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Introduction

The inverse Gröbner basis problem is to find the ideals that have a given monomial ideal
as its initial ideal. We consider the problem of finding when the given monomial ideal is
the initial ideal of a prime ideal. Kalkbrenner and Sturmfels (1995), in Theorem 1, prove
that the radical of the initial ideal of a prime ideal is equi-dimensional and connected in
codimension one or equivalently, the initial complex of a prime ideal is pure and strongly
connected. They ask if these necessary conditions are sufficient.

Dalbec (1998), in Theorem 2, proved that if I is an ideal generated by all the degree
d square-free monomials in n variables, then there exists a prime ideal P such that the
radical of the initial ideal of P is I. The ideals he considers are square-free, the generators
have the same degree and their quotient is Cohen–Macaulay. We prove the following main
theorem that establishes that the ring being Cohen–Macaulay is sufficient for ideals of
codimension two.

Theorem 0.1. Let R = k[x1, x2, . . . , xr] be a polynomial ring over a field k and I an
ideal of R. Let > be a monomial order that respects total degree. Assume I is a monomial
ideal of codimension 2 and R/I is Cohen–Macaulay. Then there exists an extension field
K of k and a prime ideal P contained in the polynomial ring S = K[x1, x2, . . . , xr] such
that

√
in(P ) =

√
IS.

If I is a square-free monomial ideal and has minimal generators of the same degree,
then the proof of Theorem 0.1 actually gives in(P ) = IS. If I is only square-free
then

√
in(P ) = IS. We would like to have P in k[x1, x2, . . . , xr]. For this we need

to specialize indeterminates. The process of specializing does not necessarily preserve
the property of the ideal being prime nor the structure of the initial ideal. A Bertini
theorem (Flenner, 1977) can be used to preserve the prime property. Equations needed
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to preserve the Gröbner basis, in this setting, are given by Taylor (2000). However, the
two are incompatible and obtaining P in k[x1, x2, . . . , xr] remains open.

The proof of our main result uses two important ingredients. First, generic linkage is
our tool for constructing a prime ideal. Second, we give a Gröbner basis for the ideal of
maximal minors for a particular class of non-generic matrices. Gröbner bases for ideals
of minors of generic matrices are known, however, if the matrix is not generic, finding a
Gröbner basis for the ideal of maximal minors is, in general, difficult.

Since we use generic linkage to construct our prime ideal, in Section 1 we collect the
relevant definitions and propositions needed from the theory of generic linkage. We prove
a key theorem on Gröbner bases for the ideal of maximal minors for certain non-generic
matrices in Section 2. In Section 3 we prove the main theorem. Finally, in Section 4 we
give several examples, including examples that illustrate the construction, explore the
necessity of the Cohen–Macaulay hypothesis and the necessity of the radicals.

Before we proceed to Section 1 we include the basic definitions and notation from
Gröbner basis theory that we will use. A monomial order ≥ on a polynomial ring R =
k[x1, x2, . . . , xr] over a field k is a total order on the monomials in R such that m ≥ 1
for each monomial m in R and if m1,m2, n are monomials in R with m1 ≥ m2 then
nm1 ≥ nm2. A monomial order on a polynomial ring in several variables generalizes the
notion of degree for a polynomial ring in one variable. The initial term of an element
f ∈ R, denoted in(f), is the largest term (including coefficient) of f with respect to a
fixed monomial order. We use lm(f) to denote the largest monomial of f when we do
not want to include the coefficient. Given an ideal I of R, the initial ideal is defined to
be 〈{in(f) : f ∈ I}〉, and is denoted in(I). It should be noted that different monomial
orders may yield different initial ideals, so whenever an initial ideal is referred to, it is
assumed a monomial order has been fixed. A Gröbner basis is a subset {g1, . . . , gn} of I
such that in(I) = 〈in(g1), . . . , in(gn)〉.

1. Generic Linkage

Two varieties X and Y in Pn with no common components are linked if X ∪ Y is a
complete intersection (Peskine and Szpiro, 1974). Algebraically, two ideals I and J in a
local Cohen–Macaulay ring are linked if there exists a regular sequence α1, . . . , αs = α
contained in the intersection I ∩ J such that 〈α〉 : I = J and 〈α〉 : J = I (Huneke and
Ulrich, 1985, Definition 2.1). Huneke and Ulrich (1985) define a generic link of I and
prove, under some hypotheses, that it is a prime ideal.

Definition 1.1. (Huneke and Ulrich, 1985, Definition 2.3) Let R be a Gorenstein
ring and I an unmixed ideal of R of grade g. For I = R we take g > 0 arbitrary and finite,
although the convention in this case is grade(I) = ∞. Fix a generating set f1, . . . , fm

of I. A generic link L(f) of I is defined as follows: let Yij(1 ≤ i ≤ g, 1 ≤ j ≤ m) be
g · m variables and set S = R[Yij ] and αi =

∑m
j=1 Yijfj , 1 ≤ i ≤ g. We set L(f) =

〈α1, . . . , αg〉 : IS, and call (S,L(f)) a generic link to I.

Hochster (1973) proved that α1, . . . , αg is a maximal regular sequence in IS. There-
fore if R is Gorenstein and I is unmixed, then (S,L(f)) is linked to I (Huneke and
Ulrich, 1985). Hochster (1973) also gives an equivalence relation on pairs (R, I), where
I is an ideal of the ring R. The pairs (R1, I1) and (R2, I2) are equivalent if there exist
integers r, s and indeterminates Y1, . . . , Yr over R1 and Z1, . . . , Zs over R2 such that
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(R1/I1)[Y1, . . . , Yr] and (R2/I2)[Z1, . . . , Zs] are isomorphic. Huneke and Ulrich (1985)
prove that for R a Gorenstein Noetherian ring and I an unmixed ideal of R, if f and h
are two generating sets of I and (Q1, L(f)) and (Q2, L(h)) two generic links for I, then
(Q1, L(f)) is equivalent to (Q2, L(h)). This alleviates the dependence of Definition 1.1
on the generating set of I and allows us to use the notation L(I) for a generic link of I
when the ring is understood. We use Ln(I) to denote the nth generic link of I, defined
inductively to be L1(Ln−1(I)). The next proposition is the main property we need from
the theory of generic linkage.

Proposition 1.2. (Huneke and Ulrich (1985), Proposition 2.6) Let R be a Go-
renstein local domain and let I be an unmixed ideal of R which is generically a complete
intersection. Let (S,L(I)) be a generic link to I. Then L(I) is a prime ideal.

