation G = (1− P)T�, we gain a new interpretation of the fundamental solution: it is
the “Green’s function” associated with the trivial nullspace projector P = 0 (which can
never arise from the boundary conditions of a regular BVP).
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Before clarifying the relations between the actual operators acting onC∞[a,b] and
their formal counterparts in the algebraic structureAn(F), let us investigate the latter just
a bit more: it is highly instructive to interpret the results about the Green’s system from a
purelyring-theoretic perspective.

Definition 4. Let F be an analytic algebra. ThenGr0(F) denotes theGreen’s systemover
F, i.e. the set of all polynomialsl − r wherel → r is a rule of the reduction system
in Table 1and the variablesf, g range over all ofF#. Furthermore,Gr(F) denotes the
two-sided ideal generated byGr0(F) in An(F); we call it theGreen’s idealoverF.

Theorem 4. For any analytic algebraF, the Green’s systemGr0(F) constitutes a
noncommutative Gröbner basis for the idealGr(F) in An(F).

The notion ofGröbner baseswas originally introduced in the “classical” context of
commutative polynomials by Bruno Buchberger in his Ph.D. Thesis (Buchberger, 1965);
see also the journal versionBuchberger(1970) and a concise treatment inBuchberger
(1998). As discovered byMora (1986, 1988), the computation of Gröbner bases can be
transferred to noncommutative rings in a straightforward way (though it may not terminate
in all cases). Actually, there are several variations on the notion of noncommutative
Gröbner bases; our usage is in harmony with Theorem 8 ofUfnarovski (1998). In the
present context, the essential idea of Gröbner bases is the confluence of the induced
reduction—which we have considered just before.

This leads us back to our remarks at the close ofSection 2.1: it is now clear why we can
avoid the costly computation of a Gröbner basis for each new problem as inRosenkranz
et al.(2003a): Wehavealready a Gröbner basis, namelyGr0(F), and itneed not be changed
for the different instances of BVPs considered. Of course,Gr0(F) is not a finite Gröbner
basis since the variablesf andg in Table 1range over all ofF#; however, it isfinitary in
the sense of being described by finitely many parametrized polynomials.

Finally we can now address the questions of soundness and adquacy—how the formal
operators are related to the actual ones. For this, let us first clarify the correspondence
betweenformal and actual operators.

Definition 5. Let F be an analytic algebra,A an algebra containingF, andL a subalgebra
of the algebra of all linear operators onA. A homomorphismI : An(F)→ L will be called
an interpretation ofAn(F) in L if I (	 f 
) a = f a for all f ∈ F anda ∈ A. It is called
soundif all the equalities ofTable 1(where→ is now regarded as=) are valid.

If L is the algebra of all linear operators on the algebra of smooth functionsC∞[a,b],
we define thesmooth interpretationsm ofAn(F) in L by setting

sm(D)(u) = u′,

sm(A)(u) = x �→
∫ x

a
u(ξ) dξ,

sm(B)(u)= x �→
∫ b

x
u(ξ) dξ,

sm(L)(u) = x �→ u(a),
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sm(R)(u) = x �→ u(b),

sm(	 f 
)(u) = f u,

whereu ranges overC∞[a,b], x over [a,b], and f overF. It is easy to check that sm is
indeed sound. (Actually, the equalities ofTable 1were extracted from relations inL in the
first place!) In a similar fashion, one may also define a distributional interpretation by using
the algebra of boundary-valued distributionsC−∞0 [a,b] instead ofC∞[a,b]. In fact, all
the statements formulated here for the smooth interpretation carry over to the distributional
setting, which allows for strong, weak and distributional solutions; seeRosenkranz(2003a,
p. 45) for details.

Finally we arrivenow at the summit of this treatise: the correctness theorem for our
method of computing the Green’s operator—at the same time asserting theadequacyof
the Green’s system inTable 1. The smooth interpretation of an analytic polynomialp will
be denoted byp.

Theorem 5. Assume we have

• a linear differential operator Tof order n with constant coefficients,
• n boundary operators B0, . . . , Bn−1

• such that the resulting BVP(1) has a unique solution,

Now compute

• the nullspace projector P according toLemma2,
• the right inverse T� of T as inLemma3,
• and finally the normal form G of(1−P)T�, reduced with respect to the Green’s system

in Table1.

Then Gis the Green’s operator of the BVP, and G represents the corresponding Green’s
function g of(4).

Proof. By Lemma 2, P is indeed a projectoronto the nullspace ofT . SinceT is always
surjective, 1is the onlypossible projector onto the range ofT . Now there is aunique
oblique Moore–Penrose inverse ofT having these projectors; wewill write it as G for
someG ∈ An(F) yet to be determined.

