Al ROCAL. F

Solving Algebraic Equations via, Buchberger’s Algorithm

SR, Crapor

Department of Applied Mathematics
University of Waterloo
Waterloo, Ontario
Canada NgL 301

ABSTRACT

It is demonstrated that, when using Buchberger’s Algorithm with the purely lexi-
cographic ordering of terms, 1t is not generally feasible to inter-reduce basis polynomials
during the progress of the algorithm. A heuristic is obtained {for polynomials over the
rationals) which improves the efficiency of the reduction sub-algorithm, when the basis
is not inter-reduced. Some improvements are made to a recent scheme for combining
Buchberger’s Algorithm with multivariate factorization. We present a hybrid variant of
this scheme, in which extrandeous sub-problems are detected outside of the
texicographic/climination algorithm. Through this approach, the reduced solusion bases
for dense systems (previously impossible in the lexicographic ordering) may be found.

1. Introduction

For a system of algebraic equations having finitely many solutions, the Grébner basis with respect,
to the graduated (or total degree) ordering of terms can be used to construct a set of univariate polynomi-
als which give a finite inclusion of these solutions. This is done (when the structure of the hasis indicates
that there do exist only finitely many solutions) without an explicit elimination process. (See [3] for the
details.) Hence, this procedure is often preferable to the triangularization provided by the lexicographical
ordering of terms, which is sensitive to permutations of the variable ordering and can produce much more

complex calculations.

Nonetlheless, it is clear that this fatter method cannot be lgnored, since not all systems of interest
have finitely many solutions. Moreover, there exist systems {e.g. those of Trinks, Hairer, Butcher found
in 1]} for which the Grébner basis is actually easier to compute with the lexicographic ordering (and a
suitably chosen ordering of variables) because of special structure. F inally, there are systems {e.g. that of
Rose, in {1j} for whick computing the univariate polynomials {from the total degree basis] may be difficult
because of the structure of the solution manifold - even though the basis itsell is relatively easy to com-
pute.

In this paper we discuss ways to improve the viability of using Buchberger’s Algorithm with the lex-
icographic ordering of terms to solve algebraic equations. Consider a set F of polynomials in
Kz, .., @,], where K is a field and Ty > o >y, and let p, py, . be any other such polynomials . We

denote the leading monomial of p with respect to the texicographic ordering by M(p). We then denote

This research was supported by the Natural Sciences and Engineering Research Couneil of Canada under Grant A8967,

the corresponding coefficient and term by heoeff(p) and hterm(p), respectively, and define

M(py, ..., pm) = lem(M(p,), ..., M(p,,)) , (1.1)

Spoly(py, pa) = M(py, py) [MFE;]) - M?;z)]'

Finally, we say that p is in normal form modulo F if no headterm of any polynomial in F’ divides any

(1.2)

monomial in p. Then the simplest variant of Buchberger’s Algorithm (including the improvements of 2])
to compute G, the Grobner basis of F, is as follows.

Algorithm 1 ([2]):
G« F ; k + length(F) ; B «— {[i,j] |1<i<j<k} ;
while B # g do
[i,j] «— Select_Pair(B, G) ; B + B - {[i,j]}
if Criteria(fi,j], B, G) then
h «— NormalForm(Spoly(G;, G,), G)
if h # 0 then
(cutpoint 1)
ke—k+tl; G+ GU {h}; B—BuU {ik |1<i<k }
return(Fully_Reduce(G))

The pair-selection procedure and criteria for avoiding zero-reductions are descibed in (3]. Also described
is the procedure Fully_Reduce, which transforms the basis so that each polynomial is fully reduced

modulo the others. This procedure could be invoked after each new polynomial is created; this results in

another variant, which we refer to as Algorithm 2 in the sequel. (See [3], p. 6.13 .) In the next section it J &

is seen that there is a considerable advantage to the approach of Algorithm 1, both with respect to the
complexity of subsequent S-polynomials, and the extra freedom allowed during their reduction. Following |
this, we discuss some improvements to the scheme given in [7], which combines Algorithm 1 with mul-
tivariate factorization at cutpoint 1 (by making recursive calls to the scheme when "A" factors). An
example is given of an adaptation of this scheme to a simple yet difficult class of problems (namely, dense

systems of low degree).