For any square-free monomial ideal I ⊆ R = k[x1, x2, . . . , xr], R/I is reduced and the
primary decomposition looks like I = P1∩· · ·∩Ps where the Pi are generated by subsets
of the variables {x1, . . . , xr}. Hence any square-free monomial ideal I ⊆ R is generically
a complete intersection. If we further assume that R/I is Cohen–Macaulay then L(I) is
a prime ideal by Proposition 1.2. We use this in the proof of Theorem 0.1.

In the context of the main theorem, R is a polynomial ring and I is a homogeneous
ideal so I has a graded minimal free resolution. Under these assumptions we can construct
a free resolution of the generic link of I. Set S to be the ring for a generic link of I and
K = K(α; S) to be the Koszul resolution of S/〈α〉. Let F be the minimal free resolution
of S/I. A free resolution of S/L(I) is the mapping cone of the dual of the map u : K → F
induced by S/〈α〉 → S/I (Peskine and Szpiro, 1974, Proposition 2.6). This resolution
has length grade(I) + 1, but the last differential in the mapping cone splits. Taking the
mapping cone of the dual of u modulo the subcomplex S → S gives a resolution of length
equal to the grade of I.

If R/I is Cohen–Macaulay, I = 〈f1, . . . , fm〉 and codim(I) = 2 then, by the Hilbert–
Burch theorem (Bruns and Herzog, 1993, Theorem 1.4.17), the resolution F has the
form

0 −→ Rm−1 A−→ Rm B−→ R −→ 0

where B =
[
f1 f2 . . . fm

]
and the (m − 1) × (m − 1)-minors of A generate the

ideal I, that is Im−1(A) = I. Take {Yij}1≤j≤m,1≤i≤2 and form the linear combinations
α1 =

∑m
j=1 Y1jfj and α2 =

∑m
j=1 Y2jfj .

In this particular case, after we mod out by S → S, the resolution for S/〈α1, α2〉 : IS is

0 −→ Sm A′

−→ Sm+1 B′

−→ S −→ 0 (1.1)

where

A′ =

 AT

Y11 · · · Y1m

Y21 · · · Y2m

 and B′ =
[
(−1)δ1 (−1)2δ2 . . . (−1)m+1δm+1

]
where δ1, . . . , δm+1 are the

maximal minors of A′.
(1.2)

Since α1, α2 is a regular sequence in IS we know that 〈α1, α2〉 : IS has grade at least 2.
Hence its quotient is Cohen–Macaulay and the Hilbert–Burch theorem implies the max-
imal minors of A′ generate 〈α1, α2〉 : IS, the first generic link of I.
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Repeating this process, the second generic link is generated by the maximal minors of
the matrix

A′′ =

 A
′T

Z11 · · · Z1m−1 Y1m+1 Y2m+1

Z21 · · · Z2m−1 Y1m+2 Y2m+2

 =


A Y11 Y21

...
...

Y1m Y2m

Z11 · · · Y1m+1 Y2m+1

Z21 · · · Y1m+2 Y2m+2

 . (1.3)

The indeterminates, Z11, . . . , Z2m−1, Y1m+1, Y1m+2, Y2m+1, Y2m+2, used in forming the
second generic link are labelled this way because it is useful in later sections.

We utilize the second generic link and its resolution in the proof of Theorem 0.1. There
are two reasons to expect the second generic link to be better than the first generic link
for our purposes. First, I is a link of L1(I) and L2(I) is a generic link of L1(I), so
there is a specialization from the second generic link of I to I (Huneke and Ulrich, 1985,
Proposition 2.13).

Second, the structure of the maximal minors of A′′ (1.3) is better. We give an example.
Let fi denote the signed minor of A when the ith row is removed, for 1 ≤ i ≤ m, and let
δi denote the same signed minor for A′′. Therefore,

δi = fi(Y1m+2Y2m+1 − Y1m+1Y2m+2) + βi 1 ≤ i ≤ m. (1.4)

where each term of βi, 1 ≤ i ≤ m has higher degree in the new variables. For example, the
following are the first three minors of a presentation matrix (1.3) for the second generic
link of I = 〈ac, ad, bd〉:

δ1 = ac(Y15Y24 −Y14Y25)− aY15Y22Z12 + aY12Y25Z12 + aY14Y22Z22

− aY12Y24Z22 − bY15Y23Z12 + bY13Y25Z12 + bY14Y23Z22 − bY13Y24Z22

− cY15Y23Z11 + cY13Y25Z11 + cY14Y23Z21 − cY13Y24Z21 + Y13Y22Z12Z21

− Y12Y23Z12Z21 − Y13Y22Z11Z22 + Y12Y23Z11Z22

δ2 = ad(Y15Y24 −Y14Y25) + aY15Y21Z12 − aY11Y25Z12 − aY14Y21Z22

+ aY11Y24Z22 − dY15Y23Z11 + dY13Y25Z11 + dY14Y23Z21 − dY13Y24Z21

− Y13Y21Z12Z21 + Y11Y23Z12Z21 + Y13Y21Z11Z22 − Y11Y23Z11Z22

δ3 = bd(Y15Y24 −Y14Y25) + bY15Y21Z12 − bY11Y25Z12 − bY14Y21Z22

+ bY11Y24Z22 + cY15Y21Z11 − cY11Y25Z11 − cY14Y21Z21 + cY11Y24Z21

+ dY15Y22Z11 − dY12Y25Z11 − dY14Y22Z21 + dY12Y24Z21 + Y12Y21Z12Z21

− Y11Y22Z12Z21 − Y12Y21Z11Z22 + Y11Y22Z11Z22.

(1.5)

The non-boldface terms are the terms we call βi in equation (1.4) and the boldface terms
correspond to the remaining terms in equation (1.4).

The minors δm+1 and δm+2 do not have exactly the form given in equation (1.4), but
as can be seen below each has terms of the form fiM where M is a degree-two monomial
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in the new variables:

δ4 = ac(Y15Y21 −Y11Y25) + ad(Y15Y22 −Y12Y25) + bd(Y15Y23 −Y13Y25)
−aY12Y21Z22 + aY11Y22Z22 − bY13Y21Z22 + bY11Y23Z22 − cY13Y21Z21

+ cY11Y23Z21 − dY13Y22Z21 + dY12Y23Z21

δ5 = ac(Y14Y21 −Y11Y24) + ad(Y14Y22 −Y12Y24) + bd(Y14Y23 −Y13Y24)
−aY12Y21Z12 + aY11Y22Z12 − bY13Y21Z12 + bY11Y23Z12 − cY13Y21Z11

+cY11Y23Z11 − dY13Y22Z11 + dY12Y23Z11

In this example, where the degrees of the generators of I have the same degree, the initial
term of each δi, 1 ≤ i ≤ m+ 2, using the inverse block order with respect to the added
variables (see the beginning of Section 2 for a definition of this order), is of the form fiM
where M is a degree two monomial in the new variables. We will use this structure in
the proof of Theorem 0.1 as well as the proof of Theorem 2.2.

