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Abstract

We present a new method for solving regular boundary value problems for linear ordinary
differential equations with constant coefficients (the case of variable coefficients can be adopted
readily but is not treated here). Our approach wadkedly on the levelof operators and does not
transform the problem to a functional setting for determining the Green'’s function.

We proceed by representing operators as noncommutative polynomials, using as indeterminates
basic operators like differentiation, integration, and boundary evaluation. The crucial step for
solving the boundary value problem is to understand the desired Green’s operator as an oblique
Moore-Penrose inverse. The resulting equations are then solved for that operator by using a suitable
noncommutative Grébner basis that reflects the essential interactions between basic operators.

We have inplemented our method as a Mathematica™ package, embedded in the
THIOREMYV system developed in the group of Prof. Bruno Buchberger. We show some computations
performed by this package.
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1. Introduction
1.1. Two-point boundary value problems

In this article, we consideboundary value problem@VPs) of the following typé-
Given a forcing functionf € C*°[a, b], we want to solve
Tu=f,
Bou=ug, ..., Bh_1u=up_1 (1)
for the unknown functiom € C*[a, b]. Here[a, b] is a finite interval ofR; T is a linear

differential operator of ordem; By, ..., By_1 are boundary operators; ang, . .., Un—1
are constants df. Thedifferential operatofl is given by

Tu=chu™ +--.+cu +cou )
with coefficient functionscy, ...,cn € C*[a, b], and the boundary operatoi®; are
specified by

Biu= pin1u™ Y@+ + p1u(@) + piou@)
+ G U™ D) + -+ g U (0) + g ou(b), ©)

where the coefficientpjj , gjj are again fronC. Note that initial conditions are covered by
the special choice gp beng the identity matrix and, being the zero matrix.

Analytically, the operato acts on the Banach spa¢€[a, b], || - ||c0) With dense
domain of definitionC"[a, b]; see for exampleEngl and Nashed 981). For our purposes,
however, itis better to maintain purely algebraic viewpointwvhere thedomain ofT is the
complex vector spacg°[a, b], without any prescribed topology.

One can view BVPs as inhomogeneous linear ordinary differential equations (LODES)
that are parametrized in the forcing functidn The occurrence of the parametdr is
crucial: it means that one realfiaces an operator problem—givé&nand By, . .., By—1
with up, ..., un—1, thegoal is to find an operatd®d suchthatu = Gf fulfills (1). In the
literature Stakgold 1979, this G is known as théGreen’s operatof the BVP. In the
important case of semi-inhomogeneous problems Sion 2.}, (1) is equivalent to
TG=1,BG =--- = B;_1G = 0; thusG is characterized as a right inverselothat is
annihilated by all theg;.

1.2. An operator-based approach

Since we hag to solve aroperator problem, it seems natural to ask for a method that
works on theoperator level, i.e. one that yields the desired Green’s ope@for (1) by
performing calculations on varioaperaorsrelaed to it.

Alternatively, one may also translate the problem farectional settingas done by the
standard methods in the literatutégmke 1983 pp. 188—-190). The crucial idea here is the

1For the sake of clarity, we will restrict ourselves to the smooth setting in the sense that all functions involved
areC®. See theemarks inSection 2.5for passig to theC" or distributional setting.
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following: For BVPs of the form 1), G can always be written as an integral operator
having the so-called Green'’s functigras its kernel; se€oddington and Levinsofl1955.
So

b
Gf (x) = f g(x. &) F (&) @)
a

forall f € C*°[a, b] andx € [a, b]. Herce the problem of searching for tloperator G
is reduced tdinding thefunction g (As we will see in thenext section, our method also
extracts the Green'’s functiogin a postprocessg step. However, this step is optional and
may be seen as a translation to the functional formulation of BVPSs.)

While the classical translation approach does have its merits, we would like to point out
someadvantage®f our new approach:

e It has a greatepotential of gemrralization For exanple, the whole theory of Green'’s
functions presupposes linear differential operators, and it is far less perspicuous for
partial differential equations. (Of cosg our method cannot be applied to these
problems in the form presented here. However, we can already see some possibilities
for adaptimg it; seeSection 4for a brief discussion of generalizations.)

e From aconceptual point of viewit is more séisfying to solve a problem at the level
where it is actually stated. Even though one can often solve a problem by transforming
it to differentdomains, a uniform solution method has the additional benefit of structural
simplicity and clarity.

e Besides liis, our method may be superior in terms admplexity We hawe not
yet embarked on a rigorous analysis of this issue, but there are some indications
pointing in this direction: The formula given iKamke (1983 p. 189) involves
Gaussian elimination with functional entries. At least for the important special
cas% of constant-coefficient LODEs considered in this article, our approach avoids
that:

1.3. Previous work

The present article summarizes the essential points of the autRbrB. thesis
(Rosenkranz 20033 supervised by Bruno Buchberger (first advisor) and Heinz W. Engl
(second advisor). It originated in the stimulating atmosphere of the symbolic-numeric
“Hilbert Seminars” organized jointly by the two advisors. Some early ideas were published
in Rosenkranz et al(20033, using a purely heuristic approach without implementation:
noncommutative Grébner bases were computed by the MMA padk&gdgebrafrom
UCSD (Helton and Millef 2004 Helton et al, 1998 on a perproblem basis rather than
using a fixed Grobner basis. A sketchy overview of the thesis was also presented in a poster
at ISSAC’03, to be published as a four-page surveRasakranz(2003.

Exact sdution methodsfor linear BVPs are of course not new as we have already
pointed out Kamke 1983 Coddington and Levinsqri 955 Stakgold 1979. But as far as

2 Notethat the matrix inverse ihemma 2involves only numbers.
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we know, all these methods typically work on a functional level in the sense discussed in
Section 1.2

Originally we got the inspiratio for our method from the papeételton et al.(1998,
which describes the use of nhoncommutative Grobner basesifoplifying huge terms
arising in operator control theory. Using a lexicographic term ordering, however, it is clear
that Grobner bases can do more than that—solving systems of operator equations. And
this is essentially what we did on arpgroblem basis in our early papBosekranz et al.
(20033; for details, see the remarks at the endSefction 2.1and the explanations after
Theorem 4n Section 2.5

Operator-based methods are routinely used in symbolic summation and integration
of holonomic functionsseeZeilberger(1990, Chyzak and Salvy{1997 and Pauk and
Strehl (2003. Noncommutative Grébner bases are applied there for elimination in Ore
algebras of operators. But to all our knowledge, the case of BVPs has not yet been
analyzed in this frame; we believe that such an investigation could be very profitable. In
fact, we plan to come back to this issue in extending our method—see the discussion in
Section 4

1.4. Structure of the article

In Section 2 we desribe our new method in detaiBection 2.lintroduces the key
concept used in our approach—the noncommutative polynomial ring modeling the relevant
operators; besides that we clarify some issues of notation. The fundamental tool to be
employed for solving the BVP is the obliqgue Moore—Penrose inverse; we discuss it in
Section 2.2 As we will see there, one can take care of the given boundary conditions by
choosing an appropriate nullspace projector for the Moore—Penrose inverse; this is carried
out systematically inSection 2.3Foractually solving the given BVP, we will end up with
the poblem of right inversion, which is treated Bection 2.4 Findly, we will have to
simplify the resulting solution operator; as explainedsiection 2.5this will eventually
drive us to a convergent term rewriting system or—in other words—to a honcommutative
Grobner basis; we conclude this subsection with a correctness proof of the solution
algorithm.

In Section 3 we solve seeral sample BVPs bypur implementation. IrSection 3.1
we start out with a brieflescription of the overall program structure. The first example,
presented at some lengthSection 3.2is the classical problem of steady heat conduction
in ahomogeneous rod. As an example with an exponential Green'’s function we consider
damped oscillations inSection 3.3 A fourth-order equation is treated Bection 3.4
where the physical background is the description of the transverse deflection in a
beam.