By Theorem 1, G is also determineduniquely by the four Moore–Penrose Eqs. (5)–(8).
As explained afterTheorem 1, we can restrict ourselves to (7) and (8); finally, Lemma 1
reduces everything to (7), which readsGT = 1− P. SinceT T� = 1 by Lemma 3,
postmultiplying by T� yieldsG = (1− P)T�. Hence we may choose the normal form of

(1− P)T� for G, andits interpretationG will be the desired Moore–Penrose inverse.
For any f ∈ C∞[a,b], the imageu = G f fulfi lls the given differential equation

Tu = f because of the fourth Moore–Penrose Eq. (8). The range ofG is 1− P C∞[a,b]
by Theorem 1, and every function contained in this range fulfills the given boundary
conditions byLemma 2. Hence G f fulfi lls the given BVP for anyf ∈ C∞[a,b], and
G must coincide with the desired Green’s operator dueto the regularity assumption.
Moreover,G represents the Green’s functiong sinceG is a Green’s polynomial; see the
discussion afterTheorem 3. �
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3. Sample computations

3.1. About the implementation

As mentioned before, we have implemented our method in TH∃OREM∀—a mathemat-
ical software system developed at RISC under the supervision of Prof. Bruno Buchberger.
Based on Mathematica™, this system offers support forproving, computing and solvingin
various mathematical domains. As explained above, our implementation is actually a good
example for the interplay between these threefundamental activities in mathematics: for
solvinga BVP, wecomputethe Green’s operator by areduction system that isprovedcon-
fluent (seeTables 2and3 for a screen shot displaying two typical cases selected from the
total of 233 cases that occur in theproof generated automatically by our proof algorithm).

The core machineryfor computing the Green’s operator by our method is concerned
with handling noncommutative polynomials—this is mainly addition, subtraction,
multiplication, reduction to normal form. We have implemented these operations as
a separate “basic evaluator” namedReduceNoncommutativePolynomial. Based on
TH∃OREM∀, it benefits also from the neat notation facilities available there: One may
write the noncommutative polynomials exactly as one would on paper (e.g. denoting
multiplication by juxtaposition rather than∗∗ as in plain Mathematica™).

The basic evaluator for noncommutative polynomials is used for computing the
nullspace projector as inLemma 2, the right inverse as inLemma 3, and finally the Green’s
function as inTheorem 5. All theseapplied operationsare implemented in another basic
evaluator namedGreenEvaluator. In thenext section, we will show some computations
carried out by this evaluator (note that all the input and output printed8 there is verbatim).

3.2. A simple classical example

The following problem seems to be one of the classical examples that are most often
used for introducing the concepts of ordinary linear BVPs (Stakgold, 1979, p. 42). It can be
interpreted as describingone-dimensional steady heat conduction in a homogeneous rod. In
its functional formulation (after scaling everything to unity), it means that we have to solve

u′′ = f,

u(0) = u(1) = 0

for the temperatureu ∈ C∞[0,1] with a given heat sourcef ∈ C∞[0,1].
In this example, we have the differential operatorT = D2, so thenullspace is

{αx + β | α, β ∈ C}, and finding thenullspace projector Preduces tothe following linear
interpolation problem: given a functionv ∈ C∞[0,1], find alinear functionPv that agrees
with v at the grid points 0 and 1. In our case we can do this automatically:

In[13]:= Compute[Projŵ,by→ GreenEvaluator,

using→ KnowledgeBase[”ClassicalHeatConduction”]]
Out[13]= L − 	x
L + 	x
R.

8 For aesthetic reasons, however, we have displayed Euler’s number ase instead of using Mathematica’s
standard forme.
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The other crucial step is to find theright inverse(D2)� . Trivially, this is A2 in our case,
but this isnot in normal form. Computing it by our system returns the normal form:

In[14]:= Compute[(D2)�,by→ GreenEvaluator]
Out[14]= −A	x
 + 	x
A.

Now it is easy to find theGreen’s operator Gby computing(1−P) T� in its normal form:

In[15]:= Compute[(1− L + 	x
L − 	x
R)(−A	x
 + 	x
A),
by→ GreenEvaluator]

Out[15]= −A	x
 − 	x
B+ 	x
A	x
 + 	x
B	x
.
Of course, we could also compute the Green’s operatorimmediately (by specifying the
given differential operator together with the list of boundary operators):

In[16]:= Compute[Green[D2, 〈L,R〉,by→ GreenEvaluator]
Out[16]= −A	x
 − 	x
B+ 	x
A	x
 + 	x
B	x
.

Using the translation procedure described afterTheorem 3, this corresponds to theGreen’s
function

g(x, ξ) =
{
(x − 1)ξ if 0 ≤ ξ ≤ x ≤ 1,

x(ξ − 1) if 0 ≤ x ≤ ξ ≤ 1.

3.3. Damped oscillations

For a slightly more complicated problem, we take Example 2 in the textbook (Krall,
1986, p. 109). The differential operator of this BVP hasdamped oscillations as its
eigenfunctions; seeKrall (1986, p. 107). Stated in our terminology, the problem reads
as follows: Givenf ∈ C∞[0, π], find u ∈ C∞[0, π] suchthat

u′′ + 2u′ + u = f,

u(0) = u(π) = 0.