In contrast, the minors of a presentation matrix for the first generic link of I do not
have this form. The following are the maximal minors of a presentation matrix (1.2) for
the first generic link of I = 〈ac, ad, bd〉:

δ1 = −cY12Y21 + cY11Y22 + dY13Y22 − dY12Y23

δ2 = aY13Y22 − aY12Y23 + bY13Y21 − bY11Y23

δ3 = acY21 + adY22 + bdY23

δ4 = acY11 + adY12 + bdY13

(1.6)

The first and second minors are linear in a, b, c, d. These linear terms will appear in any
Gröbner basis computed from this generating set. The linear terms are not in I and all
of this suggests that the second generic link, as opposed to the first, is the prime ideal
we want to work with.

2. Gröbner Bases for Ideals of Maximal Minors

In this section we prove, under certain conditions, that the maximal minors of the
presentation matrix of L2(I) given in equation (1.4) are a Gröbner basis for L2(I).
First, we need to fix some notation. From now on assume that the monomial order on
R = k[x1, x2, . . . , xr] respects total degree. The inverse block order (Kredel and Weispfen-
ning, 1988, Section 8) is a useful monomial order when adding additional variables to
R. Let <R denote the monomial order on R. Let <T denote the monomial order on
T = k[y1, . . . , ys]. Set S = k[x1, . . . , xr, y1, . . . , ys] and Y = {y1, . . . , ys}. Let s1, s2 ∈ R
and t1, t2 ∈ T be monomials. The inverse block order on S with respect to Y is defined
as follows: if either s1 < s2, or s1 = s2 and t1 < t2, then s1t1 < s2t2. Given a monomial
st in S, where s ∈ R and t ∈ T , define degx(st) = deg s.

For I ⊆ R homogeneous use H(R/I, n) = dimk(R/I)n to denote the Hilbert function
for R/I and HR/I(t) =

∑∞
n=0 H(R/I, n)tn to denote the Hilbert series for R/I. We use

the following standard fact. If F is a minimal graded free resolution of R/I, then the
Hilbert series is the alternating sum of the Hilbert series of the modules in the resolution,
so HR/I(t) =

∑m
i=0(−1)iHFi

(t) where m = pdR(R/I).
We also use the following standard facts in the setup and proof of Theorem 2.2. Let

f1, . . . , fm be a generating set for a homogeneous ideal I of R. If I is codimension two
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and R/I is Cohen–Macaulay then the Hilbert–Burch theorem along with Peskine and
Szpiro (1974) implies that a minimal graded free resolution of I has the following form:

0 −→
m−1⊕
j=1

R(−bj)
φ−→

m⊕
i=1

R(−ai)
A−→ R −→ R/I −→ 0. (2.1)

Denote the ijth entry of φ by φij . By Peskine and Szpiro (1974),

aj = deg(fj), for 1 ≤ j ≤ m, (2.2)
deg(φij) = bj − ai, for the non-zero entries φij of φ, (2.3)

A =
[
f1 f2 · · · fm

]
, (2.4)

I = Im−1(φ). (2.5)

If deg(f1) = deg(f2) = · · · = deg(fm) = d, then equation (2.3) implies deg(φij) = bj − d
for the non-zero entries of φ. Hence all of the non-zero entries in the jth column of φ
have degree bj − d, 1 ≤ j ≤ m− 1. And vice versa, if all of the non-zero entries in each
column of φ have the same degree the maximal minors must be homogeneous and of the
same degree.

Before proceeding to Theorem 2.2 we indicate a way to simplify equations. The need
for this can be seen in the minors of the presentation matrix of the second generic link of
I = 〈ac, ad, bd〉 (1.5). The first generic link may involve simpler computations, but yields
polynomials that appear unhelpful (see equation 1.6) so we simplify in a different way.
Let φ be a presentation matrix for I. The following matrix is the matrix that is useful
for simplifying computations:

Φ =


Y1

φ
...
Ym

Z1 · · · Zm−1 Ym+1

 . (2.6)

The minors of matrix (2.6) for the ideal I = 〈ac, ad, bd〉 are included to illustrate how
much simpler they are while maintaining the structure of the minors of the second generic
link. The boldface terms are the initial terms using the inverse block order and the
remaining terms are what we call βi in the proof of Theorem 2.2. Compare these equations
to equation (1.5):

δ1 = acY14 − aY12Z12 − bY13Z12 − cY13Z11

δ2 = adY14 + aY11Z12 − dY13Z11

δ4 = bdY14 + bY11Z12 + cY11Z11 + dY12Z11

δ5 = acY11 + adY12 + bdY13

(2.7)

Theorem 2.2 is about the minors of matrix (2.6). In Corollary 2.3 we add a second row
and column of new variables to prove that under the given conditions, the maximal
minors of the presentation matrix for the second generic link, form a Gröbner basis for
the second generic link. The following definition will aid in stating the next theorem and
corollary.

Definition 2.1. Let R = k[x1, x2, . . . , xr] and I = 〈f1, . . . , fm〉 ⊆ R.
We say the pair (R, f) has Property A if
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(1) codim(I) = 2.
(2) R/I Cohen–Macaulay.
(3) I homogeneous.
(4) deg(f1) = · · · = deg(fm).
(5) {f1, . . . , fm} is both a Gröbner basis and a minimal generating set for I.

The first two conditions in this definition are the assumptions for the main theorem.
Conditions 3 and 5 are satisfied by any monomial ideal and help in the induction that
follows. Condition 4 is seemingly strong, however, we reduce the main theorem to this case
using Corollary 3.3. This condition allows us to say that the minors of Φ are homogeneous
so we can use graded free resolutions. In Section 4 (see page 14) we give an example
of what happens, besides no-longer having graded resolutions, if we do not make this
assumption.

Theorem 2.2. Let R = k[x1, x2, . . . , xr] and I = 〈f1, . . . , fm〉 ⊆ R. Assume (R, f) has
Property A. Let φ be a graded free presentation matrix for I and ej the degree of the
non-zero entries in the jth column of φ. Let Y = {Y1, . . . , Ym+1}, Z = {Z1, . . . , Zm−1}
and S = R[Y,Z]. Give S the inverse block order with respect to {Y, Z}. Set deg(Yi) = 1
for 1 ≤ i ≤ m+ 1 and deg(Zj) = ej for 1 ≤ j ≤ m− 1. Set

Φ =


Y1

φ
...
Ym

Z1 · · · Zm−1 Ym+1

 .