In the Conclusion we will address various potential generalizations of our method. On
a rather direct line of thought, one may consider relaxing several restrictions inherentin the
presentation given here—vector versus scatprations, partial versus ordinary, nonlinear
versus linear, underdetermined versus regular problems, integro-differential equations
versus purely differential ones. Beyond these direct generalizations, however, we will
sketh the contours of what could be a whole new field of computer algebra—a field that
we have called “symbolitunctional analysis”.
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2. Thesolution method
2.1. General set-up

The solution method to be described applies to BVPs of the fd)ms(bjectto the
following restrictions:

e We assume that the BVP iggular in the sense that there must be a unique solution.
This implies that the boundary conditions mbstconsistent and linearly independent.
(See the end dbection 3.5or a short example of what happens otherwise.)

e We will only cover the semi-inhomogeneousase, meaning thato, ..., un—1 are
zero. This involves no loss of generality because any fully inhomogeneous problem
can be decomposed into such a semi-inhomogeneous one and a rather trivial BVP
with homogeneous differential equationdainhomogeneous boungeconditions; see
Stakgold(1979 p.43).

o Inthis article we focus on linear differential operators with constant coefficients, moving
entirely along the lines oRosenkranz(20033. However, our method also works for
linear differential operators with variable coefficients: All the results stated here remain
valid, with the notable exception obection 2.4 where wewill briefly indicate the
necessary modifications. For a more dethtreatment, we refer the reader to the
technicalreport Rosankranz 20030.

Before we proceed, we establish the followiimgplicit lambda conventionWVhenever
we use a term (usually but not necessarily containing a free occurrence of place of
a function, we mean the mapping+ t or, in computer-science notatidrthe lambda
termax.t. Herce the differentiation operat@ acting on functions actually meafgdy.

In order to apply computer algebra methods, we will eventually model operators by
noncommutative polynomials, so let us try to write the operators involved in a polynomial
form. For example, consider thdifferential operatorinformally represented by =
x3 D2 4 € D + sinx. The cefficient functions, = x3, ¢; = €*, ¢ = sinx can be seen
asmultiplication operatorsn the following sensé:any f € C*[a, b] induces aroperator
Mt defined byM; u = fu for all u € C*[a, b]. Using ths notatbn, the above operator
has o be written asT = [x3]D2 + [€*]D + [sinx], wherejuxtaposition denotes operator
composition (note that this is consistent with the power notation for differentiation) and
[ f1is a shortland forM+. In this way, any linear differential operator can be written as a
noncommutative polynomial in the indeterminal2andM ¢ with f ranging over a certain
function domain yet to be fixed.

Turning toboundary operatorswe have o introduce two more indeterminates. For the
above operatoT , atypical boundary operator could lBu = 2u’(a) —3u(a)+7u’(b). Let
us wiite L and R for evaluation at the left and right boundary, respectivelyl.so= u(a)

3if necessary, we will designate mappings by the notaties t ratherthanix.t, so any futher acurrences
of A do not have the meaning of the lambda quantifier.

4 Note that in the following equality juxtaposition on the left-hand side denotes operator application, whereas it
denotes the pointwise multiplication of functions oe tfght-hand side—an abuse of language commonly found
in the literature.
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and Ru = u(b) for all u € C*[a, b]. (Notethat by the implicit lambda convention, these
boundary operators actually map functions tmdtions, namely the constant functions
having the corresponding boundary valueiji¥this notation, the boundary operatBg is
represented by the noncommutative polynomlal?— 3L + 7R D.

It is now clear how to formulate the differential and boundary operator$)oh terms
of noncommutative polynomials in the indeterminaizs f 1, L, R. But this will clearly
not be sufficient for representing the opera®rsupposed to solvel], since he later
must involve integration Hence we introduce the following operatarfor computing the
antiderivative

Af:/ f(&)de
a

of any functionf € C°[a, b]. Sincewe know that then-th derivative of the Green’s
function jumps along the diagonal, we will also include the duapfianely the operator

b
Bf=f (&) d,

such that the integral4) can be patched by adding and B portions (seeSection 3for
exampes).

Let us now formally introduce the underlyimgplynomial ring The domaing used
for parametrizing the multiplid®on operators will be introduced iSection 2.5 For
the moment, it is sufficient to think of it as th&-algebra¢rp with basis €rp” =
{x"eéX|n e N A A e C}; we call this the polyexponential algebép. (Every dgebra
20 considered here is assumed to include the notion of a distinguished basis referred to
as2?)

Definition 1. Let § be an analytic algebra. Then the noncommutative polynomial ring
C({D, A,B,L, R U{Tf1If € F"})
is called he ring ofanalytic polynomial®verg, denoted by2in(J).

Strictly speaking, we should from now on distinguish betweenftinmal opergorsin
2An(F) and theactual operatorsn L(C*°[a, b], C*[a, b]). Most of the time, havever, it
is either clear which of the two concepts weam or a certain statement is true for both
of them. In order not to overload notation, we will therefore abstain from making this
difference explicit—except fofrheorem Swhere itis really crucial. If the reader desires a
more rigorous treatment, she may want to conRakenkranz(20033.

Using the ring /An(¥), the operatortheoretic formulation of ) can be written
as a system of polynomial equations. However, this implies also that all the basic
operators occurring as indeterminates amdvof any analytic meaning. Therefore
we have to ad gopropriate interaction equalitiesfor algebracally capturing their
essential properties. For example, the interaction between differentiation and multiplication
opeaators is stated in the well-known “Leibniz equality”. For other operator interactions,
the corresponding eqlites are less obvious, and comf@aess questions (confluence,
termination, adequ®) become urgent.
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For the moment, however, let us postpone these issu8gdttion 2.5where we show
the full polynomial system along with the corresponding completeness theorems. So we
assume we have an appropriate reduction system, which we can employ for solving the
given polynomial systenTG = 1 andByG = --- = Bp_1G = 0. In principle,
we could merge these equations with the interaction equalities, impose a lexicographic
term order, and feed the resulting systamoia honcommutative Grobner basis solver;
this is essentially what we have done Rosenkranz et al.(20033. However, we can
do much better than that by usingganeric prgprocessing strategthat avoids the costly
computation of a new Grébner basis for each BVP of tye (

2.2. The Moore—Penrose inverse

The key to solving the given polynomial system is the so-caléabre—Penrose
inverse alsoknown as generalized inverse: Introduced by Moord/imore (1920, the
concept of generalized inverse received altmosttention until its rediscovery by Penrose
in Penose (1955 1956); see for exampléNashed(1976 and Engl et al. (1996 for
a moden treatment. The Moore—Penrose inverse provides a substitute for inverting a
nonbijective linear operator in amgctor space—including the spacé°[a, b] used in our
case.

Why would we want to do this? For a linear differential operalomwe have to solve
TG = 1 for G, subject to the additional conditiorBG = --- = B,_1G = 0, which
serve to degrmine the solution uniquely. So we seek a special right invéreé¢ T. The
usual way of seeing this is thét is thefull inverse(not just right inverse) of the operator
T by restricting the domain of the latter to those function€ff[a, b] that fulfill the given
boundary conditions.

Though theoretically elegant, this interpretation is not adequate for our purposes
since it encodes the boundary conditions in th@nain, which is not readily available
for computation. It is therefore more promising to see the given operatoas
nonbijective, having all ofC*[a, b] as its domain—just like the basic operators
D, A, B, L, R, [f]. Doing this, we can employ the Moore—Penrose theory for finding
generdized inversesof T. In gereral, there will be many such inverses, so we must
find some means of singling out the unique one that fulfills the given boundary
conditions.

This can be achieved by usiopligue Moore—Penrose invers@dashed1976 pp. 57—

61). The idea ighe following: An arbitrary linear operatdr between two vector spaces

X andY may fail to be injective, so its nullspad¢ is typically nontrivial. In order to cure

this, one takes a complemadvit choose a projectdP ontoN and setM = (1— P)X. The
operatorT | is then invertible as a map frod to the rangeR. FurthermoreT may fall

to be surjective, s& will typically not exhaust all ofY. For repairing this, one chooses a
projectorQ onto R, calls the corresponding complemé&= (1 — Q)Y and adjoinsSas a
nullspace to(T |w) . Theresulting operator is called the oblique Moore—Penrose inverse
of T with respect to the nullspace projectBrand range projecto®; it is denoted by
T,I’Q. The freedom in choosing these projectors is crucial for incorporating the boundary
conditions.
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What makes the More—Penrose inverse particularly attractive for symbolic
computation is that it can be charadzed uniquely by the four so-callédoore—Penrose
equations’ Let us briefly recall them herfor reference purposes.