This time, we will immediately compute theGreen’s operator:

In[17]:= Compute[Green[D2+ 2D+ 1, 〈L,R〉],
by→ GreenEvaluator]

Out[17]= (1− π−1)	e−xx
A	ex
 − 	e−x
A	exx
 + π−1	e−xx
A	exx

− π−1	e−xx
B	ex
 + π−1	e−xx
B	exx
.

Written in the language ofGreen’s functions, this means that

g(x, ξ) =
{

1
π
(π − x)ξ eξ−x if 0 ≤ ξ ≤ x ≤ π,

1
π
(π − ξ)x eξ−x if 0 ≤ x ≤ ξ ≤ π.

3.4. Transverse beam deflection

For one more example, let us now do a fourth-order problem (Stakgold, 1979, p. 49)
that describes thetransverse deflection u∈ C∞[0,1] of a homogeneous beam with given
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distributed transversal loadf ∈ C∞[0,1], simply supported at both ends. Using a linear
elasticity model, one ends up with

u′′′′ = f,

u(0) = u(1) = u′′(0) = u′′(1) = 0.

Again computing theGreen’s operatordirectly, we arrive at:

In[18]:= Compute[Green[D4, 〈L,R,LD2,RD2〉],
by→ GreenEvaluator]

Out[18]= 1
3 	x
A	x
 − 1

6 A	x3
 − 1
2 	x2
A	x
 + 1

6 	x
A	x3

+ 1

6 	x3
A	x
 + 1
3 	x
B	x
 − 1

2 	x
B	x2

− 1

6 	x3
B+ 1
6 	x
B	x3
 + 1

6 	x3
B	x
.
This corresponds to theGreen’s function

g(x, ξ) =
{

1
3 xξ − 1

6 ξ
3 − 1

2 x2ξ + 1
6 xξ3+ 1

6 x3ξ if 0 ≤ ξ ≤ x ≤ π,
1
3 xξ − 1

2 xξ2 − 1
6 x3+ 1

6 xξ3+ 1
6 x3ξ if 0 ≤ x ≤ ξ ≤ π.

3.5. Nonunique solutions

As stated inSection 2.1, our method handles BVPs of the form (1) whichare regular in
the sense that foreach forcing functionf ∈ C∞[a,b], a solutionu ∈ C∞[a,b] exists,9 and
this solution is unique. However, it is often desirable to compute solutions that exist only
for certain choices off ; in thiscase, there are necessarily several independent solutions—
this is made precise by the Alternative Theorem for BVPs, seeStakgold(1979, p. 210).
In such a situation, one can compute something like a Green’s function that allows us to
transform anyadmissibleforcing function f to somesolutionu; this is what amodified
Green’s functionis used for, seeStakgold(1979, p. 216).

Let us look at the following illuminatingexample;10 see e.g. Equation (5.1) inStakgold
(1979, p. 215): given f ∈ C∞[0,1], find u ∈ C∞[0,1] suchthat

−u′′ = f,
u′(0) = u′(1) = 0.

(10)

Integrating the differential equation, one sees immediately that a solutionu can only exist
if f fulfi lls thesolvability condition

∫ 1
0 f (x) dx = 0. In this case, one boundary condition

implies the other because we haveu′(1) = u′(0)+ ∫ 1
0 f (x) dx = u′(0).

Computing the nullspace projector viaLemma 2 does not work since the matrix
l̂ ŵ← + r̂ ŵ→ is singular, reflecting the fact that one of the boundary conditions is
superfluous. Obviously we cannot apply the standard method described in this article.

9 As noted at the end ofSection 2.5, the smooth setting used in this article can readily be extended to the more
general distributional setting.
10 I am grateful to my referee Stanly Steinberg for pointing me to this example.
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However, we will now show how we can still solve (10) by transforming it to a regular
problem.

Wecan ensureuniquenessby imposing the condition that theL2 norm ofu be minimal.
Since the nullspace of (10) are the constant functions, the norm ofu can always be made
zero. Hence we add the integral condition

∫ 1
0 u(ξ) dξ = 0 to the two given boundary

conditions, see Equation (5.12) inStakgold(1979, p. 216).
Next we enforceexistenceby projecting the givenf onto the subspace of admissible

forcing functions,A = { f ∈ C∞[0,1] | ∫ 1
0 f (ξ) dξ = 0}. In general there are many

projectors, but the canonical choice is to take the space of constant functions as the
complement ofA. In this case we have to use the projector 1− A− B : C∞[0,1] → A

that mapsf to f − ∫ 1
0 f (ξ) dξ . Observe that this projector maps the constant function

1 to zero, hence the generalized Green’s operator maps 1 to the unique minimum-norm
solution ofu′′ = 0,u′(0) = u′(1) = 0, which is again zero. This fact is used to single
out the modified Green’s operator among all other generalized Green’s operators, see
Equation (5.4) inStakgold(1979, p. 216).