2. Tuning the Reduction Algorithm

Clearly the cost of Algorithm 1 is dominated by the steps which perform polynomial arithmetic,
namely the forming and reduction of S-polynomials. Hence it is easily seen why criteria that detect zero-
reductions a prior: are so important. Consider an ideal basis G — (91, -, 9] of polynomials in an
ordered set of variables, and let p be another polynomial in these indeterminates. We say that p reduces
modulo G if the set

R, = {f €G such that hterm(f) | hterm(p) }

2)

is non-empty; if p reduces (to p'), we then write

p >p'=p—[Mp)/My)g, forgeR,

(although it is better in practice to avoid explicit fractions if working over a fraction field; see 6]). If we
have R, = R, = .. =g, where p, = p - M(p) and p;41 = p; - M(p;), then p is in normal form modulo
G'. Without loss of generality, let us consider only R,. The degree of freedom offered when R, has many
elements poses a problem: how should we select a particular g € R, 7 There are two obvious possibilities:
we can either choose g such that hterm(g) is maximal among the headterms in R,, or choose g such that
it is minimal. If we were using the total degree ordering, the sensible choice would appear to be the latter
strategy. This follows from the fact that the total degree of g gives a bound on the number of terms n g,
which in turn bounds the number of term operations in the reduction. However, using the lexicographic

ordering, there are several reasons why this strategy may perform poorly in practice. Consider, for exam-

ple, the reduction of p = 2%%?2 4 %% + - + 1 with respect to either
g1=cusyz + < ety oo +ewet + 0 ey, or
92=021f’-‘+"'+02295+"‘+623211+"'+324-

If we use g, the result may be more complex since the correction term must be larger, and since the
degree of g, in the subordinate variables Y, z 1s greater. Therefore we would continue the reduction pro-
cess with a more complicated object. In practice, the basis polynomials in G used for reduction are them-
selves the products of a reduction/elimination process; so, comparisons such as this are quite realistic.
Moreover, there is no reason why gy should have fewer terms than g1 (and in fact, it will often have
more). Finally, since go must have appeared at a later point in the algorithm, and since the coefficient

growth during reduction is linear, the coefficents in g2 may be much larger than those of g,.

It is also clear that even though Spoly(p, g91) and Spoly(p, gs) are equivalent under the "normal
selection strategy" given in (3], we should choose the former. Hence, variants of Buchberger’s Algorithm
which discard "redundant” polynomials (such as g;) are at a disadvantage. When several S-polynomial
pairs (equivalent under the normal selection strategy) exist, a general strategy to choose from among
them should somehow take into account the degrees of the polynomials in the pair. But since the situa-
tion described above is common in practice, the S-polynomial formed from the earliest pair created is
almost always the optimal choice. In what follows, we use this simple approach implicitly. Note, how-

ever, that this degree of freedom is lost in Algorithm 2.

Let us now examine more closely the reduction process in the case of polynomials over the rationals

(ie., all coefficient arithmetic is done over). Suppose we perform a reduction

p > heoeff(g;)p — hcoeff(p)%f’nf—(%m, 9 R, (21)

where
length(heoeff(g;)) = N', length(|lg; l) = N, g; contains v terms,

length(hcoeff(p)) = P!, length(|lp |l.) = P, p contains terms.
———

Further suppose that the times required to multiply and add integers of lengths AJ » N are (¢, MN) and
cg(f\c(+N), respectively, and that the time required to multiply two terms in 5 variables is bounded by
(ean). (Note that, practically speaking, the degrees of ail monoemials should be reasonably small.) Then the
total cost of the reduction (2.1) is bounded by
C=m{c,N'P} 4 v (¢;P'N) + vegn + ¢y (V- T—2}(2NP) (2.2)
Some simple experiments reveal that for the Maple system (I5]) we have €1 = 1 cgand e << ¢y, Henee,
noting that N'< and FP<P, we have
C o~ 2e0P(r — 2 4 v} N . (2.3)