Theorem 1. Let X and Y be vector spaces, T a linear operator from X to Y. Choose
projectors P and Q to the nullspace and range of T, respectively, and let M and S be
the corresponding complements. Then the oblique Moore—Penrose inverse is characterized
uniquely as the linear operator from Y to X that fulfills the equations

TTIT =T, (5)
Tt =TT, (6)
TIT=1-P, 7)
TTT=Q. (8)

Furthermore, T' has nullspace S and range M.

In our setting,it is already clear tha@ must be the identity operator 1, because any
linear differential operator is surjective @°[a, b]. But then g) and 6) obviously fdlow
from (8). So we are left vth the two Eqgs. ) and @). It turns out, however, that we can
even regict ourselves to{) because®) follows from it as we will show now.

Lemma 1. Theoperator equation T G= 1 follows from GT= 1 — P, where P is some
nullspace projector for the lingalifferential operator T.

Proof. Let T* be any right inverse ofT (there is always a right inverse or—in
other words—a fundamental solution fdr, and wewill construct aparticular one in
Section 2.4. Then premultiplyingGT = 1 — P by T and postmultiplying byT* yields
TGTT = TT* — TPT*. Now by the choice of T* we haveT T* = 1; and sinceP
projects onto the nullspace &f we havel P = 0. HencelT G = 1 as clamed. O

As a onsequence, we need only consider the equa@idn= 1 — P, but we must take
care to choos® in such a way that theoundary conditions G = --- = B,_1 G = O are
fulfilled. Then we can be sure th@tis actually the Green’s opdma: Since t is uniquely
determined, it must coincide with the single Moore—Penrose inversecofresponding to
that choice ofP that incorporates the boundary conditions.

2.3. Computation of the nullspace projector

For thatpurpose, we use the fact mentioned at the en@heforem 1 nanely that the
range ofG is given by

(1- P)C™®[a,b] = {v — Pv|v e C™[a,b]}.

So if we want to ensure that the solution= Gf respects the boundary conditions
Bou = --- = Bh_1u = O forany f € C®Ja, b], it suffices to construcP in such a

5Quding (Steinberg private communcation “Functional analysis was developed to make analysis look like
algebra (usually algebras of operattmsking like matrices), so using functiorenalysis to do analysis problems
in computer algebra is natural”.
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way that & the v — Pv respect them—so we have to require
BoPv = Bqv

9)
Bn,]_PU = Bn71U

for all v € C*[a, b]. This amounts to a smdiihear interpolationproblem, to be solved
in the next lemma.

For the sake of convenience, let us introduce sammarix notation(we will use
overhat symba for denoting vectors andnatices). We write D, for the operator-
valuedvector (1, D, D2, ..., D" 1). With this notation, the vector boundary operator
B = (Bp, ..., Bh_1) can be written a$Lf + Rf) Iﬁn for suitable coefficient matrices
[,f € R™". In fact, using the notation o8], these matrices are given by

P1o P11 -+ Pin-1 g0 du1 -+ Qin-1

~

Pno Pn1 -+ Pnn-1 On,0 On,1 -+ Onn-1

We are now eady to state a concigermula for computing the nullspace projectar
terms ofl, f and a fundamental matrix far.

Lemma 2. Let® be a fundamental matrix for the linear differential operator T, and Jét
be the boundary matrices corresponding i@ B ., Bh_1 as introduced above. Compute

Proj, (", F) = [i1] (0 + F~) YLl + RF) Dy,

wherew; denotes the first row ab andw = andw™ arise fromw by evaluation at a and
b, respectiely. TherProj; (I, f) is a projecbr onto the nullspace of T that fulfil(®).

Proof. Let T be an operator of the forn2{and letBy, . .., Bn—1 be boundary operators
of the form @) with corresponding boundary matrices . Furthemore, letys, ..., on be
a fundamental system fdr; hence the fundamental matrix has rows(q);'), o) for
i=0,...,n—1.

We will now set up a generic linear operat®r that projecs onto the nullspace of
T and then fit it against the condition8)( Take an arbitrarw € C*[a, b]. Sincethe
nullspace ofT is spained bygs, ..., ¢n, we must havePv = c1(v)@1 + - -+ + Ch(v)@n
for some coefficientsy, .. ., ¢ € C depending on. Writing this in vector form, we have
Pv = %16(v), whichyields the matrix equatioB1(v) = Bv upon substitution ing).
Now

By = (LI 4+ RA)Dniby = (LM + RO = [~ + i,
soé(v) = (< +Ffw~)~1Bv, whichyields P = Proj, (I', f) as claimed in the lemma.]
Note that that thematrix inversionoccurringin the Lemma 2involves only a matrix

of numerical constants rather than functional terms. This is crucial for complexity
considerations.
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2.4. Rightinversion

We havenow reduced the BVP1]j to thesingle equatiorGT = 1 — P, whereP is
the nullspacerojector Prq}}(IA, f) specified inLemma 2with w the fundamental matrix
for T andfl, f the boundary matrices correspondingBg, .. ., Bn_1. In order tosolve this
equation forG, it suffices to find aight inverse T of T; thenG is obtained agl — P)T*.

We will constructone particular such right inverse, which we will denoteTd.

It turns out that one can always find right inverseslothat can be written in a form
analogous to4) with a binary functiong*; in the literature Kamke 1983 p. 74), this
function is known as theundamental solutionf the inhomogeneous differential equation
Tu= f.The fundamental solution plays a role somewhat similar to the Green'’s function:
When applying the corresponding integral operator to the forcing fundtioih yields a
solutionu of the inhomogeneous equation, but it daet incorporate boundary conditions.
In Section 2.5we will show how to recover such a fundamental solution from the right
inverseT * considered here.

As announced inSection 2.1 we will stick to the important special case of linear
differentialoperatos with constant coefficientong the lines oRosakranz(20033. The
general case of variable coefficits is treated in full detail iRosenkranz(20038, and we
will also make a few remarks about it here.

Lemma3. If T is of the form(2) with congant coeficient functions g, ..., ¢, the
operator

n
T¢ =[] re*1A7e "
i=1
is a right inverse, ifA1, ..., An € C are the roots of the characteristic polynomial of T
(repeated according to their multiplicities).

Proof. For arbitrary A e C, the differential operatorD — A has [e*]A[e™**] as a

right inverse as one can see by straightforward computation, using the product rule of
differentiation and the fundamental theorem of calculus @eetion 2.5for a precise
listing of admissible reduction rules). The formula then follows since

T=(D—-2x1) (D —in)
and operator composition is associativél

As mentioned before, it is also possible to derive a similar though somewhat
more complicated formula for lear differential operators witlvariable coefficients
seeRosakranz(2003h for the dedils. The crucial idea is to iterate a procedure that is
typically called “reduction of order” in the literatur&€€¢ddington and Levinsqril955
p. 84). As opposed to the case of constant coefficients, though, the analytic algebra needed
for the formulation ofT * will in general go beyond the polyexponential algebrp.

It should be emphasized, however, that the formula given above is particsitauye
taking advantage of the special structureliokar differential operators with constant
coefficients. There seems to be no such advantage when applying the procedure from
Kamke (1983 to this important special case.
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2.5. The reduction system

Using the above results, we can coute the desired Green’s opera@as(1— P)T*,
where P is again Pr%(f, f) as inLemma 2and T* is the right inverse specified in
Lemma 3 However, we right obtainG in a sonewhatunconventional formfor example,
in the BVP for the heat equation (sBection 3.2, we havelT = D?andBy = L, B; = R.

In this caseL.emma 2yields P = [1 — x]L + [X]R, while Lemma 3gives us of course

T* = AZ Herce we haveG = (1 — [1 — x] L + [x] R) A2, Written in this form, the
Green'’s operato6 uses double integration, and we cannot compare it with the classical
kernelrepresetation @) for reading off the Green'’s functiomassociated with it.

Using theobvious simplification. A = 0, we can also rewrit& into A% 4+ [x]RAZ.