Then the maximal minors of Φ form a Gröbner basis for the ideal Im(Φ).

Proof. For 1 ≤ i ≤ m + 1, let δi denote the signed minor of Φ when the ith row
is removed. The generators, f1, . . . , fm of I are a Gröbner basis by assumption, so
in(f1), . . . , in(fm) generate in(I). We prove that the Hilbert series for S/Im(Φ) and
S/〈in(δ1), . . . , in(δm+1)〉 are equal. Therefore in(Im(Φ)) = 〈in(δ1), . . . , in(δm+1)〉 and
hence the maximal minors of Φ form a Gröbner basis for Im(Φ).

We can order f1, . . . , fm such that in(f1) ≥ in(f2) ≥ · · · ≥ in(fm) and assume fi is
the signed (m − 1) × (m − 1) minor of φ when the ith row is removed. Let d = deg(fi)
for 1 ≤ i ≤ m.

The non-zero entries in each column of Φ have the same degree, so by the remarks
before the theorem, δi, 1 ≤ i ≤ m+ 1, is homogeneous and has the form

δ1 = f1Ym+1 + β1

...
δm = fmYm+1 + βn

δm+1 = f1Y1 + f2Y2 + · · ·+ fmYm.

(2.8)

Each βi is at least degree two in the new variables so degx(βi) < d, 1 ≤ i ≤ m. Also
codim(Im(Φ)) ≤ 2 (Eagon and Northcott, 1962, Theorem 3). Suppose codim(Im(Φ))
≤ 1. Localize at a codimension one prime ideal P containing Im(Φ). Since Im−1(φ) is
codimension two, at least one (m − 1) × (m − 1) minor of φ is invertible in SP . Using
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row and column operations, rewrite Φ as

Φ′ =



1 0 · · · 0
0 1 · · · 0
...

...
...

...
0 0 1 0
0 0 0 Y ′m
0 · · · 0 Y ′m+1


.

The terms Y ′m = Ym + β and Y ′m+1 = Ym+1 + γ are such that β and γ are polynomials
not involving Ym and Ym+1 respectively. Then Y ′m and Y ′m+1 are a regular sequence
and Im(Φ)SP = Im(Φ′)SP = 〈Y ′m, Y ′m+1〉SP is a codimension two ideal in SP . This is a
contradiction and hence codim(Im(Φ)) = 2. Since S is a regular ring, grade(Im(Φ)) =
codim(Im(Φ)) = 2. Therefore, the Hilbert–Burch Theorem implies

0 −→ Sm Φ−→ Sm+1 A−→ S −→ S/Im(Φ) −→ 0

is a minimal free resolution for S/Im(Φ) and A =
[
(−1)δ1 · · · (−1)m+1δm+1

]
.

Each δi, 1 ≤ i ≤ m+1, is homogeneous of degree d+1, by construction, and if Φij 6= 0
then bj , as defined in equation (3.1), is

bj =

{
deg(Φij) + (d+ 1) = ej + (d+ 1) 1 ≤ j ≤ m− 1,
d+ 2 j = m.

The following is a graded free resolution of S/Im(Φ) with the twists:

0 −→
m−1⊕
j=1

S(−d− ej − 1)⊕ S(−d− 2) Φ−→ S(−d− 1)m+1 A−→ S −→ S/Im(Φ) −→ 0.

Therefore

HS/Im(Φ)(t) =
1− (m+ 1)td+1 + td+2 +

∑m−1
j=1 td+ej+1

(1− t)N (1− te1)(1− te2) · · · (1− tem−1)
,

where N = r +m+ 1.
Each βi, 1 ≤ i ≤ m + 1, in equation (2.8) has the property that degx(βi) < d. Also,

R has an order that respects total degree and S has the inverse block order, there-
fore 〈in(δ1), . . . , in(δn+1)〉 = 〈in(f1)Ym+1, . . . , in(fm)Ym+1, in(f1)Y1〉. Let K denote this
ideal. The following is a standard exact sequence:

0 −→ S

(K : Ym+1)
(−1) −→ S

K
−→ S

(K,Ym+1)
−→ 0. (2.9)

Since 〈K,Ym+1〉 = 〈Ym+1, in(f1)Y1〉 and (K : Ym+1) = in(I), equation (2.9) gives

HS/K(t) = HS/(Ym+1,in(f1)Y1)(t) +HS/in(I)(−1)(t). (2.10)

The monomials Ym+1 and in(f1)Y1 consist of distinct variables and therefore form a
regular sequence. Hence

HS/(Ym+1,in(f1)Y1)(t) =
1− t− td+1 + td+2

(1− t)N (1− te1)(1− te2) · · · (1− tem−1)
. (2.11)

Viewing I as an ideal in S, the Hilbert–Burch Theorem and equations (2.1)–(2.5) provide
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the following graded free resolution of S/I:

0 −→
m−1⊕
j=1

S(−d− ej)
φ−→ S(−d)m −→ S/I −→ 0.

Therefore,

1−mtd +
∑m−1

j=1 td+ej

(1− t)N (1− te1)(1− te2) · · · (1− tem−1)
= HS/I(t) = HS/in(I)(t), (2.12)

where the last equality is standard (Eisenbud, 1996, Theorem 15.26). To shift this series
by 1, multiply by t. Combining equations (2.10), (2.11) and (2.12)

HS/K(t) =
1− t− td+1 + td+2 + t−mtd+1 +

∑m−1
j=1 td+ej+1

(1− t)N (1− te1)(1− te2) · · · (1− tem−1)

=
1− (m+ 1)td+1 + td+2 +

∑m−1
j=1 td+ej+1

(1− t)N (1− te1)(1− te2) · · · (1− tem−1)
= HS/Im(Φ)(t). 2

Corollary 2.3. Assume R, I, S, φ, Φ and {δi}m+1
i=1 are as in Theorem 2.2. Then

(1) (S, δ) has Property A.
(2) The generators for L2(I) from the presentation matrix (1.3) form a Gröbner basis

for L2(I).

