A New Proof of Hilbert's Theorem on Homogeneous Functions *

Paul Gordan in Erlangen

Presented in the meeting of 28 October 1899.

§1 Ordering of Products of Variables

The products P of n variables

$$x_1, x_2, \ldots, x_n$$

may be ordered such that for two products

$$P_1 = x_1^{h_1} x_2^{h_2} \cdots x_n^{h_n}, \qquad P_2 = x_1^{\kappa_1} x_2^{\kappa_2} \cdots x_n^{\kappa_n},$$

 P_1 precedes P_2 if there exists an index σ for which

$$h_1 \leq \kappa_1, \quad h_2 \leq \kappa_2, \quad \dots \quad h_{\sigma-1} \leq \kappa_{\sigma-1}, \quad h_\sigma < \kappa_\sigma.$$

 P_1 is called *simpler* than P_2 . We obtain products P, in which the exponent of x_{σ} is a given integer C, by multiplying x_{σ}^C by products consisting only of the remaining n-1 variables x.

§2 A Lemma

If each of the products given by

$$P = x_1^{h_1} x_2^{h_2} \cdots x_n^{h_n}, \qquad P_{\varrho} = x_1^{h_{\varrho,1}} x_2^{h_{\varrho,2}} \cdots x_n^{h_{\varrho,n}} \quad (\varrho = 1, 2, 3, \ldots)$$

has no other as a factor, then the number of them is finite.

Proof. I assume that the theorem holds for products of n-1 variables, hence that the number of products P_{ϱ} , for which the exponent of x_{σ} is the integer C, is finite.

Every P_{ϱ} has at least one exponent which satisfies the inequality $h_{\varrho,\sigma} < h_{\sigma}$. I assign to the product P_{ϱ} the first of these exponents h_{σ} and denote this exponent by $C_{\varrho,\sigma}$. The number of all possible $C_{\varrho,\sigma}$ is $h_1 + h_2 + \ldots + h_n$, thus finite. There are a finite number of P_{ϱ} corresponding to each $C_{\varrho,\sigma}$, so the number of P_{σ} is finite.

^{*}Neuer Beweis des Hilbertschen Satzes über homogene Funktionen, Nachr. der Königl. Ges. der Wiss. zu Göttingen **3** (1899), 240-242. Translation by Michael Abramson.

§3 Homogeneous Functions

Homogeneous functions f of x_1, x_2, \ldots, x_n are polynomials of points P and can be written in the form

$$f = aP + \psi$$

where a is a nonzero constant. I order the products in f so that the products in ψ are simpler than the lead term P.

Given two functions

$$f_1 = a_1 P_1 + \psi_1, \qquad f_2 = a_2 P_2 + \psi_2,$$

if P_2 is a factor of P_1 , meaning

$$P_1 = RP_2,$$

then the polynomial

$$f_1 - \frac{a_1}{a_2} f_2 R = \psi_1 - \frac{a_1}{a_2} R \psi_2$$

has a simpler lead term than f_1 .

§4 The Theorem of Hilbert¹

Let

$$F_1, F_2, \ldots$$

be homogeneous functions. I order them by their lead terms and, with a suitable choice of functions $A_1, A_2, \ldots, A_{\sigma-1}$, form those homogeneous polynomials

$$f_{\varrho} = A_1 F_1 + A_2 F_2 + \ldots + A_{\varrho-1} F_{\varrho-1} + F_{\varrho}$$

which have the simplest lead terms. This must be possible, since a sequence of products, in which every subsequent term is simpler than the preceding one, must terminate eventually.

Since by §3 these simplest lead terms are not factors of one another, the number of them is finite by §2. It corresponds to those special F_{ϱ} whose f_{ϱ} do not vanish.

Every given F is representable as polynomials of these special F, *i.e.* they are linear combinations of the special F, if we choose suitable functions in the variables x_1, \ldots, x_n for coefficients in these linear expressions.

Munich, September 1899.

¹D. Hilbert, Über die Theorie der algebraischen Formen, Math. Ann. **36** (1890), 474.