If polynomial p is in fact an S-polynomia} (formed from elements of &), then 7 ~ O(v). We see that the

reduction cost depends more strongly on the size of the coefficients than on th number of terms. A

heuristic reduction strategy which takes this iniﬁémﬁ/écéﬁ-ﬁﬁi“émgi‘;é“"i'élléiﬁii'?giwé.é-snéciaLe with each basis poly-

nomial & "complexity" value, say

compleaity(f) = length(||f e (# of terms in i, (2.4)

and sort G in order of ascending complexity, Then for p we may choose g € 1, such that its complexity
is minimal.

Let us now compare reduction strategies (in the Maple Ianguage) as follows. Consider first Algo-
rithm 1 (which keeps all polynomials in original form}, and have it reduce with respect to a hasis whicly is

sorted in descendin_g__igxicogra,phic order, in ascending lexicographic order, or in ascending order by com-
IR i S A WP —— A .

plexity (2&) Then, to demonstrate thé"'i'mporta.nce of using the "redundant" polynomials at least in form-
ing S-polynomials, consider also Algorithm 2. This has been implemented so that Pully_Reduce will
reduce first the smallest (Iexicographica!ly) of the polynomials which can be reduced (i.c., like the normal
selection strategy for S—polynomials), and to reduce using our heuristic strategy. The following timings
(and those in the sequel) were computed using Maple Version 4.0 on a VAX/785 processor. The test
problems are described in the Appendix.

-5- /74 (/
| 3

Algorithm 1
Problem Algorithm 2
ascending | descending ascending
basis basis by complexity
1 time (sec) 570 350 298 467
storage (Kb) 1164 1172 1106 1270
2 time 646 632 657 646
(Butcher) storage 1221 1222 1196 1336
{
3(a) time 5622 2495 1949 > 136000
i 7
(Fee (a)) storage 1786 1442 1474 > 17000 &

storage 2458 3202 2565 >17000

5 time 10333 13753 7672 >168000 e

Trinks storage 2200 2507 2392 >17000 A
Frrs) | =0 [

6 time 19490 43448 18099 > 200000
(Katsura) storage 2556 2744 2556 > 14000
3(b) time 150008 182691 90688 272750
(Fee (b)) storage 4170 7112 3580 14065
7 time 119770 207602 96736 72011
(Rose) storage 7600 9636 7422 8700
8 time >72000 >90000 >83000 >92000
storage >17000 >17000 >17000 >17000

One reason for the superiority of the heuristic approach has not yet been mentioned: if we use for
reduction a g; with small head coefficient, the bound on the coefficient growth for the step (2.1) is also
small. Hence, the [significant] cost of removing the integer content after the reduction should also be
minimized. Typically, the reduction strategies based on headterms perform well when their correlation

with the heuristic is high.

3. Using Multivariate Factorization

Despite the improvement possible with a heuristic reduction strategy, Algorithm 1 still requires long
running times for (apparently) modest problems. This is particularly true when the initial extent of tri-
angularization is small. For example, Problem 2 is relatively easy because, in a suitably chosen ordering
of variables, the input polynomials are close to full separation of variables. By comparison, Problem 8

(with fewer variables) is difficult because it is more homogeneous in structure.

4(a) time 7675 12000 5698 >186000 | ("~ A Q/i
A

&

/
r
)

Fortunately, the intermediate results produced by the algorithm permit multivariate factorization
surprizingly often. In {7], we presented an efficent recursive variant of Algorithm 1 to exploit this fact.
This scheme (which we henceforth refer to as Algorithm 3) displayed a vast improvement in efficency
compared to Algorithm 1, when both used a lexicographically descending basis in the reduction sub-
algorithm. We now make some further improvements (which, implicitly, inciude use of $he new reduction
scheme}, and give an example of how to exploit the extra {lexibility offered by this approach. (The struc-

ture of Algorithm 3 will become clear when we present this modification.)