Proof. (1): In the proof of Theorem 2.2 we established that Im(Φ) is codimension two
and S/Im(Φ) is Cohen–Macaulay. The construction of Φ implies δi is homogeneous of
degree d + 1, for 1 ≤ i ≤ m + 1. No entry in φ is a unit by assumption, so the same
is true of Φ by construction. Hence {δi}m+1

i=1 form a minimal generating set for Im(Φ).
Theorem 2.2 implies {δi}m+1

i=1 is a Gröbner basis for Im(Φ).
(2): By (1), we can apply Theorem 2.2 to (S, δ). The matrix that arises in this process

is the same as the presentation matrix for L2(I) given in Section 1 (see 1.3) and hence
the maximal minors form a Gröbner basis for L2(I). 2

3. Sufficient Conditions in Codimension 2

For a monomial ideal I = 〈f1, . . . , fm〉 in R = k[x1, x2, . . . , xr] inductively define a
polarization of I as follows. Let αj denote the exponent of x1 in fj for 1 ≤ j ≤ m. Write
each fj , 1 ≤ j ≤ m, as xαj

1 mj where x1 does not divide mj . Set α = max
1≤j≤m

{αj} and

Y1, . . . , Yα−1 to be α− 1 new indeterminates. Set

P (fj) =

{
x1Y1Y2 · · ·Yαj−1mj if αj ≥ 2,
fj if αj = 0, 1.

(3.1)

For each fj , 1 ≤ j ≤ m, repeat this process for each xi, 1 ≤ i ≤ r, and call the
resulting monomial the polarization of fj . A polarization of I is the ideal generated by
the polarizations of f1, . . . , fm. Let P (f) denote the polarization of I, formed from the
generating set f = f1, . . . , fm.
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The polarization is a square free monomial ideal by construction. Let Y denote the
indeterminates needed to form the polarization of I and set

Y − x = {Yi − xj |Yi replaces xj in the polarization}.

Then R[Y]/〈P (f),Y−x〉 ' R[Y]/〈I,Y−x〉. The following proposition, which is folklore,
uses the polarization of I in its proof. We use this proposition in our proof of Theorem 0.1
to reduce to the case where the monomial ideal I is square-free.

Proposition 3.1. Let R = k[x1, x2, . . . , xr] and I be a monomial ideal of R. If R/I is
Cohen–Macaulay then R/

√
I is also Cohen–Macaulay.

Proof. Set a minimal generating set for I = 〈f1, . . . , fm〉. First, using induction, we
prove that R[Y]/P (f) is Cohen–Macaulay. Denote the degree of x1 in fj by αj for
1 ≤ j ≤ m. Reorder the generators of I so that α1, . . . , αs > 1, αs+1 = · · · = αs+r = 1
and αs+r+1 = · · · = αm = 0. Write fi = xαi

1 hi, 1 ≤ i ≤ s + r, such that x1 does not
divide hi. Use Y1 to denote the first variable used to replace x1. We claim Y1 − x1 is a
non-zero divisor on the ideal

J = 〈xα1−1
1 Y1h1, . . . , x

αs−1
1 Y1hs, x1hs+1, . . . , x1hs+r, fs+r+1, . . . , fm〉.

Suppose Y1− x1 is a zero divisor on J . Thus Y1− x1 is in some associated prime ideal P
of J . There exists g /∈ J such that P = (J : g). Since J is monomial, P is monomial and g
can be taken to be monomial. So there exists a monomial g /∈ J such that g(Y1−x1) ∈ J .

Since J is a monomial ideal Y1g ∈ J and x1g ∈ J . Since Y1 is a non-zero divisor
on 〈x1hs+1, . . . , x1hs+r, fs+r+1, . . . , fm〉, if Y1g is in that ideal, then g ∈ J which is a
contradiction. Therefore we can assume xαi−1

1 Y1hi divides Y1g for some 1 ≤ i ≤ s. Write
g = xn

1Y
l
1g
′ where l, n ≥ 0 and Y1 and x1 do not divide g′. Since xαi−1

1 Y1hi divides Y1g
for some 1 ≤ i ≤ s, xαi−1

1 hi divides g = xn
1Y

l
1g
′. Thus, x1 divides g so n > 0. Also,

xαi−1
1 hi divides xn

1 g
′. Therefore, xαi−1

1 Y1hi divides xn
1Y1g

′. If l > 0 this divides g and
then g is in J which is a contradiction. Hence we may assume n > 0 and l = 0. Now we
use that x1g ∈ J . The monomials xαi−1

1 Y1hi cannot divide x1g since Y1 does not divide
x1g. This implies xn

1 g
′ ∈ 〈hs+1, . . . , hs+r, fs+r+1, . . . , fm〉 and x1 is a non-zero divisor

on the ideal, so g′ ∈ 〈hs+1, . . . , hs+r, fs+r+1, . . . , fm〉. Since n > 0, x1g
′ divides g and

therefore g ∈ J a contradiction. Hence Y1 − x1 is a non-zero divisor on J .
Assume S is a graded ring and m is the irrelevant ideal, then S is Cohen–Macaulay

if and only if Sm is Cohen–Macaulay (Matijevic and Roberts, 1974). Let m1 denote
the irrelevant ideal for R[Y1]. Since I is homogeneous and R/I is Cohen–Macaulay, the
previous two statements combine to imply R[Y1]m1/IR[Y1]m1 is Cohen–Macaulay. The
ring R[Y1]m1/IR[Y1]m1 is local and Y1 − x1 ∈ m1 is a non-zero divisor, so

R[Y1]m1/〈I, Y1 − x1〉R[Y1]m1 ' R[Y1]m1/〈J, Y1 − x1〉R[Y1]m1

is Cohen–Macaulay. The ring R[Y1]m1/JR[Y1]m1 is Cohen–Macaulay since the element
Y1 − x1 is a non-zero divisor on J . Moreover, this implies R[Y1]/JR[Y1] is Cohen–
Macaulay. By induction on the variables used to form a polarization of I, both R[Y]/P (f)
and R[Y]/〈P (f),Y − x〉 are Cohen–Macaulay.

Let W be the multiplicatively closed set k[Y] \ {0} in S = R[Y] and let K = k(Y).
Then the localization of S/P (f) at W is isomorphic to K[x1, . . . , xr]/

√
I. So, S/P (f)
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Cohen–Macaulay implies K[x1, . . . , xr]/
√
I is Cohen–Macaulay. The ring

K[x1, . . . , xr]/
√
I ' k[x1, x2, . . . , xr]/

√
I ⊗k K

is Cohen–Macaulay if and only if k[x1, x2, . . . , xr]/
√
I is Cohen–Macaulay (Bruns and

Herzog, 1993, Theorem 2.1.10). Hence k[x1, x2, . . . , xr]/
√
I is Cohen–Macaulay. 2

Recall that Proposition 1.2 states that L2(I) is a prime ideal assuming I is generically
a complete intersection. In general, monomial ideals with Cohen–Macaulay quotient ring
are not generically complete intersections, however, if the ideal is a square-free monomial
ideal then it is generically a complete intersection. Proposition 3.1 allows us to reduce to
the square-free case in the proof of Theorem 0.1.