The representation via the Green’s function Section 3.2is a third possibility. In
general, there are many different polynomials2in(¢zp) with the same interpretation
as an operator o€*°[a, b]. Our god is b organize rewriting in such a way that there
is always auniquefinal result, which will moreover correspond to the classical kernel
representation.

But beforedoing so, we would like to point out that the issue of representations is
actually peripheral to the original problem of solving a BVP of the fodh (vhatever
represetation of G we take, when wepply it to a given forcing functiorf , we will end
up with the unique solutiom = Gf of the BVP—as long as the reduction systersoand
in the sense to be discussed now.

In order to realize our goal, we have to set up an appropriate reduction system on the ring
of analytic polynomials. As usual, the reductions are first specified for a set of monomials
and then extended in the obvious way—see for exaBplgman(1978. The reduction
system should have the following fikeey poperties

e It must besoundin the sense that each polynomiglality becomes a valid identity of
operators when interpired as discussed before.

e It must beadequatdn the nse that it provides “enough” reductions for algebraizing
all the analytic knowledge relevant here.

e In order to solve the problem of unique representation addressed above, we require it to
beconfluentthere isno more than one normal form.

e Besides this, every simplification should terminate, i.e. the reduction system must be
noetheran: there is ateastone normal form.

e The normal forms of the reduction system should correspond exactly to the Green’s
functions of the classicddernelrepresetation @). Hence we will also refer to these
normal forms agsreen’s poynomials

The reduction system ifiable 2—we have called it the Green’s system—fulfills all
these requirements. For a complpteof of this statement, sdRosenkranz(2003g; here
we will only give a rough outline of the main steps in this proof.

First of all, let us clarify the role of thanalytic algebraF already mentioned in
Definition 1; the variablesf andg in Table 1range over its basig”. Analytic algebras are
simply algebras with a few additional operations fufilling certain axioms that make them
behave similarly to their analytic models—jlike differential algebras, which can be seen
as halfway between plain algebras and analytic algebras.
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Definition 2. An algebra§ is called ananalytic algebraiff it has five linear operation8:
differentation’ : § — §, integralf* 5 — 3, cointegralf* : § — §, left boundary value
< :§ — C,right boundary value” : § — C such tlat the seven axioms

(fg)' = f'g+ fd,

[ =11,
[ =17 —f,
(7 =1,
(f,0)=-1,
(fg= =197,
(fo~7 =179~
are fulfilled.

We observe thathe @ove axiomsare very naturafl: the first is the product rule
for differentiation, thus making analytic algebras a special case of differential algebras
(where this axiom is usually called the Leibniz rule). The next four axioms state that the
integral and the negative coigieal are oblique Moore—Penrose inverses of differentiation,
having as nullspace projectors the left and right boundary value, respectively (with trivial
range projectors in both cases); cf. the Moore—Penrose equatidiieorem 1 So the
operations and ~ seave to choose among the obligue Moore—Penrose inverses by
fixing the integration constant.HE last two axioms stipulate thdt — (x — f <) and
f = (X — f7) be homomorphisms in the algel§a

As mentoned before, a typical choice f@ris the polyexponential€p. It can easily
be verified that they form an analytic algabiOf course its operations will in general
transform basis elements to nonbasis elements; for exampfe,e ¢rp” becomes
e + xe* e ¢rp\ Exp” under differentiation. So strictly speaking, the right-hand sides
of Table 1 may not be polynomials ofin(F). Therdore the reduction rules must be
understood as containing an implibisis reductiorafter applying them: Any occurrence
of a monomial--[f7--- with f € F\F" isreplaced by ¢ ---[fi]---, whered_ ¢ fi
is the basis expansion dfwith nonzero coefficients; € C and basis function§ e §*.

The axioms for analytic aldeas play a crucial role iestablishing the confluenc#
the Green’s system. What we have actugligved is that for every analytic algelgathe
system ofTable lestablishes a confluent reduction on the ring of analytic polynomials
2An(F). It is enough to consider the cag¢ = 3, asone can easily see. By Lemma 1.2
of Bergman(1978), it suffices to prove that all overlap ambiguities of the reduction system
are resolvable (in general, one also has to consider inclusion ambiguities, but by inspecting

6 Note that these operations correspond—in the given order—to the indetermihatesB, L, R of 2in (J),
while each element € Fcorresponds to the multiplication operafdi].

7We haveobtained these axioms by starting the confleepoof with an empy list of axioms, gradually
adding whatever properties we needed in order to overcome failing proofs. In the end, we simplified the resulting
requirements, coming up with the above axioms. Thigpdure is an instance of what Bruno Buchberger has
called theLazy Thinking Pardadigmit is implemented in THHOREMY for various provers on natural numbers
and tuples; seBuchberge(2003.
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Table 1
The Geen’s system
Equalities for Equalities for contracting
algebraic simplification: integration operators:
[f171g1 — rfal ATFIAS [[* 1A= AT[" 1]
Equalities for isolating ATTIB— [[*T1B+A[["f]
differential operators: B[f1A— [f*ﬂ A+B [f*ﬂ
DA—1 BIf1B—[[,f1B—B[/[,f]
DB— -1 AA— [[*11A- AT[*]]
DIf]1—f1D+[f" AB— [[*11B+ A[[*1]
DL—0 BA— [[,11A+B[/[,1]
DR—O0 BB— [[,11B—B[/,1]
Equalities for isolating Equalities for absorbing
boundary operators: integration operators:
LA=>0O ATf1D > —f<L+[f]— AT
RA— A+B B[fID— f>R—[f]—-B[f"]
LB— A+B AD— —-L+1
RB— 0 BD— R-1
L7f]— f<L ATfIL—[[*f1L
R[f]—> f” R BIfiL— [/, fIL
LL—>L ATfIR— [[*f1R
LR— R BIfIR— [/, fIR
RL— L AL— [[* 1L
RR— R BL—[[,1]L
AR— [[*11R
BR— [/, 11R

Table 1we see that w donot have any inclusions). We do this in the usual manner by
showing that the S-polynomiab, p1 — pow1 reduces to 0 for any pair of ruleswi — p1
andwzw — p2.

It turns out that there are 233 S-polynomials to be considered, and the task of doing
all these reductions is rather daunting. It is therefore preferabéaitomate the proof
As we have implementkthe whole algorithm for computing Green’s operators in the
TH3IOREMY system (seeSection 3.1for some details), it seems natural to do this also
in THHOREMv—a neat example of how this system offers support on various levels:
here, on the object level of computation (using the reduction system for computing as
explained below) as well as on the meta level of proof (verifying properties of the system,
like confluence in our case). For the general philosophy of treating object and meta levels,
seeBuchberget(1999.
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Table 2
Fragment of the confluence proof

The rules DA and AMA yield the S-polynomial:

()
[f1A—D[[* f]A+DA[[*f] &
(DA)

[f1A=D[/* 1]A+[DA][/* 1] £

(DM)

[/* 1]+ mA—A K
(da)

[/ £+ 1A= { (1) —‘A— [/*1]DA %
oA

(/" 1- [/ f][oA] *

0 O

The rules DA and AMA yield the S-polynomial:

()
ATf1A+BIFIA—R[[* f] A+ RA[[* ] £
(RA

ATf1A+BIf1A—R[[* f]A+[RA][/* ]
(RM)

A[[*f1+BI/* ]+ ATFIA+BIT1A-| R/ F1]A £

(ra)

A[[*f1+B[/* ] - -RA+AmA+Brf1A K

(RA
A[S* f1+B[/* 11— O [RA]+ ATT1A+ B[ 1A v

(AMA)

~(fHA=(f DB+ A[[* ]+ B[[* 1]+[AT1A]+BIf1A 2

(BMA)

~(HA—(F DB B[[* 1] +[/* f]A+[BIfIA] £
(b)
—(fHA=(f DB+ B[[* 1]+ B{] I AJW At

0 O

For theautomated proof, we had to hand-prove some auxiliary equalities that are valid
in any analytic algebrd. These equalities are mainly integral theorems like

[agimn=3 (/*f)z;

seeRosankranz(20033 for detdls. Tables 2and3 show a smk fragment of theactual
confluence proof(everything in thesdables is verbatim THOREMY output), which
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Table 3
Fragment of the confluence proof (cont'd)

The rules BR and RR yield the S-polynomial:

(..)