We are nowconfronted with the followingregular problem: given f ∈ C∞[0,1], find
u ∈ C∞[0,1] suchthat

−u′′ = (1− F) f,

u′(0) = u′(1) = ∫ 1
0 u(ξ) dξ = 0.

(11)

Here we have usedthe abbreviationF ≡ A + B for denoting the operator of definite
integration.

Though regular, problem (11) is still not in the scope of the method described in this
paper: first, we have three conditions to fulfill (it is no problem that one of them is
not a boundary condition), but the nullspace of−D2 is only two dimensional. Second,
the projector 1− F prevents us from interpreting the differential equation as finding a
right inverse of−D2. We can knock out both problems at once with a simple trick—by
differentiating one more time. Doing so, we arrive at the followingaccessory problem:
given f ∈ C∞[0,1], find u ∈ C∞[0,1] suchthat

−u′′′ = f ′,
u′(0) = u′(1) = ∫ 1

0 u(ξ) dξ = 0.
(12)

Note that the projector has now disappeared becauseD(1− F) = 0.
Problem (12) is equivalentto (11): the direction from (11) to (12) is trivial, so assume

now u is a solution of (12). In order to obtain−u′′ = f from −u′′′ = f ′, we have to
integrate using the mean-value antiderivativeA−FA ratherthan the standard antiderivative
A. Whereas the standard antiderivative∫ x

0
u′(ξ) dξ = u(x)− u(0)

takes the integration constant as the left boundary value, the mean-value antiderivative
(slightly rewritten)∫ 1

0

∫ x

τ

u′(ξ) dξ dτ = u(x)−
∫ 1

0
u(ξ) dξ
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takes it as the mean value. In operator notation, these equations are written in the succinct
form AD = 1− L and(A− FA)D = 1− F . Note that the former is part of the reduction
system ofTable 1, whereas the latter can easily be obtained from it. Applying nowA− FA
to the differential equation of (12), we obtain

−u′′ +
∫ 1

0
u′′(ξ) dξ = f −

∫ 1

0
f (ξ) dξ,

which is indeed the differential equation of (11) since
∫ 1

0 u′′(ξ) dξ = u′(1)− u′(0) = 0.
Hence we are left to problem (12). This time we can apply our standard method

described in this article. The nullspace of−D3 is given by the quadratic polynomials, so it
has dimension 3. Hence we can choose aprojector P onto it such that its complement
consists exactly of those functionsu ∈ C∞[0,1] that fulfill the three side conditions
of (12). Using the ansatzPu= αux2+ βux + γu, one obtains immediately

P = F − 1

3
L D − 1

6
RD+ 	x
L D + 1

2
	x2
(RD− L D).

The corresponding Green’s operatorG̃ fulfills the third Moore–Penrose Eq. (7), so we
have−D3G̃ = 1−P. Butnote thatG̃ has to be applied tof ′ ratherthan f . Hence the actual
Green’s operatorthat mapsf to u is given byG = G̃D, and wehave−D2G = 1− P.
Now we can use theusual procedure of right inversion, givingG = −(1− P)A2. The final
step is now to normalize this analytic polynomial by using theGreenEvaluator described
in Section 3.1, yielding:

In[19]:= Compute[ − (1− P)A2,by→ GreenEvaluator]
Out[19]= 1

2 A	x2
 − B	x
 + 1
2 B	x2
 − 	x
A

+ 1
2 	x2
B + 1

2 	x2
A+ 1
3 A+ 1

3 B.

The standard translation procedure extracts from this the followingmodified Green’s
function

g(x, ξ) =
{

1
3 − x + x2+ξ2

2 if 0 ≤ ξ ≤ x ≤ 1,
1
3 − ξ + x2+ξ2

2 if 0 ≤ x ≤ ξ ≤ 1,

see Equation (5.5) inStakgold(1979, p. 216).

3.6. The generic Sturm problem

The two-point BVPs treated in this article can be understood as inhomogeneous LODEs
whose inhomogeneity isparametrized(plus side conditions). It is common practice to
regard all other data as predetermined. Quoting (Stakgold, 1979, p. 51): “The differential
operator and boundary operators appearing on the left sides ... are kept fixed; no one is
proposing to solve all differential equations with arbitrary boundary conditions in one
stroke!”
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Following a recent proposal,11 we will nevertheless attempt to do something in this
direction: we are not going to solveall LODEs orall boundary conditions in one stroke,
but we will consider thegeneric Sturm Problem, i.e. the general second-order BVP with
unmixed boundary conditions (for a linear differential operator with constant coefficients),
seeStakgold(1979, p.191f).

