A New Proof of Hilbert's Theorem on Homogeneous Functions *

Paul Gordan in Erlangen
Presented in the meeting of 28 October 1899.

§1 Ordering of Products of Variables

The products P of n variables

$$
x_{1}, x_{2}, \ldots, x_{n}
$$

may be ordered such that for two products

$$
P_{1}=x_{1}^{h_{1}} x_{2}^{h_{2}} \cdots x_{n}^{h_{n}}, \quad P_{2}=x_{1}^{\kappa_{1}} x_{2}^{\kappa_{2}} \cdots x_{n}^{\kappa_{n}}
$$

P_{1} precedes P_{2} if there exists an index σ for which

$$
h_{1} \leq \kappa_{1}, \quad h_{2} \leq \kappa_{2}, \quad \ldots \quad h_{\sigma-1} \leq \kappa_{\sigma-1}, \quad h_{\sigma}<\kappa_{\sigma} .
$$

P_{1} is called simpler than P_{2}. We obtain products P, in which the exponent of x_{σ} is a given integer C, by multiplying x_{σ}^{C} by products consisting only of the remaining $n-1$ variables x.

§2 A Lemma

If each of the products given by

$$
P=x_{1}^{h_{1}} x_{2}^{h_{2}} \cdots x_{n}^{h_{n}}, \quad P_{\varrho}=x_{1}^{h_{\varrho, 1}} x_{2}^{h_{Q, 2}} \cdots x_{n}^{h_{\varrho, n}} \quad(\varrho=1,2,3, \ldots)
$$

has no other as a factor, then the number of them is finite.
Proof. I assume that the theorem holds for products of $n-1$ variables, hence that the number of products P_{ϱ}, for which the exponent of x_{σ} is the integer C, is finite.

Every P_{ϱ} has at least one exponent which satisfies the inequality $h_{\varrho, \sigma}<h_{\sigma}$. I assign to the product P_{ϱ} the first of these exponents h_{σ} and denote this exponent by $C_{\varrho, \sigma}$. The number of all possible $C_{\varrho, \sigma}$ is $h_{1}+h_{2}+\ldots+h_{n}$, thus finite. There are a finite number of P_{ϱ} corresponding to each $C_{\varrho, \sigma}$, so the number of P_{σ} is finite.

[^0]
§3 Homogeneous Functions

Homogeneous functions f of $x_{1}, x_{2}, \ldots, x_{n}$ are polynomials of points P and can be written in the form

$$
f=a P+\psi
$$

where a is a nonzero constant. I order the products in f so that the products in ψ are simpler than the lead term P.

Given two functions

$$
f_{1}=a_{1} P_{1}+\psi_{1}, \quad f_{2}=a_{2} P_{2}+\psi_{2}
$$

if P_{2} is a factor of P_{1}, meaning

$$
P_{1}=R P_{2},
$$

then the polynomial

$$
f_{1}-\frac{a_{1}}{a_{2}} f_{2} R=\psi_{1}-\frac{a_{1}}{a_{2}} R \psi_{2}
$$

has a simpler lead term than f_{1}.

$\S 4$ The Theorem of Hilbert ${ }^{1}$

Let

$$
F_{1}, F_{2}, \ldots
$$

be homogeneous functions. I order them by their lead terms and, with a suitable choice of functions $A_{1}, A_{2}, \ldots, A_{\sigma-1}$, form those homogeneous polynomials

$$
f_{\varrho}=A_{1} F_{1}+A_{2} F_{2}+\ldots+A_{\varrho-1} F_{\varrho-1}+F_{\varrho}
$$

which have the simplest lead terms. This must be possible, since a sequence of products, in which every subsequent term is simpler than the preceding one, must terminate eventually.

Since by $\S 3$ these simplest lead terms are not factors of one another, the number of them is finite by $\S 2$. It corresponds to those special F_{ϱ} whose f_{ϱ} do not vanish.

Every given F is representable as polynomials of these special F, i.e. they are linear combinations of the special F, if we choose suitable functions in the variables x_{1}, \ldots, x_{n} for coefficients in these linear expressions.

Munich, September 1899.

[^1]
[^0]: *Neuer Beweis des Hilbertschen Satzes über homogene Funktionen, Nachr. der Königl. Ges. der Wiss. zu Göttingen 3 (1899), 240-242. Translation by Michael Abramson.

[^1]: ${ }^{1}$ D. Hilbert, Über die Theorie der algebraischen Formen, Math. Ann. 36 (1890), 474.