—BR+[[,1]R2 £

(b)
fBR+M*1WR2 L
RR

(

—BR+(5£l)— [[*11rR2 £
(RR
(fOR-BR-[[*1][R2] &

BR)

fHR—-[BR]-[/*1] R(i
(fHR— {-‘ R-T[/*1] R(ib)

0 O

& Computed 233 S-polynomials in 129 seconds.
M Reduced them in 3144 seconds.
& All of them reduced to zero!
[m}
Table 4
Grammar of Green'’s polynomials
Production rule Name
M = ATA| AD | ABD Monomial operator
Z:=A|B Integral operator
Ax=1|T1] Algebraic operator
B:=L|R Boundary operator
D:=1DD Differential operator

covers approximately 2000 lines altogether. In every intermediate expression, the redex
is framed by the system in order to improrgadability. The uppercase letters above the
equality symbol refer to the corresponding ruleJalble 1(the names are derived from the
monomial on the left-hand s&g with multiplication operators generically denoted by the
letter M); the lowercase letters refer to the auxiliary equalities. The expregdiomith

f € §, is an dbrevidion for the “definite integral’/* f + [, f.

For esablishing theterminationof the Green’s system, we have given two different
proofsinRosenkranz(20033. The more intuitive proof uses the idea of various termination
terms associated with the rules. For exampgleyeral rulesdecrease the “differential
weight” (the number of occurrences of the indeterminBe whereas none of the rules
increases it. The other proof proceeds on a natgebraic line: We set up a suitable graded
lexicographic ordering on the word monaofe over 2 = {D, A, B, L, R, M}, which is
then extended to a wetirdering on the system of finite subsetsf(&f. This well-ordering
induces a noetherian strict partial orderdm(F) by identifying all[ f ] with M and taking



186 M. Rosenkranz / Journal of Symbolic Computation 39 (2005) 171-199

the support of the resulting polynomial. Hentatiffices to prove that the reductions are
compatible with this induced order—which is easily achieved.

Sunmarizing the previous two results, we have proved convergence (confluence and
termination) for the Green’s system.

Theorem 2. For any analytic algebrgs, the sytem inTable 1 constitutes a convergent
rewrite system on the ring of analytic polynomian ().

As mentioned before, we can also charaetethenormal forms (which always exist
and are unique by the preceding theorem), and they will turn out to be precise analogs of
the Green’dunctions.

Definition 3. A polynomial of 2n(g) is said to be aGreen’s poynomial iff all its
monomials are produced by the rule of the grammar inTable 4 We denote the set
of Green’s polynomials bt (§).

Theorem 3. Thenormal forms oRIn(F) with respect to the reduction system specified in
Table 1 are precisely the Green’s polynomias | (¥).

The proof of the preceding theorem is ratherigtngforward, albeit Bghtly technical. It
is easy to see that any Green’s polynomial is indeed irreducible. For proving the converse,
one takes an arbitrary monomigle 2An(g)\ &t (§) and shows that it is reducible, using
a case distinction on the first letters pf Despte its rather technical proof, the statement
of the theorem is actuallyery intuitive Any linear integro-differetial-bounday operator
must be a superposition of purely integral @fetential or boundary operators (algebraic
operators can be seen as zero-order differential operators). This is clear: on the monomial
level, integration and diéfrentiation cancel each other,ddmoundary evaluation collapses
the functonal range to a single point.

It is now easy to see why a Green’s polynomial allows us to read off the corresponding
Green’s function Since we know that the “differential weight” is invariant under the
Green’s system, the normal form of a Green’s operator cannot be ofA¢per ABD;
hence it must be of typelZ.A. So each monomial has the forfnf ] A[g] or [ f]1B[d],
where f or g may also be 1; it conibutes he term f (x)g(¢) to the “upper” or “lower”
part of a Green'’s function defined by the case distinction

upperx,§) ifa<é&<x<b,
lower(x, &) fa<x<é&<h,

9(x, %) = i

reflecting the characteristic jump on the diagondlab] x [a, b].

One can also extract a binary functidnfrom the right inverseT ¢ of the given
differential operatoil just as one extracts the Green’s functgfrom the corresponding
Green'’s operatoG. In theliterature, the functiom is known as théundamental solution
of the dfferential equatiom u = f. Its rde is similar tog, except that it ignores boundary
conditions: for any forcing functiorf, the conelution defined by 4), with h instead of
g, Yields somesolutionu of the dfferential equationT u = f. Conparing thiswith the
reladion G = (1— P)T*, we cgin a new interpretation of the fundamental solution: it is
the “Green’s function” associateditv the trivial ndlspace pojectorP = 0 (which can
never arise from the boundary conditions of a regular BVP).
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Before clarifying the relations bet®en the actual operators acting 6f°[a, b] and
their formal counterparts in the algebraic structdng§), let us investigate the latter just
a bt more: it is highly instructive to interpret the results about the Green’s system from a
purelyring-theoretic perspective

Definition 4. Let § be an analytic algebra. Th&ro(F) denotes thé&reen’s systermver
5, i.e. the set of all polynomials— r wherel — r is a rule of he reduction system
in Table 1and the variabled, g range over all of§”. Furthermore®t(F) denotes the
two-sided ideal generated ro(F) in 2An(F); we call it theGreen'’s ideabversy.

Theorem 4. For any analytic algebrag, the Geen’s system®ro(F) constitutes a
noncommutative Grébner basis for the ideal(F) in An(F).

The notion ofGrobner basesvas origndly introduced in the “classical’ context of
commutative polynomials by Bruno Buchberger in his Ph.D. Thaigl{berger 1965);
see also thegurnal versionBuchberger(1970 and a oncise treatment ilBuchberger
(1999. As discovered byMora (1986 1988, the computation of Grébner bases can be
transferred to noncommutative rings in a straightforward way (though it may not terminate
in all cases). Actually, there are several variations on the notion of noncommutative
Grobner bases; our usage is in harmony with Theorem Bfaarovski (1998. In the
present context, the essential idea of Grobner bases is the confluence of the induced
reduction—which we have considered just before.

This leads us back to our remarks at the closBeaftion 2.1it is now clear why we can
awid the costly computation of a Grébner basis for each new problem Resmkranz
etal.(20033: We havealready a Grobner basis, namélyy(F), and itneed not be changed
for the different instances of BVPs considered. Of cou#sg,J) is not a finite Grobner
basis site the variabled andg in Table 1range over all off*; however, it isfinitary in
the ®nse of being described by finitely many parametrized polynomials.

Finally we can now address the questions of soundness and adquacy—how the formal
operators are related to the actual ones. For this, let us first clarify the correspondence
betweerformal and actual operators

Definition 5. Let § be an analytic algebr&( an algebra containing, and£ a subalgebra
of the dgebra of all linear operators é&. A homomaorphisn : 2An(g) — £ will be called
aninterpretation of2in(g) in £if I([f])a = faforall f € Fanda € 2. Itis called
soundif all the equalities offable 1(where— is now re@rded as=) are vdid.

If £is the algebra of all linear operatoon the algebra of smooth functio@8°[a, b],
we defire thesnooth interpretatiorsm of2In(g) in £ by setting

sm(D)(u) = u’,
X
sm(A)(u) = x Hf u(é) ds,
a

b
sm(B)(u) = x Hf u(é) ds,
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sSM(R)(u) = x > u(b),
sm([f])(u) = fu,

whereu ranges oveC*[a, b], x over[a, b], and f overg. It is easy to beck that sm is
indeed sound. (Actually, the equalitiesTable 1were extracted from relations @in the
first place!) In a similar fashion, one may also defa distributional interpretation by using
the dgebra of boundary-valued distributioﬂg"o[a, b] instead ofC*[a, b]. In fact, all
the statements formulated here for the smootérpretation carry over to the distributional
sdting, which allows for strong, weak and distributional solutions;Resakranz(2003a

p. 45) for details.