So we deal with the followingproblem: Given f ∈ C∞[0,1], find u ∈ C∞[0,1] such
that

u′′ + au′ + bu= f
αu(0)+ βu′(0) = γu(1)+ δu′(1) = 0.

(13)

Note that we have assumed[0,1] as the domain, which can always be enforced by
rescaling. The coefficient ofu′′ is assumed to benonzero (otherwise we would have a first-
order problem), so it is divided out. Furthermore, we assume that the parameters fulfill
a,b, α, β, γ, δ �= 0 and that they make (13) a regular BVP. It is well-known (Coddington
and Levinson, 1955, p. 291) that this is the case iff∣∣∣∣ αϕ(0)+ βϕ′(0) αψ(0) + βψ ′(0)

γ ϕ(1)+ δϕ′(1) γψ(1)+ δψ ′(1)
∣∣∣∣ �= 0 (14)

where{ϕ,ψ} is any fundamental system for the homogeneous equationu′′ + au′ + bu
= 0.

For solving (13), we proceed just as before. The only difference is that the scalar
field underlying the analytic algebraExp is no longerC but rather therational-function
field C(a,b, α, β, γ, δ). All the computations described so far carry over without essential
changes.

Let us denote the differential operator of problem (13) by T ≡ D2 + a D + b, its two
boundary operators byM ≡ α L + β L D andN ≡ γ R+ δ RD. With λ andµ being the
roots of the characteristic equationx2 + ax + b = 0, the differential operator factors as
T = (D − λ)(D − µ) and has, byLemma 3,

T� = 	eλx
A	e(µ−λ)x
A	e−µx
 (15)

as aright inverse. Note that the middle factor disappears ifλ = µ. In the following, we
will only treat the caseλ �= µ; the case of a double root is completely analogous.

The next step is to compute anullspace projector. In thenotation used there, we have

now l̂ = (
α β
0 0

)
, r̂ =

(
0 0
γ δ

)
and (Ll̂ + Rr̂ )D̂2 =

(
M
N

)
. We have to choose some

fundamental system{ϕ,ψ} of the homogeneous equationT u = 0. We will follow the
practice of Stakgold(1979, p. 195), selectingϕ andψ to fulfill the boundary conditions
Mϕ = 0 and Nψ = 0, respectively. We do this by takingϕ andψ to be the unique
solutions of the following initial-value problems for the differential equationT u = 0.
For ϕ, the initial conditions are taken asϕ(0) = β, ϕ′(0) = −α; for ψ, they are
ψ(1) = δ,ψ ′(1) = −γ . A small computation (e.g. by the Mathematica commandDSolve)

11This proposal was forwarded to me from my referee Stanly Steinberg, whom I would also like to thank here.
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leads to

ϕ(x) = (λ− µ)−1 (
(α + βλ) eµx − (α + βµ) eλx) ,

ψ(x)= (λ− µ)−1
(
(γ + δλ) eµ(x−1) − (γ + δµ) eλ(x−1)

)
.

Let ŵ be the fundamental matrix of{ϕ,ψ}. Using the relationMϕ = Nψ = 0, we obtain

l̂ ŵ← + r̂ ŵ→ =
(

Mϕ Mψ
Nϕ Nψ

)
= (

0 m
n 0

)
, where

m≡Mψ = (λ− µ)−1 (
(α + βµ)(γ + δλ) e−µ − (α + βλ)(γ + δµ) e−λ

)
,

n ≡ Nϕ = (λ− µ)−1 (
(α + βλ)(γ + δµ) eµ − (α + βµ)(γ + δλ) eλ

)
are used as abbreviations. Observing thatn = −meλ+µ, we obtain the inverse(l̂ ŵ← +
r̂ ŵ→)−1 =

(
0 n−1

m−1 0

)
= −m−1

(
0 e−λ−µ−1 0

)
. According toLemma 2, the nullspace

projector is now

P=	ŵ1
(l̂ ŵ← + r̂ ŵ→)−1(Ll̂ + Rr̂ )D̂2 = −m−1 ( 	ϕ(x)
 	ψ(x)
 )
(

0 e−λ−µ−1 0

) (
M
N

)
=m−1(	ψ(x)
M − e−λ−µ 	ϕ(x)
N),

written as an analytic polynomial.
With these preparations, we can compute theGreen’s operator Gas before viaG =

(1− P) T� . Substituting the nullspace projector and the right inverse, we obtain

m G= (m− 	ψ(x)
M + e−λ−µ	ϕ(x)
N)	eλx
A	e(µ−λ)x
A	e−µx

as a preliminary answer.

For writing G in its canonical form, wenormalize it by theGreenEvaluator after giving
the necessary definitions and options:12

In[20]:= Definition[”Abbreviations”,

M = αL + βL D

N = γ R+ δRD]
ϕ[x] = (λ− µ)−1((α + βλ) eµx − (α + βµ) eλx)

ψ[x] = (λ− µ)−1((γ + δλ) eµ(x−1) − (γ + δµ) eλ(x−1))]
m= (λ− µ)−1((α + βµ)(γ + δλ)e−µ − (α + βλ)(γ + δµ)e−λ].