In the statement of Theorem 0.1 we do not assume the generators of I have the same
degree, but this is required by Theorem 2.2 and we use Theorem 2.2 in the proof of
Theorem 0.1. Proposition 3.2 and Corollary 3.3 allow us to reduce to the case where the
degrees of the generators have the same degree.

ForR = k[x1, x2, . . . , xr] and I = 〈f1, . . . , fm〉monomial the relations on the generators
of I are generated, due to the natural multi-grading, by relations of the form mfi −
nfj where m,n ∈ R are monomials. Hence, a presentation matrix of I can be given
with exactly two non-zero monomial entries in each column. We call a determinant of
an n × n matrix A = (aij) a simple determinant if at most one term of det(A) =∑

σ∈Sn
sgn(σ)a1σ(1) · · · anσ(n) is non-zero.

Proposition 3.2. Let R = k[x1, x2, . . . , xr]. Let φ be a m× (m− 1) matrix with exactly
two non-zero monomial entries in each column and assume the maximal minors of φ are
all non-zero. Then each minor of φ is a simple determinant or zero.

Proof. We use induction on the size of φ. If m = 2, the minors of φ are the two
monomial entries of φ and hence are simple determinants. Assume the statement for m.
Let φ be a (m+1)×m matrix satisfying the hypotheses of the proposition. Each column
has exactly two non-zero entries so there are exactly 2m non-zero entries in φ. Since the
maximal minors are all non-zero, every row has at least one non-zero element in it and
therefore there must be at least one row with exactly one non-zero entry. Choose a row
with exactly one non-zero entry and denote that entry M . Set N to be the other non-zero
entry in that column. Reorder the rows and columns so that φ looks like

φ =


M 0 0 · · · 0
N
0 ψ
...
0

 ,
where ψ is the m×(m−1) matrix obtained by removing the first row and column from φ.
Every column of ψ must have exactly two non-zero entries since otherwise we contradict
this fact for φ. The entries of ψ are monomial since ψ is a submatrix of φ. Suppose a
maximal minor of ψ is zero. Let i denote the row that was removed to form the maximal
minor that is zero, and let δi denote this minor. The maximal minor of φ when i+1st row
is removed is M times δi. Therefore the i+ 1st maximal minor of φ is Mδi = M · 0 = 0,
which is a contradiction. Hence ψ satisfies the induction hypotheses and therefore we can
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assume all of the minors of ψ are simple determinants or zero. Consider the minors of
φ. If a square submatrix of φ is also a submatrix of ψ then the determinant is simple or
zero. Suppose the submatrix is not contained in ψ. If the submatrix does not contain M
or N then, since it is not contained in ψ, it must have a row or column of zeros and hence
the determinant is zero. Suppose the submatrix includes M (and may or may not include
N), if the determinant is expanded along the top row of the submatrix the determinant
is M times the determinant of a submatrix contained in ψ and is hence zero or simple.
Last, assume N is in the submatrix, but M is not. In this case the submatrix of φ is a
submatrix of 

N
0 ψ
...
0

 .
Expanding the determinant along the first column, the determinant is N times the
determinant of a submatrix of ψ and hence is zero or simple. 2

This proposition is particularly interesting because it yields the following corollary that
is very useful for the proof of the main theorem and maybe useful for other problems.

Corollary 3.3. Let R = k[x1, x2, . . . , xr] and I ⊆ R be a codimension two monomial
ideal such that R/I is Cohen–Macaulay. Then there exists a monomial ideal J such that√
J =

√
I, R/J is Cohen–Macaulay, J is generically a complete intersection and the

generators of J are all of the same degree.

Proof. The ring R/
√
I is Cohen–Macaulay by Proposition 3.1 and if such a J exists

for
√
I then it satisfies the properties for I as well. Therefore replacing I with

√
I, we

can assume I is square-free and generically a complete intersection.
Let f1, . . . , fm be a minimal generating set for I. Let φ denote a presentation matrix

for I from the Hilbert–Burch theorem such that there are exactly two non-zero entries
in each column. Proposition 3.2 allows us to “homogenize” φ in the following way. Fix a
column of φ and compare the two non-zero entries in that column. Raise the exponents in
the monomial of smaller degree until the two monomials have the same degree. Do this for
all of the columns of φ. Call this new matrix h(φ) (see example 4.3). The non-zero entries
in each column of h(φ) are the same degree, by construction, so the maximal minors of
h(φ) all have the same degree. By Proposition 3.2, each minor of both φ and h(φ) is a
simple determinant or zero. This implies the maximal minors of h(φ) are monomial. By
construction, a minor of φ is non-zero if and only if the corresponding minor of h(φ) is
non-zero. The construction of h(φ) and the fact that the non-zero minors of each matrix
are simple, implies that if α is a non-zero minor of φ and β is the corresponding minor
of h(φ) then α divides β and for N � 0, β divides αN . Hence

In(φ) =
√
In(h(φ)) for 1 ≤ n ≤ m− 1. (3.2)

This implies codim(Im−1(h(φ))) = 2 and hence R/Im−1(h(φ)) is Cohen–Macaulay by
the Hilbert–Burch Theorem, since R is a regular ring.

In the context of this corollary codim(Im−2(φ)) ≥ 3 if and only if I is generically a
complete intersection. Since I is square-free and monomial, I is generically a complete
intersection and hence codim(Im−2(φ)) ≥ 3. By equation (3.2) Im−2(φ) =

√
Im−2(h(φ)).
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Therefore codim(Im−2(h(φ))) ≥ 3 and Im−1(h(φ)) is generically a complete intersec-
tion. 2

We now give the proof of Theorem 0.1 and restate the theorem for the reader’s conve-
nience.

Theorem 0.1. Let R = k[x1, x2, . . . , xr] be a polynomial ring over a field k and I an
ideal of R. Let > be a monomial order that respects total degree. Assume I is a monomial
ideal of codimension 2 and R/I is Cohen–Macaulay. Then there exists an extension field
K of k and a prime ideal P contained in the polynomial ring S = K[x1, x2, . . . , xr] such
that

√
in(P ) =

√
IS.

Proof. By Corollary 3.3 there exists a monomial ideal J that is generically a complete
intersection, the generators are all the same degree,

√
J =

√
I and R/J is Cohen–

Macaulay. If we prove the theorem for J we get a prime ideal P such that
√
in(P ) =√

JS =
√
IS as desired.

Replace I with J and let φ denote the presentation matrix for J constructed from
a presentation matrix of I as in Corollary 3.3. Let m denote the number of rows of φ
and fi, 1 ≤ i ≤ m be the signed minors of φ. By the Hilbert–Burch theorem, f1, . . . , fm

generate J and by Corollary 3.3 they are the same degree. Denote that degree d. Also,
order the generators so that f1 > f2 > · · · > fm.