Finally we arrivenow at the summit of this treatise: the correctness theorem for our
method of computing the Green’s optma—at the same time asserting thdequacyof
the Green’s system ifable 1 The smooth interpretation of an analytic polynonpaill
be denoted by.

Theorem 5. Assume we have

e alinear differential operator Tof order n with constant coefficients,
e nboundary operators ..., Bn—1
e such that the resulting BVRL) has a unique solution,

Now conpute

e the nullspace projector P according temma2,

e the right inverse P of T as inLemma3,

e and finally the normal form G afL — P)T*, reduced with respect to the Green'’s system
in Table 1.

Then Gis the Green’s operator of the BVP, and G represents the corresponding Green’s
function g of(4).

Proof. By Lemma 2 P is indeed a projectoonto the nullspace of . SinceT is always
surjective, 1is the onlypossible projector onto the range ®f Now thee is aunique
oblique Moore—Penrose inverse dfhaving these projeots; wewill write it as G for
someG € An(F) yet to be determined.

By Theorem 1G is also determinedniquely by the four Moore—Penrose EdS)—(8).
As explained aftefTheorem 1 we can restrict ourselves t@ and @); finally, Lemma 1
reduces everything to7), which readsGT = 1— P. SinceTT* = 1 by Lemma 3
pogmultiplying by T ¢ yieldsG = (1 — P)T *. Hence we may choose the normal form of

(1— P)T* for G, andits interpretatiorG will be the desired Mo@—Penrose inverse.

For any f € C*[a, b], the imageu = Gf fulfills the given differential equation
Tu = f because of the fourth Moore—Penrose B). The range ofz is 1 — P C*[a, b]
by Theorem 1 and every function contained in this range fulfills the given boundary
conditions byLemma 2 Herce G f fulfills the given BVP for anyf € C*[a, b], and
G must coincide with the desired Green's oger dueto the regularity assumption.
Moreover, G represents the Green'’s functigrsinceG is a Green’s polynomial; see the
discwssion afteTheorem 3 [
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3. Sample computations
3.1. About the implementation

As mentbned before, we have implemented our method ifOREMY—a mathemat-
ical software system developed at RISC under the supervision of Prof. Bruno Buchberger.
Basal on Mathematica™, this system offers supportgavving, compting and solvingn
various mathematical domains. As explained above, our implementation is actually a good
example for the interplay between these thfeedamental activities in mathematics: for
solvinga BVP, wecomputehe Green’s operator byraduction system that grovedcon-
fluent (se€Tables 2and3 for a screen shot displaying tatypical cases selected from the
total of 233 cases that occur theproof generated automatically by our proof algorithm).

The core machinenfor computing the Green’s operator by our method is concerned
with handling noncommutative polynomialghis is mainly addion, subtraction,
multiplication, reduction to normal form. We have implemented these operations as
a se@rate “basic evaluator” nameReduceNoncommutativePolynomial. Based on
THIOREMY, it benefits also from the neat notation facilities available there: One may
write the noncommutative polynomials exactly as one would on paper (e.g. denoting
multiplication by juxtaposition rather thas« as in plain Mathematica™).

The basic evaluator for honcommutative polynomials is used for computing the
nullspace projector as iremma 2 the right inverse as ihemma 3 and findly the Green'’s
function as inTheorem 5All theseapplied operationgre implemented in another basic
evaluate named GreenEvaluator. In the next section, we will show some computations
carried out by this evaluator (note that all the input and output prirteste is verbatim).

3.2. A simple classical example

The following problem seems to be one of the classical examples that are most often
used for introducing the concepts of ordinary linear BVB&akgold 1979 p. 42). It can be
interpreted as describirgne-dimensional steady heat conduction in a homogeneoukirod
its functional formulation (after scaling everything to unity), it means that we have to solve

u// — f
u@® =u@ =0
for the temperatura € C*°[0, 1] with a given heat sourcé € C*°[0, 1].

In this example, we have the differential operafbr = D2, so thenullspace is
{ax + B |a, B € C}, and fnding thenullspace projector Reduces tdhe following linear
interpolation problem: given a functiane C*°[0, 1], find alinear functionPv that agrees
with v at the grid points 0 and 1. In our @aw/e can do tis automatically:

In[131:= ComputgProj;, by — GreenEvaluator
using— KnowledgeBasg ClassicalHeatConduction]
out[13]= L — [X]L + [X]R.

8 For aesthetic reasons, however, we have displayed Euler's numbeirssead of using Mathematica’s
standard forne.
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The other crucial step is to find thight inverse(D?2)*. Trivially, this is A2 in our case,
but this isnot in normal form. Computing it by our system returns the normal form:

Conmputd (D3 *, by — GreenEvaluatdr
out[14]= —A[X] + [X]A.

In[14]:

Now it is easy to find th&reen's operator Gy computing1— P) T* in its normal form:

In[15]:= Computd (1l — L 4+ [X]L — [XTR)(—A[X] + [XTA),

by — GreenEvaluatdr

out[161= —A[X] — [X]1B + [XTA[X] + [x]B[x].
Of course, we could also compute the Green’s operiamonedately (by specifying the
given differential operator together with the list of boundary operators):
ComputgGreeriD?, (L, R), by — GreenEvaluatdr
—A[X] — [X]B + [XTA[X] + [X]B[X].

Using the translation paedure described aft@heorem 3this corresponds to theéreen'’s
function

In[16]:

Out [16]

x—1¢ if 0<&<x<l,

g(x’é)zix@—l) f 0=x<f=1

3.3. Damped oscillations

For a dightly more complicated problem, we take Example 2 in the textbé&o#l|
1986 p. 109). The differential operator of this BVP hakmnped oscillations as its
eigenfunctions; se&rall (1986 p. 107). Stated in our terminology, the problem reads
as follows: Givenf € C*[0, ], findu € C°°[0, ] suchthat

u' 4+2u +u="f,
uO =u(r) =0.
This time, we will immediately compute th@reen’s operator
In[17]:= Corr]oute[GreerﬁD2 + 2D+ 1, (L, R)],
by — GreenEvaluatdr
out(171= (1 — 7 H[e Xx]A[e] — [e XTA[eX] + 7 ~L[e *X] Ale*X]
— 77 e *x1B[eX] + 7 1[e *x]B[e*X].
Written in the language déreen’s tinctions this means that

g(x,s)zi%(”_x)géx if0<&<x<m,

Lm—oxe™ fo<x<f=<m
3.4. Transverse beam deflection

For one more example, let us now do a fourth-order probl&takgold 1979 p. 49)
that desdbes thetransverse deflection @ C*[0, 1] of a homogeneous beam with given
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distributed transversal loatl € C°°[0, 1], Smply supported at both ends. Using a linear
elasticity model, one ends up with

"

u” = f,
u0) = u(d) =u’©0) =u"(1) =0.

Again conputing theGreen’s operatodirectly, we arrive at:
In[181:= ConputdGreenD?, (L, R LD?, RD?)],
by — GreenEvaluatdr
outf181= 3 [XTATX] — & AIX3] — 3 [X?1A[X] + 3 [X]A[X3]
+ 5 DATAIX] + 5 [X1B[X] — 5 [X]B[x?]
— 5 Ix*1B+ 5 IXIBIX®T + g X®1BIx].
This corresponds to th@reen’s function

Ixg— g3 —IxZ4+ixe3+ix¥%  f0<&s<x<m,
g(x,§) = Tye L1yg2 143, 1ye3, 1,3 ;

3XE — 5 XE X+ gXE7+ 5 X7¢ if0<x<é&<m.
3.5. Nonunique solutions

As stated inSection 2.1our method handles BVPs of the forid) fvhichare regular in
the sense that faach forcing functiorf € C*[a, b], asoluionu € C*®[a, b] exigs? and
this solution is unique. However, it is oftenglmble to ompute solutions that exist only
for certain choices of ; in this case, there are necessarily several independent solutions—
this is made precise by the Alternative Theorem for BVPs,Stakgold (1979 p. 210).
In such a situation, one can compute something like a Green'’s function that allows us to
transform anyadmissibleforcing function f to somesolutionu; this is what amodified
Green'’s functions used for, seStakgold(1979 p. 216).