The results of the previous section show why Algorithm 1 was chosen as the framework of the new
scheme. However, Algorithm 2 might also perform well 1f combined with a heuristic to determine when
(and to what extent) the entire basis should be reduced. One obvious special case is the appearance of a
univariate polynomial. When factoring is introduced, it is commeon for one or more univariate polynomi-
als (usually in the base variable "z,") to appear - at any point in the algorithm - when a factorization
succeeds. This is so even for systems with infinitely many solutions, since these often give rise to sub-

probiems with {initely many solutions. We note the following (obvious) fact:

Lemma 1: Let F be a set of polynomials in Klzy, ..., 2,] which contains p € FnKiz,]. If p does not
factor and Ideal(F) 5 (1), then p is the polynomial in Ideal(F)NK {z] of lowest degree.

So, if another univariate appears, the sub-problem is extra,m]i%ous and can be abandoned without further :

reductions {or factorizations). It is also clear that a univariate polynomial should be used to reduce previ-
ous polynomials, since it is an optimal element of the reduction basis. The resulting "improved” version of

Algorithm 3, although not much different, can be much faster (as we shall see).

So far, we have not exploited the fact that, when a factorization produces several sub-problems, we
may apply entirely different methods to them. For example, the total degree method mentioned in Sec-
tion 1 may become applicable. Or, a sudden drop in the degree of a particular variable may suggest the
use of pseudo-remaindering and resultants in the manner of [9]. Since no single scheme will be viable for
all problems, we will discuss one possible adaptation of Algorithm 3. This was motivated by systems such
as Problem 4{b), which is only of total degree 2 in four variables, but dense. The Grobner basis using the
total degree ordering of terms is relatively easy to obtain, irespective of the density. But let us suppose
that {for some reason) we wish to obtain the solutions by the lexicographic-climination method. It hap-
pens (because of the density) that, during the elimination and {actoring, very large ext.ramifeous factors -

and hence sub-problems - are produced. These inevitably cause time/space limits to be exceeded before

the more modest computation of actual solutions can proceed. However, if the total degree Grébner basis

is already known, then each factor can be tested for consistency by using it to extend the basis in the B

total degree ordering. In this way, only "consistent" polynomials are passed to the elimination scheme.
Let TG(F} and TNF{p, F) denote the Grébner basis of F' and the normal form of p module F, respectively,

in the total degree ordering. Then a hybrid scheme may be constructed as follows.

Algorithm 4:
sol_bases + ¢ append bases(F) | where
append _bases procedure(I', B, newpoly, nonzero, H)
if #arguments == 1 then
k —length(F) ; B« il fi<ici<ky; g —p
RONZEro +— ¢ | H « TG(F)
else
kKe—k+l; GTFy {newpoly}; BBy {Lk} [1<i<k)
while B = g do
[1,j] + Select_Pair(B, G); B—B- {fil}
if Criteria(fi,j], B, G) then
P = Normal Form(Spoly(G;, G,), &)
if p £ 0 then
P« {diétinct factors of p)
ifP = {p}ﬁzheé}
for m from 1 to length{P) do] : 7
if P,, € nonzero then next
, q + TNF(P,,, H)
' if q 3 0 then
H «— 7G(Hu{q))
if [= {1} then next
.else i
Ry
H+«H

append_bases(G, B, P, nonzero | PP}, H)
return

else

kemktl; GeQufp); B BuU {ik] |1<i<k }
sol_bases +~ sol_bases { Fully_Reduce{G) }
return
end