In[21]:= SetOptions[ReduceNoncommutativePolynomial,

FactorCoefficients→ True].
In[22]:= Compute[(m− 	ψ[x]
M + e−λ−µ	ϕ[x]
N) 	eλx
A	e(µ−λ)x
A	e−µx
,

using→ Definition[”Abbreviations”],by→ GreenEvaluator].

12Note that Theorema, just like Mathematica, uses square brackets rather than roundparentheses for function
application. Hence we have here e.g.	ϕ[x]
 instead of	ϕ(x)
 as before.
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Out[22]= (α + βµ)(γ + δµ)(λ− µ)−2 e−λ 	eλx
A	e−µx

+ (α + βµ)(γ + δµ)(λ− µ)−2 e−λ 	eλx
B	e−µx

− (α + βλ)(γ + δµ)(λ− µ)−2 e−λ 	eµx
B	e−µx

− (α + βλ)(γ + δµ)(λ− µ)−2 e−λ 	eλx
A	e−λx

+ (α + βλ)(γ + δλ)(λ− µ)−2 e−µ 	eµx
A	e−λx

+ (α + βλ)(γ + δλ)(λ− µ)−2 e−µ 	eµx
B	e−λx

− (α + βµ)(γ + δλ)(λ− µ)−2 e−µ 	eµx
A	e−µx

− (α + βµ)(γ + δλ)(λ− µ)−2 e−µ 	eλx
B	e−λx
.

From the above representation, one could extract the Green’s function in the usual
straightforward manner. For comparing our result with the literature, however, it is
convenient tofactor it as

(λ− µ)2 m G

= (
(γ + δλ) e−µ 	eµx
 − (γ + δµ) e−λ 	eλx
) A

(
(α + βλ) 	e−λx


− (α + βµ) 	e−µx
)+ (
(α + βλ) 	eµx
 − (α + βµ) 	eλx
)

× B
(
(γ + δλ) e−µ 	e−λx
 − (γ + δµ) e−λ 	e−µx
)

= 	(γ + δλ) eµ(x−1) − (γ + δµ) eλ(x−1)
 A
⌈
e−(λ+µ)x

(
(α + βλ) eµx

− (α + βµ) eλx) ⌉
+ 	(α + βλ) eµx − (α + βµ) eλx


× B
⌈
e−(λ+µ)x

(
(γ + δλ) eµ(x−1) − (γ + δµ) eλ(x−1)

)⌉
= 	(λ− µ)ψ(x)
 A 	e−(λ+µ)x (λ− µ) ϕ(x)
 + 	(λ− µ) ϕ(x)

× B 	e−(λ+µ)x (λ− µ)ψ(x)
,

which yields immediately the Green’s operator

G = 	ψ(x)
 A 	m−1 e−(λ+µ)x ϕ(x)
 + 	ϕ(x)
 B 	m−1 e−(λ+µ)x ψ(x)

in a condensed representation.

An easy computation shows thatme(λ+µ)x is just the WronskianW(x) ≡ detŵ(x) =
ϕ(x) ψ ′(x)− ϕ′(x) ψ(x), hence we obtain theGreen’s functionin the form

g(x, ξ) =
{
ψ(x) ϕ(ξ)W(ξ)−1 if 0 ≤ ξ ≤ x ≤ 1,

ϕ(x) ψ(ξ)W(ξ)−1 if 0 ≤ x ≤ ξ ≤ 1,

in accordance withStakgold(1979, p. 195).

4. Conclusion

We havepresented a new algorithm for solving linear two-point BVPs symbolically.
Unlike the usual methods that translate theoperator problem into a functional setting,
our approach represents the abstract quotient structure encoding the relevant operators
(differentiation, integration, boundary evaluation, functional multiplication) with their
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essential properties (Leibniz equality, fundamental theorem of calculus, etc) canonically
in an ismorphic algorithmic domain: the quotient ringAn(F)/Gr(F)may be considered as
an abstract condensate capturing thealgebraic characteristics of the operators involved,
whereas the isomorphic systemGr0(F) makes this structure available to computations via
the reduction induced by the Green’s system.

At this point it is natural to ask ourselves how far the method presented in this article
could be generalized. Let us firstlook at some straightforwardgeneralizations; most of
these have also been discussed inRosenkranz et al.(2003a).