By Proposition 1.2 L2(Im−1(φ)) is a prime ideal. Set Y = {Y11, . . . , Y2m+2}, Z =
{Z11, . . . , Z2m−1} and Q = R[Y, Z] with deg(Yij) = 1 and deg(Zij) = ej . Give Q the
inverse block order with respect to {Y, Z} and any order on the new variables. Set

Φ =


Y11 Y21

φ
...

...
Y1m Y2m

Z11 · · · Z1m−1 Y1m+1 Y2m+1

Z21 · · · Z2m−1 Y1m+2 Y2m+2

 . (3.3)

The matrix Φ is a presentation matrix for L2(Im−1(φ)). Let δi, 1 ≤ i ≤ m + 2 denote
the signed minor of Φ formed when the ith row is removed. Then,

δ1 = f1(Y1m+2Y2m+1 − Y1m+1Y2m+2) + β1

...
δm = fm(Y1m+2Y2m+1 − Y1m+1Y2m+2) + βm

δm+1 = f1(Y11Y2m+2 − Y12Y1m+2) + f2(Y12Y2m+2 − Y22Y1m+2) + · · ·+
+ fm(Y1mY2m+2 − Y2mY1m+2) + βm+1

δm+2 = f1(Y11Y2m+1 − Y21Y1m+1) + f2(Y12Y2m+1 − Y22Y1m+1) + · · ·+
+ fm(Y1mY2m+1 − Y2mY1m+1) + βm+2

where degx(βi) < d, 1 ≤ i ≤ m + 2. These form a Gröbner basis for L2(Im−1(φ)), by
Theorem 2.2.

Let g be a polynomial in L2(Im−1(φ))∩ k[Y, Z] and assume g 6= 0. Then the initial term
of g is in in(L2(Im−1(φ))) ∩ k[Y, Z]. Since in(g) is in in(L2(Im−1(φ))) and δ1, . . . , δm+2

form a Gröbner basis for L2(Im−1(φ)) it must be true that in(δi) divides in(g) for
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some 1 ≤ i ≤ m + 2. However, the initial terms of δ1, . . . , δm+2 are of the form fiM
for some 1 ≤ i ≤ m, where M is a degree two monomial in k[Y ], since we are using
the inverse block order with respect to {Y, Z} and degx(βi) < d for each 1 ≤ i ≤
m + 2. Thus the initial terms of δ1, . . . , δm+2 are not in k[Y, Z] and therefore cannot
divide in(g). Hence L2(Im−1(φ)) ∩ k[Y, Z] = 0. Let W be the multiplicatively closed set
k[Y,Z] \ {0}. Hence L2(Im−1(φ)) is disjoint from W and the image of L2(Im−1(φ)) in
QW = k(Y, Z)[x1, . . . , xr] is a prime ideal.

Denote the images of δ1, . . . , δm+2 in S = k(Y, Z)[x1, . . . , xr] by δ̃1, . . . , δ̃m+2 and let
lm(δ̃i) denote the leading monomial of δ̃i, that is the leading term without the coefficient.
The images δ̃1, . . . , δ̃m+2 are a Gröbner basis for the image of L2(Im−1(φ)) in S because
Q has the inverse block order with respect to {Y, Z} (Becker and Weispfenning, 1993,
Lemma 8.93). Moreover, δ̃i, 1 ≤ i ≤ m + 2 in S is δi with the part of each term that is
a monomial in k[Y, Z] considered to be part of the coefficient. We are using the inverse
block order and degx(βi) < deg(fi) and therefore, lm(δ̃i) = fi, for 1 ≤ i ≤ m and
lm(δ̃j) = f1 for j = m+ 1,m+ 2. Hence in(L2(Im−1(φ))S) = 〈f1, f2, . . . , fn〉S = IS. 2

4. Examples

The ideal I = 〈bc, bd, acd〉 is a nice test case for many of the theorems and assumptions.
This ideal is one of the simplest examples that illustrates the necessity of each of the
steps we have taken. We will use this ideal for the first and third examples. The first
example illustrates the need for the assumption from Theorem 2.2 that the generating
set have elements of the same degree, as well as the necessity of one of the radicals.
The second example illustrates the necessity of the other radical. For the third example
we use I to illustrate the entire algorithm for constructing the desired prime ideal. The
fourth example looks at the necessity of the assumption that the quotient ring be Cohen–
Macaulay.

Example 4.1. This example illustrates what happens if we drop the assumption in
Theorem 2.2 that the generators of I have the same degree. This example also illustrates
why we need one of the radicals. Let I = 〈bc, bd, acd〉. Using Macaulay2, written by
Grayson and Stillman (2001), we computed the minors of the matrix given in Theorem 2.2
for I:

δ1 = acY13Z11 − bcY14 + bY12Z11 + cY13Z12

δ2 = bdY14 + bY11Z11 − dY13Z12

δ3 = acdY14 + acY11Z11 + cY11Z12 + dY12Z12

δ4 = acdY13 + bcY11 + bdY12.

(4.1)

The elements δ1, δ3 and δ4 are not homogeneous and the bold face term is the one
we would like to have as the initial term of δ1. Set deg(Y13) = deg(Z11) = 1 and
deg(Y11) = deg(Y12) = deg(Y21) = deg(Y22) = deg(Y14) = deg(Z12) = 2. The polyno-
mials in (4.1) are now quasi-homogeneous, meaning they are homogeneous with respect
to the weights. However, the initial term is still not the desired one. If we now use the
reverse lexicographic order with Y14 as the largest of the new variables, δ1 now has initial
term −bcY14. For any ideal where the generators are not all of the same degree we can
weight the new variables so that the second generic link is quasi-homogeneous and use
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a particular reverse lexicographic order to get a statement like Theorem 2.2 and Corol-
lary 2.3 for ideals where the generators are not the same degree. However, in the proof
of Theorem 0.1, after constructing the second generic link of I, we invert all of the new
variables to get an ideal in K[x1, . . . , xr] where K is an extension field of k. After invert-
ing the new variables the leading monomial of the image of δ1 is ac not bc as needed. This
happens regardless of the monomial order and the weights on the new variables. Also,
one might suggest sending the new variables to elements in k so that the problematic
terms go to zero, however, this process will not necessarily preserve the property that the
ideal is prime. Hence in(P ) 6= IS if we do not reduce to the case where the generators
all have the same degree. Therefore we raise the degree of b in the presentation matrix
using Proposition 3.2 and get

√
in(P ) = IS.