(Note that Algorithm 3 is obtained by removing the steps involving the total degree ordering.) Here, each
factor not marked as nonzereo is reduced moduio H, the total degree Grébner basis corresponding to the
current {irreducible, !exicographic) sub-problem. If the factor is part of a larger ideal, we use its reduced
form to extend H in the total degree ordering. (This will produce {1} if the factor is ext.rangi}eous.) If the
factor is consistent, we continue in the lexicographic ordering. Again, although it is not stated explicitly
above, we should use any univariate polynomials which appear to reduce the rest of the basis. In fact,

siice we no longer have to consider ext.ranjeous sub-problems in the lexicographic part of the scheme, we
¢an go much further. Define variable Ty to be separated if:

{a) 3 irreducible p € FNK[xy], or

(b) 3 p € F such that hterm(p) = 2, and all variables in p—M(p) are sepalatcd

Then, by Lemma 1, any polynomlal contauung only separated variables must Lcduce to zelo The 1egula1

reductions {on]y some of which will be avoided by the standard "crlberla }, often after full separation has

occurred. Since we are working with irreducible solution components, even the simple ¢riterion above

often allows us to avoid very large zero-reductions, when the sub-problem contains only finitely many

solutions.

Let us now compare the original and improved versions of Algorithm 3 with an implementation of

Algorithm 4 (including the above feature); in the latter case, the times include the separate computation

of the total degree Grobner basis.

I

Algorithm 3 Algorithm 4
Problem
original improved (hybrid)

1 time (sec) 297 290 266
storage (I(b) 1286 1488 1285

2 time 362 263 3774
(Butcher) storage 1393 1335 1630
3(a) time 885 665 806
(Fee {a)} storage 1786 1712 1622
4{a) time 3450 1962 2650
storage 3031 2572 2448

5 time 2354 1753 1902
(Trinks) storage 2220 2032 1933
6 time 4386 3028 2810
(Katsura) storage 2712 2433 2253
3(b) time 99773 11241 | >200000
(Fee (b)) storage 3048 2842 > 4400
7 time 14340 8167 12464
{Rose) storage 3876 4280 3612
8 time 191132 78045 64930
storage 11592 11076 7208

4(b) time >168000 | >141000 65314
storage > 17000 > 17000 10028

L

The expected asymptotic improvement of Algorithm 3 over Algorithm 1 is cleal We als0o note that
Algorithm 4 is the only scheme which is able to cope with the dense ploblem 4(bl, This is of interest
because most problems tend to become denser as the first few variables are ehmma,ted It is surprizing
that Algorithm 4 is competitive on many of the simpler problems, since use of the total degree ordering to
"filter" extrantcous factors is less than an ideal general solution. Although modular methods for Grébner
bases are elusive (see {8]), the development of such an algorithm for this specific task scems a worthwhile
problem for future study. It should also be possible to weaken somewhat our definition of "full separalion

of variables™.
Appendix: List of test problems
Probjem 1 :
F;=8.’E2—2my — 6zz + 3z + 3y® — Tyz + 10y + 1022 — 82 — 4,

7y

10$2—2my+6xz—6.’c~§«9y2~—yz—~4y-222+52—9,
F3=5x2+8:cy+4mz+8:v+9y2w6yz+2y—~22-—72-{—5

using x >y > z.

Problem 2 : Butcher’s system (see [1]}) of 8 equations in 8 unknowns, using the ordering
b1>a32>62>53>a >63>CQ>6.

Problem 3 : Fee’s system {see [6]) of 4 equations in 5 unknowns.
(a) Substitute =2, and use the poor ordering d>¢>p>c .
(b} Use the ordering ¢ >d>q>b>p .

Problem 4:
Fr=44 8w — 10w® - 10z + Tzw — 322 — 3y + Gyw + 2yz + e? — 92 + Baw — 23z — day + d2l
Fy=9 — 6w + 6w’ — 22 + 10zw — 522 + Ty + yw — 2yz 4+ coy® — 92 — 8aw — 4zz — Say + doz?,
Fy= =9 = 2w + 10w® — 92 + 82w + 1022 — 3y — 2yw — 2yz + cqy® — 22 + 32w — Saz 4 Tay + daz?,
Fy= =7 + 9w + 2w* + 32 + 102w — 22% 4 8y + dyw — 3yz + c,9° + 3z — Gzw + Yy + dgz?