• We can investigatesystems of differential equations(together with their boundary
conditions) instead of a single one. In the linear case, the resulting theory is very
similar to scalar BVPs, using a Green’s matrix instead of a Green’s function; see
e.g. p. 249 inKamke (1983). Our method should be extensible to this case in a
fairly simple manner. In the worst case, wehave to recede to our original approach
in Rosenkranz et al.(2003a) via Gröbner bases and adapt them to work for vectors of
polynomials rather than single ones. Essentially this amounts to computing Gröbner
bases in modules, a routine task for commutative polynomials—see e.g.Becker
and Weispfenning(1993, pp. 485ff)—that may be expected to carry over to the
noncommutative case.
• It is certainly a much greater challenge to move from ordinary topartial differential

equations. In principle, the algebraization embodied in our approach extends in a
straightforward way, e.g. introducing the partial differential operatorsDx and Dy

instead ofD and analogous operators for integration. Certain concepts and results from
Riquier–Janet theory and Lie analysis may come in handy here. Of course, one will have
to adapt the treatment of boundary values. Besides this, the analog of right inversion
will in general be far more complex for partial differential operators—maybe somewhat
similar to the elimination techniques used by the holonomic paradigm (Zeilberger,
1990).
• One of the mostdifficult generalizations is probably the step towardsnonlinearBVPs.

The reason is that our algebraic model does not lend itself easily to describe nonlinear
differential operators, and the systematic approach seems to lead to general rewriting
(still modulo the polynomial congruence), withsubstitution in addition to replacement.
Maybe this could be handled by a suitable combination of Gröbner bases and the Knuth-
Bendix algorithm; seeBachmair and Ganzinger(1994) andMarché(1996).
• It can also be expected to treat certainintegro-differential equationsby our approach. In

fact, the Green’s polynomials provide a uniform way for expressing integral as well as
differential equations—and their mixtures.

Beyond these rather direct generalizations of the problem considered in this article, we
believe that our approach has acertain intrinsic interest not directly tied to BVPs of any
kind. The essence of our method can be described as solving problems at the operator
level by polynomial methods. This could be a new research paradigm applicable to various
problems of a field that might be calledsymbolic functional analysis. Up to now, symbolic
methods have conquered the following two “main floors” (cum grano salis): (1) numbers
→ computer algebra, e.g. solving a system of polynomial equations; (2) functions→
computer analysis, e.g. solving a differential equation. Naturally, the third floor would be:
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(3) operators→ symbolic functional analysis, e.g. solving BVPs. We have described these
ideas in more detail inRosenkranz et al.(2003b). Let us just mention two further examples
of “problems on the third floor”:

• Certain problems inpotential theoryhave a flavor very similar to that of BVPs for PDEs,
at least when seen from the symbolic viewpoint. It is therefore natural to ask to what
extentone could transfer some ideas from BVPs to the potential setting. In particular,
one would like to formulate an algebraic set-up that allows us to express the operator
induced by the potential function (analogous to the Green’s operator induced by the
Green’s function).
• The field of inverse problems(Engl et al., 1996) opens a whole arena of possible

applications of symbolic functional analysis. Even though one cannot usually expect
algebraic solutions for such problems, the polynomial approach will certainly uncover
a great deal about the solution manifold. In particular, it may be possible to transform a
given problem into a different one that has more profitable properties.

Pondering such examples, we do hope that it will be possible to develop fruitful ideas
along these lines in the near future.
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questions of style and presentation. Besides that, I am grateful for the financial support
from FWF as mentioned in the footnote on the first page.

References

Bachmair, L., Ganzinger, H., 1994. Buchberger’s algorithm: a constraint-based completion procedure.
In: Jouannaud, J.-P. (Ed.), First International Conference on Constraints in Computational Logis. Lecture
Notes in Computer Science, vol.845. Springer, New York, pp. 285–301.

Becker, T., Weispfenning, V., 1993. Gröbner Bases: AComputational Approach to Commutative Algebra.
Graduate Texts in Mathematics, Springer, New York.

Bergman, G.M., 1978. The diamond lemma for ring theory. Adv. Math. 29, 179–218.
Buchberger, B., 1965. An algorithm for finding a basis for the residual class ring of zero-dimensional polynomial

ideal. Ph.D. Thesis. University of Innsbruck, Institute for Mathematics (in German).
Buchberger, B., 1970. An algorithmic criterion for the solvability of algebraic systems of equations. Æquationes

Mathematicae 4, 374–383 (in German). InBuchberger and Winkler (1998), pp. 535–545.
Buchberger, B., Introduction to Gröbner Bases. InBuchberger and Winkler (1998)pp. 3–31.
Buchberger, B., Winkler, F. (Eds.), 1998. Gröbner Bases and Applications. London Mathematical Society Lecture

Notes, vol. 251. Cambridge University Press, Cambridge, UK.
Buchberger, B., 1999. Theory exploration versus theoremproving, Invited conference talk at Calculemus’99,

Trento, Italy, 1999. Available as Technical Report 99-46,Johannes Kepler University, Research Institute of
Symbolic Computation, A-4040 Linz, Austria.