Let us look at the following illuminatingxanple;'° see e.g. Buation (5.1) irStakgold
(1979 p. 215): givenf € C*°[0, 1], findu € C*°[0, 1] suchthat

—u"=f

u'(0) = u'(1) = 0. (10)

Integrating the differential equation, one sees immediately that a solutian only exist
if f fulfills thesdvability conditionfo1 f (x) dx = 0. In this case, one boundary condition
implies the other because we havél) = u’(0) + fol f(x) dx = u’(0).

Computirg the nullspace projector vilemma 2does not work since the matrix
[w< + fi~ is singular, reflecting the fact that one of the boundary conditions is
superfluous. Obviously we cannot apply thengtard method described in this article.

9 As noted at the end @ection 2.5the smooth setting used in this article can readily be extended to the more
general distributional setting.

10) am gratéul to my referee Stanly Steinberg for pointing me to this example.
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However, we will now show how we can still solv&Q) by transforming 1 to a regular
problem

We can ensureniquenesby imposing the condition that the? norm ofu be minimal.

Since he nullspace of}0) are the onstant functions, the norm afcan always be made
zero. Hence we add the integral conditiﬁf‘iu(é)ds = 0 to the two given boundary
conditions, see Equation (5.12)8t&kgold(1979 p. 216).

Next we enforceexigenceby projecting the giverf onto the subspace of admissible
forcing functions,2l = {f € C*[0,1]| fol f(&)ds = 0}. In gereral there are many
projectors, but the canonical choice is to take the space of constant functions as the
complement ofl. In this case we have to use the projector1A — B: C*°[0,1] — A
that mapsf to f — fol f (£) d¢. Observe tht this projector maps the constant function
1 to zero, hence the generalized Green’s operator maps 1 to the unique minimum-norm
solution ofu” = 0,u’(0) = u’(1) = 0, which is again zero. This fact is used to single
out the modified Green’s operator among all other generalized Green’s operators, see
Equation (5.4) irStakgold(1979 p. 216).

We are nowconfronted with the followingegular problem given f € C*°[0, 1], find
u € C*[0, 1] suchthat

—u"=1-Ff,
U'(0) = U'(1) = [y u(€)ds =0.

Here we have usethe abbreviation- = A + B for denoting the operator of definite
integration.

Though regular, probleml() is dill not in the scope of the method described in this
paper: first, we have three conditions to fulfill (it is no problem that one of them is
not a boundary condition), but the nullspace-eb? is only two dimensional. Second,
the projector 1- F prevents us from interpreting the differential equation as finding a
right inverse of—D2. We can knock out both problems at once with a simple trick—by
differentiging one more time. Doing so, we arrive at the followiagcessory problem
given f € C*°[0, 1], findu € C*°[0, 1] suchthat

—u" = f/,
u'(0) = U'(1) = f3u(§)ds =0.
Note that the projector lsaow disappeared becaufgl — F) = 0.

Problem (2) is equivalento (11): the drection from (L1) to (12) is trivial, so &asume
now u is a solution of {2). In order to obtain-u” = f from —u” = f’, we have to

integrate using the mean-value antideriva#ive F A ratherthan the standard antiderivative
A. Wheleas the standard antiderivative

X
/0 u'(§) dg = u(x) — u(0)

(11)

(12)

takes the integration constant as the left boundary value, the mean-value antiderivative
(dlightly rewritten)

1 X 1
/OfU’(E)dédr=U(X)—/0 u(é) dé
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takes it as the mean value. In operator notation, these equations are written in the succinct
form AD =1—- L and(A— FA)D = 1 — F. Note hat the former is part of the reduction
system ofTable 1 whereas the latter can easily be obtained from it. Applying rfow F A

to the differential equation ofl@), we obtain

1 1
s v =t [ red
0 0

which is indeed the differential equation dfl sincefo1 u’(g)dé =u'(1) —u'(0) =0.

Hence we are f¢ to problem (2). This time we can apply our standard method
described in this article. The nullspace-eb? is given by the quadratic polynomials, so it
has dimension 3. Hence we can chooggr@ector P onto it such that its complement
consists exactly of those functions € C°°[0, 1] that fulfill the three side conditions
of (12). Using he ansatP u = ayx? + Bux + yu, one obtains immediately

1 1 1 5
P=F— §|_D— éRD+ (x]LD+§rx 1(RD—-LD).

The corresponding Green’s opera@fulfills the third Moore—Penrose Eq7) so we
have—D3G = 1—P. Butnote tha( has to be applied té’ ratherthan f . Herce the actual
Green’s operatothat mapsf to u is given byG = GD, and wehave—D?G = 1 — P.
Now we can us theusual procedure of right inversion, givi® = —(1— P)AZ2. The final

step is now to normalize this analytic polynomial by using GmeeenEvaluator described
in Section 3.1yielding:

In[191:=  Conputd — (1 — P)A2, by — GreenEvaluatdr
outf191= 3 A[X?] — B[X] + 2 B[X?] — [X]A
+iB+ia+iarlis

The standard translation procedure extracts from this the followiodified Green'’s
function

CEex+ B2 i 0<e<x<1,
908 = l—E+—X2+52 if 0<x<é&<1
3 2 =X=s=4

see Huation (5.5) inStakgold(1979 p. 216).
3.6. The generic Sturm problem

The two-point BVPs treated in this article can be understood as inhomogeneous LODEs
whose inhomogeneity iparametrized(plus sde conditions). It is common practice to
regard all other data as predetermined. QuotBigKgold 1979 p. 51): “The differential
operator and boundary operators appearing on the left sides ... are kept fixed; no one is
proposing to solve all differential equatis with arbitrary boundary conditions in one
stroke!”



194 M. Rosenkranz / Journal of Symbolic Computation 39 (2005) 171-199

Following a recent proposaf; we will nevertheless attempt to do something in this
direction: we are not going to sohal LODEs orall boundary conditions in one stroke,
but we will consider thegeneric Stum Problem i.e. the general second-order BVP with
unmixed boundary conditions (for a linear differehtiperator with constant coefficients),
seeStakgold(1979 p. 191f).

So we deal with the followingroblem Given f € C*|[0, 1], findu € C*°[0, 1] such
that

u'+au +bu=f

au(0) + BU'(0) = yu(l) + su'(1) = 0. (13)

Note that we have assumég@, 1] as the domain, which can always be enforced by
rescaling. The coefficient af’ is assumediabenonzero (otherwise we would have a first-
order problem), so it is divided out. Furthermore, we assume that the parameters fulfill
a,b,a, B,y,8§ # 0 and that they make13) a regular BVP. It is well-known Coddington

and Levinson1955 p. 291) that this is the case iff

ap(0) + B¢’ (0)  ay(0) + BY'(0)
ye) +80" (D) y¥(D) +8¥'(D)

where{p, ¥} is any fundamental system for the homogeneous equation au’ + bu
=0.

For soling (13), we proceed just as before. The only difference is that the scalar
field underlying the analytic algebrérp is no longerC but raher therational-function
field C(a, b, @, B8, y, §). All the computations described so far carry over without essential
changes.