(2) Substitute ¢ = ¢y == cg = ¢, = d; = dy == dy == dy = 0, and use the ordering a>y>z>w .

(b) Substitute ¢; = -8, ¢y == 8, c5 = -3, ¢, = -6, d, = -1, do == -5, dy = 6, dy == -3, and use
Fauw>y .

Problem 5 : Trinks system [10], using the p(ooi‘?‘variable ordering b >t > >w>p>z.
Problem 8 : Katsura’s system (see [1]) of 5 equations in 5 unknowns, using the ordering
Uy 2> Ug > Uy >ty > Uy

- 10 -

Problem 7 : Rose’s system {see [1]) of 3 equations in 3 unknowns, using the ordering 1, > 1y > tyy .

Problem 8:

Fi=4+ 8z — 1027 — 102° + 7y — 3yz — 3yz? + By? + 2y% — 8y® — G
+ Baz — 2227 — day — ayz + 9ay” — 62% + 62%r — 224 ,
Foe= =54 Tz 4+ 2% - 2%+ 5y — Gz —8y22—4y2—8y23 — 5y — 92
— 227 + 10z2" — 9oy + Swyz + 102y” — 32% — 2% — 222y

Fy=—2+4 32 — 927 4 72° 4 6y — Tyr + 9yz? + 2y + 3y% + 10y°

— 2% + 8xz + daz® — 3oy — Bzyz + 32y° — 622 4- 9%

¥

using x>y >z .

References

[1]

W. Bége, R. Gebauer, H. Kredel: "Some Examples for Solving Systems of Algebraic Equations by
Calculating Grébner Bases”, J. Symbolic Computation, Vol. 2, No. 1, 1985,

B. Buchberger: "A criterion for detecting unnecessary reductions in the construction of Grébner
bases”, Proc. EUROSAM 79, Marseille, June 1979, (W. Ng, ed.), Lecture Notes in Computer Sci-
ence, Vol. 72, 1979, pp.3-21,

B. Buchberger: "Grébner Bases: An Algorithmic Method in Polynomial Ideal Theory”, in Progress,
directions and open problems in multidimensional systems theory, {N.JK. Bose, ed.), D. Reidel
Publishing Co., 1985, pp.184-232.

J.C. Butcher: "An application of the Runge Kutta space”, BIT Computer Science Numer. Math.,
Vol. 24, 1984, pp.425-440.

B.W. Char, G.J. Fee, K.O. Geddes, G.H. Gonnet, MB. Monagan: "A Tutorial Introduction To
Maple", J. Symbolic Computation, Vol 2, No. 2, 1986.

S.R. Czapor, K.O. Geddes: "On Implementing Buchberger’s Algorithm For Grobner Bases", Proe.
SYMBSAC 86, (B.W. Char, ed.), Waterloo, July 1986, pp. 233-238.

S.R. Czapor: "Solving algebraic equations: combining Buchberger’s algorithm with multivariate fac-
torization", submitted to J. Symbelic Computation, Sept., 1986.

G.L. Ebert: "Some Comments On The Modular Approach To Grébner Bases”, ACM SIGSAM Bull.
17, No. 2, May, 1983.

M.E. Pohst, D.Y.Y. Yun: "On Solving Systems of Algebraic Equations via Ideal Bases and Elimina-
tion Theory™, Proc. SYMSAC ’81 , (P.S. Wang, ed.}, Utah, Aug. 1981, pp.206-211. o

W. Trinks: "Uber B. Buchbergers Verfahren, Systeme algebraischer Gleichungen zu losen", J.
Number Theory, Vol. 10, No. 4, Nov. 1978, pp.475-488.