M. Rosenkranz / Journal of Symbolic Computation 39 (2005) 171–199 199

Buchberger, B., 2003. Algorithm Invention and Verification by Lazy Thinking. In: Petcu, D., Negru, V.,
Zaharie, D., Jebelean, T. (Eds.), Proceedings of SYNASC2003, 5th International Workshop on Symbolic and
Numeric Algorithms for Scientific Computing Timisoara, October 1–4. Mirton Publisher, Romania, pp. 2–26
(ISBN: 973-661-104-3).

Chyzak, F., Salvy, B., 1997. Non-commutative elimination in Ore algebras. J. Symbolic Comput. 11, 187–227.
Coddington, E.A., Levinson, N., 1955. Theory of OrdinaryDifferential Equations. McGraw-Hill Book Company,

New York.
Engl, H.W., Hanke, M., Neubauer,A., 1996. Regularization of InverseProblems. Kluwer, Dordrecht.
Engl, H.W., Nashed, M.Z., 1981. New extremal characterizations of generalized inverses of linear operators. J.

Math. Anal. Appl. 82, 566–586.
Helton, J.W., Miller, R.L., 2004. The system NCAlgebra. Homepage athttp://math.ucsd.edu/∼ncalg.
Helton, J.W., Stankus, M., Wavrik, J., 1998. Computer simplification of engineering systems formulas. IEEE

Trans. Automat. Control 43 (3), 302–314.
Kamke, E., 1983. Differentialgleichungen und Lösungsmethoden, vol. 1, tenth ed. Teubner, Stuttgart.
Krall, A.M., 1986. Applied Analysis. D. Reidel Publishing Company, Dordrecht.
Marché, C., 1996. Normalized rewriting: an alternative to rewriting modulo a set of equations. J. Symbolic

Comput. 11, 1–36.
Moore, E.H., 1920. On the reciprocal of the generalalgebraic matrix. Bull. Amer. Math. Soc. 26, 394–395.
Mora, T., 1986. Gröbner Bases for Non-commutative Polynomial Rings. In: Calmet, J. (Ed.), AAECC-3, Lecture

Notes of Computer Science, vol. 229. Springer, Berlin, pp. 353–362.
Mora, T., 1988. Seven variations on standard bases. Preprint 45, Dipartimento di Matematica, Università di

Genova, March 1988.
Nashed, M.Z. (Ed.), 1976. Generalized inverses and applications. In: Proceedings of an Advanced Seminar

Sponsored by the Mathematics ResearchCenter. Academic Press, New York.
Paule, P., Strehl, V., 2003. Definite summation and hypergeometric identities. In: Grabmeier, J. et al. (Eds.),

Computer Algebra Handbook: Foundations, Applications, Systems. Springer, Berlin.
Penrose, R., 1955. A generalized inverse for matrices. Proc. Cambridge Philos. Soc. 51, 406–413.
Penrose, R., 1956. On best approximate solutions of linear matrix equations. Proc. Cambridge Philos. Soc. 52,

17–19.
Rosenkranz, M., 2003a. The Green’s algebra: a polynomial approach to boundary value problems. Ph.D. Thesis,

June 2003, Johannes Kepler University, Research Instituteof Symbolic Computation, A-4040 Linz, Austria.
Rosenkranz, M., 2003b. A new method for solving lineartwo-point boundary value problems on the operator

level. SFB Technical Report No. 2003-41, November2003, Johannes Kepler University, A-4040 Linz,
Austria.

Rosenkranz, M., 2003. Symbolic solution of simple BVPs on the operator level: a new approach. SIGSAM Bull.
37 (3), 84–87.

Rosenkranz, M., Buchberger, B., Engl, H.W.,2003a. Solving linear boundary value problems via non-
commutative Gröbner bases. Appl. Anal. 82 (7), 655–675.

Rosenkranz, M., Buchberger, B., Engl, H.W., 2003b. Computer Algebra for Pureand Applied Functional
Analysis. An FWF Proposal for a New SFB Project (F1322).

Stakgold, I., 1979. Green’s Functions and Boundary Value Problems. John Wiley & Sons, New York.
Steinberg, S., Private communcation.
Ufnarovski, V., Introduction to Noncommutative Gröbner Bases Theory. InBuchberger and Winkler (1998), pp.

259–280.
Zeilberger, D., 1990. A holonomic systems approach to special functions identities. J. Comput. Appl. Math. 32,

331–368.

http://math.ucsd.edu/~ncalg

	A new symbolic method for solving linear two-point boundary value problems on the level of operators
	Introduction
	Two-point boundary value problems
	An operator-based approach
	Previous work
	Structure of the article

	The solution method
	General set-up
	The Moore--Penrose inverse
	Computation of the nullspace projector
	Right inversion
	The reduction system

	Sample computations
	About the implementation
	A simple classical example
	Damped oscillations
	Transverse beam deflection
	Nonunique solutions
	The generic Sturm problem

	Conclusion
	Acknowledgements
	References