Example 4.2. Let I = 〈x2, xy, y2〉, then I is codimension two and the quotient ring
k[x, y]/I is Cohen–Macaulay, but I is not generically a complete intersection. Therefore
in order for the second generic link to be a prime ideal we must pass to the radical of
I, 〈x, y〉. Since this ideal is square-free and the generators are of the same degree, the
algorithm will yield a prime ideal P with initial ideal 〈x, y〉 and hence in(P ) =

√
I.

Example 4.3. Using the ideal I = 〈bc, bd, acd〉 we work through the entire algorithm for
constructing the desired prime ideal. In this example we are able to take the process one
step further, as we are able to specialize the new variables to elements in k and verify
that the image is indeed a prime ideal. In every example we have computed, specializing
is possible, however, as we already mentioned, the fact that we can always specialize and
preserve both the Gröbner basis and the property of being prime is open.

The following proposition is one way to verify that the ideal we construct is a prime
ideal.

Proposition 4.4. (Vasconcelos, 1998, Proposition 3.5.6) Suppose A = k[z,x]/I
is a Cohen–Macaulay, equidimensional ring. Let B = k[z] be a Noether normalization of
A. The degree of A over B is the dimension of the vector space

l = dimk(k[z,x]/(I, z)).

If there exists a subring

B ↪→ S = k[z, U ]/〈f(z, U)〉 ↪→ A,

where f(z, U) is an irreducible polynomial of degree l, then A is an integral domain.

First, compute a presentation matrix for I = 〈bc, bd, acd〉 ⊆ R = k[a, b, c, d]. This ideal
is small enough we can find a presentation by hand, or using Macaulay2. A matrix is

φ =

−d 0
c −ac
0 b

 . (4.2)

Since the generators of I are not all of the same degree we use Corollary 3.3 and form
the following matrix:

h(φ) =

−d 0
c −ac
0 b2

 (4.3)
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where b is squared in the second column so that the non-zero entries in each column of φ
now have the same degree. The maximal minors of h(φ) are b2c, b2d, acd, thus verifying
that

√
I2(h(φ)) = I2(φ). The ideal generated by the maximal minors of h(φ) is still

generically a complete intersection by Corollary 3.3 and hence the second generic link of
h(φ) is a prime ideal. Generators for the second generic link are the maximal minors of
the following matrix:

Φ =


−d 0 Y11 Y21

c −ac Y12 Y22

0 b2 Y13 Y23

Z11 Z12 Y14 Y24

Z21 Z22 Y15 Y25

 .

Corollary 2.3 implies the maximal minors of this matrix form a Gröbner basis for L2(I).
We can use Macaulay2 to verify this. Using Macaulay2 generate a random sequence
of numbers from the base field. For this example we generated a random sequence of
rational numbers. Specialize the new variables Y11, . . . , Y25, Z11, . . . , Z22 to the following
numbers, respectively:

−9
5
,

3
10
,

−1
2
,

7
5
, −1, −7, 6, 7, 1,

−1
7
,

−1
4
,

2
5
, 1,

3
2
.

The image of three of the elements in the Gröbner basis have acd as their leading mono-
mial. Therefore, the Gröbner basis reduces to include only one of these generators and the
Gröbner basis simplifies to three elements. The following three elements form a reduced
Gröbner basis for the image of L2(I) after specializing the variables added when the
second generic link was formed.

g1 = acd +
807
−440

ac+
3777
−1375

c+
12123
−5500

d− 51429
220000

g2 = b2d− 807
440

b2 − 139
22

d+
27993
−22000

g3 = b2c +
137
88

b2 +
103
−22

ac+
139
−22

c− 10633
−22000

.

Homogenize with respect to t. Set S = k[a, b, c, d, t] and Gi = gi(a
t ,

b
t ,

c
t )t

3 for 1 ≤
i ≤ 3. The ideal 〈g1, g2, g3〉 is a prime ideal if and only if the ideal 〈G1, G2, G3〉 is a
prime ideal. Let J = 〈G1, G2, G3〉. The degree of S/J is 7. This can be found either
by using Macaulay2 or by computing a Noether normalization of S/J , say k[z] and
computing dimk S/〈J, z〉, utilizing Proposition 4.4. Reorder the variables in S so that
t > a > b > c > d and recompute the Gröbner basis using an elimination order for t.
There is one polynomial in the Gröbner basis which is contained in k[a, b, c, d]. Denote
this polynomial f(a, b, c, d). A Noether normalization of S/J is k[a, c, b+ d]. Hence

k[a, c, b+ d] ↪→ k[a, b, c, d]/〈f(a, b, c, d)〉 = k[a, b, c, d, t]/J ∩ k[a, b, c, d] ↪→ S/J.

The polynomial we found has degree 7. Using Maple we checked that it is irreducible
and hence J is a prime ideal.

Example 4.5. We consider the necessity of the quotient ring being Cohen–Macaulay.
Since the two ideals in this example are not perfect we use the definition of generic link
to compute the ideals.
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Let R = k[a, b, c, d, e] and I = (ad, ace, bcd, bce) = (a, b) ∩ (a, c) ∩ (c, d) ∩ (d, e).
This ideal is pure and strongly connected which are the necessary conditions given by
Kalkbrenner and Sturmfels (1995). Localizing at P = (a, b, d, e), a codimension 2 prime
ideal in R/I, RP /IP is not depth 2 so R/I is not S2. The leading terms of a minimal
generating set for L2(I) are given below.

b2cY1,3Z1,4Z2,3 −a2eY1,2Z1,4Z2,3

abcY1,3Z1,4Z2,3 − a2Y1,2Z1,4Z2,3

a2eY 2
1,2Z1,4Z2,3 − abcY1,2Z1,4Z2,3

−a2bY1,2Z1,4Z2,3 a2Y1,2Z
2
1,4Z

2
2,3

abcY1,3Y2,2Z1,3 abcY1,3Y2,2Z2,3.

The portion of each of these monomials that is in k[a, b, c, d, e] is not in I. Moreover, if
we carefully check each generator we see that the two elements in the Gröbner basis with
the boldface monomials as leading terms contain no term whose a, b, c, d, e part is in I.
Any Gröbner basis will preserve this bad structure.

The case when I is S2 but not Cohen–Macaulay is both more and less encouraging. The
second generic link in this case does not give a counter example, but we cannot compute
it. Every example we have tried is too computationally complex for the computer we
use. Let R = k[a, b, c, d, e] and I = (abd, bde, ace, acd, bce) = (a, b)∩ (a, c)∩ (c, d)∩ (d, e).
The ideal I is one such example. The leading terms for a minimal generating set for the
first generic link are not promising, but the first generic link was not promising for the
Cohen–Macaulay case either. There is other evidence in a paper by Hochster and Huneke
(1994) that suggests S2 may be the desired necessary condition.
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