Let us denote the differential operator of problet8)(by T = D? 4+ a D + b, its two
boundary operatorsbl =« L + LD andN = y R+ § RD. With A andu being the
roots of the characteristic equatia? + ax + b = 0, the dfferential operator factors as
T = (D —1)(D — n) and has, byemma 3

40 (14)

T = [ AT X ATe#X] (15)

as aright inverse Note hat the middle factor disappearsiif= p. In the fdlowing, we
will only treat the case. # u; the case of a double root is completely analogous.
The next step is to computeraullspace projectarin the notation used there, we have

now | = (&8).F = (3?) and (LI + RA)D2 = (). We have © choose some
fundamental systerfy, v} of the homogeneous equatidru = 0. We will follow the
pradice of Stakgold (1979 p. 195), selectingg andy to fulfill the boundary conditions
Mg = 0 andNy = O, respectively. We do this by taking and s to be the unique
solutions of the following initial-value problems for the differential equation = 0.
For ¢, the initial conditions are taken ag(0) = B, ¢'(0) = —a; for ¥, they are
¥ (1) = §8,v'(1) = —y. Asmall conputation (e.g. by the Mathematica commadr®blve)

11 1pig proposal was forwarded to me from my referee Stanly Steinberg, whom | would also like to thank here.
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leads to
P(x) =t — )~ (@ + i) & — (a + ) €%)
Y0 =0.— 7L (0 + 50 @ %D -y + 50 € *D).
Let w be the fundamental matrix ¢§, v/}. Using the elationM¢ = Ny = 0, we obtain
(e +Ffo~ = ('\,\15 '\,\’l']g) = (2m), where
M=My = — ) @+ By + 80 e — @+ Ay + s e ),
N=Ng=0-0) " (@+ B0+ — @+ )y +51) €)
are used as abbreviations. Observing that —me**#, we obtain the inverselw < +
fFo~)"1 = ( 0 ”71) = —m1! (f’l e’AO"‘). According toLemma 2 the nullspace

) ] m?1 0
projector is now

P =] + ) (L + RA)Bz = —m ™ (roo0n woon) (9 25" ) (¥)

=m Y[y ()TM — e # [p(x)TN),

written as an analytic polynomial.
With these preparationsve can compute th&reen’s operator Gas before viaG =
(1— P) T*. Subdituting the nullspace projector and the right inverse, we obtain

MG= (M~ [y (X)IM + e+ [p(x)TN) e A[e %] ATe ¥

as a preliminary answer.
For writing G in its canonical formwenormalize it by th&sreenEvaluator after giving
the necessary definiths and option$?

In[20]1:= Dé€finition["Abbreviations”,
M =alL +BLD
N =yR+ SRD]
oIX1 = (A — 1) M@ + 1) & — (@ + Br) €%)
YIX] = 0 — )"y 4 62) XY — (y + 5p) XD
m= (0 — ) (e + B (y + 82)EH — (@ + BR)(y + Swe 1.
In[21]:= SetOptionfRediceNoncommutativePolynomial
FactorCoefficients—> True].
Inf22]:=  Compute(m — [¥[X]TM + e * #[¢[x]IN) [e"*] Are "X  ATe ],

using— Definition["Abbreviations’, by — GreenEvaluatdr

12 Note that Theorema, just like Mathematica, uses sgjbeackets rather than roupdrentheses for function
application. Hence we have here €.g[x]] instead off¢(x)] as befoe.
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outl221= (@ + B (y + 8 (A — p) 2 e [€*] Ale ]
+ @+ By + 8w — p)~2e " [€XB[e ]
—(@+ BNy + 8 — w2t [&Be ]
— (@ + By + 8w — w2 et [ ATe™
+ (@ + BRIy + 80 — w2 e [@* Ale
+ (@ + BRIy + 80— ) e [€%Ble
— @+ By + 80 — w) "2 [&*Ale X
— (@ + By + 80 (L — p) e [eX]B[e .

From the above representati one could extract the Green’s function in the usual
straightforward manner. For comparing our result with the literature, however, it is
convenient tdactor it as

A—pw2mG
= ((y + 80 e 1e7 — (y + 8y e [e7) A ((o + BA) [€7]
— (o + B) [€7) + ((a + 1) T — (@ + ) [€%7)
x B ((y +8x) e [e™] — (y +8p) e [e7*])
= [(y + 50D _ () 450D A [e*“ﬂ*)x (o + BA) &
— @+ B &%) | + [+ Br) e — (@ + B €]
x B [e 000X ( + 50 @D — (4 5y X D) |
=T — W )T AT PHX G0 — 1) e(0T + (A — ) 9(X)]
x B [e" X L — )y (x)]1,
which yields immediately the Green’s operator
G =y ATM e X 6)] + [p(x)] B Mt e %y (x)]

in a omndensed representation.
An easy computation shows thane*+»X is just the WronskiaW(x) = deti(x) =
e (X) ¥’ (X) — ¢’ (X) ¥ (X), herce we obtain th&reen’s functionn the form
Y e@EWE™  if 0<&<x<1,
e PEWE™  if 0<x<&<l,

in accordance witlstakgold(1979 p. 195).

9(x, §) =i

4, Conclusion

We havepresented a new algorithnoif sohing linear two-point BVPs symbolically.
Unlike the usual methods that translate thperator problem into a functional setting,
our approach represents the abstract quotient structure encoding the relevant operators
(differentiation, integration, boundary evatigm, functional multiplication) with their
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essential properties (Leibniz equality, fumaental theorem of calculus, etc) canonically
in an ismorphic algorithntidomain: the quotient rin@n(J)/ Gt (F) may be considered as
an abstract condensate capturing #fgebraic characteristics of the operators involyed
whereas the isomorphic systafig(F) makes this structure available to computations via
the reduction induced by the Green’s system.

At this point it is natural to ask ourselves how far the method presented in this article
could be generalized. Let us firktok at some stightforwardgenerdizations most of
these have also been discusseRasankranz et al(20033.

e We can investigatesystems of differential equatiorfftogether with their boundary
conditions) instead of a single one. In the linear case, the resulting theory is very
similar to scahr BVPs, using a Green’s matrix instead of a Green's function; see
e.g. p. 249 inKamke (1983. Our method should be extensible to this case in a
fairly simple manner. In the worst case, \have to recede to our original approach
in Rosenkranz et al(20033 via Grobner bases and adapt them to work for vectors of
polynomials rather than single ones. Essentially this amounts to computing Grébner
bases in modules, a routine task for commutative polynomials—seeBeaker
and Weispfenning(1993 pp. 485ff)—that may be expected to carry over to the
noncommutative case.

e It is certainly a much greater allenge to move from ordinary tpartial differential
equations In principle, the algebraization embodied in our approach extends in a
straightforward way, e.g. introducing the partial differential operatDgs and Dy
instead ofD and analogous operators for integration. Certain concepts and results from
Riquier—Janet theory and Lie analysis may come in handy here. Of course, one will have
to adapt the treatment of boundary values. Besides this, the analog of right inversion
will in general be far more complex for partial differential operators—maybe somewhat
similar to the elimination techniques used by the holonomic paradigeiberger
1990.

¢ One of the mostlifficult generalizations is probably the step towandslinearBVPs.

The reason is that our algebraic model does not lend itself easily to describe nonlinear
differential operators, and the systematic approach seems to lead to general rewriting
(still modulo the polynomial congruence), wighbstitution in additio to replacement.
Maybe this could be handled by a suitable combination of Grobner bases and the Knuth-
Bendix algorithm; sedBachmair and Ganzingét 994 andMarché(1996).

e It can also be expected to treat certimitegro-differential equation®y our approach. In
fact, the Green’s polynomials provide a uniform way for expressing integral as well as
differential equations-and their mixtures.

Beyond these rather direct generalizations of the problem considered in this article, we
believe that our approach hasartain intrinsic interest not directly tied to BVPs of any
kind. The essence of our method can be described as solving problems at the operator
level by polynomial methods. This could be a new research paradigm applicable to various
problems of a field that might be callsgimbolic functional analysisUp to now symbalic
methods have conquered the following two ‘im#oors” (cum grano salis): (1) numbers
— computer algebra, e.g. solving a system of polynomial equations; (2) functions
computer analysis, e.g. solving a differential equation. Naturally, the third floor would be:
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(3) operators—> symbolic unctional analysis, e.g. solving BVPs. We have described these
ideas in more detail iRosenkranz et al(20038. Let us just mention two further examples
of “problems on the third floor”:

e Certah problems inpotential theoryhave a flavor very similar to that of BVPs for PDEs,
at least when seen from the symbolic viewpoint. It is therefore natural to ask to what
extentone could transfer some ideas from BVPs to the potential setting. In particular,
one would like to formulate an algebraic set-up that allows us to express the operator
induced by the potential function (analogous to the Green’s operator induced by the
Green'’s ftinction).

e The field of inverse poblems(Engl et al, 1996 opens a whole arena of possible
applications of symbolic functional analysis. Even though one cannot usually expect
algebraic solutions for such problems, the polynomial approach will certainly uncover
a geat deal about the solution manifold. In particular, it may be possible to transform a
given problem into a different one that has more profitable properties.

Pondering such examples, we do hope that it will be possible to develop fruitful ideas
along these lines in the near future.
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