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1. Introduction 

Finding the solution to a system of n non-linear 
polynomial equations in n unknowns over a 
given field, say the algebraic closure of the coef- 
ficient field, is a classical and fundamental prob- 
lem in computational algebra. For algebraic 
reasons (refer to footnote 1 in van der Waer- 
den (1953, $80)) one considers projective prob- 
lems, that is, the polynomials are homogeneous 
and the solutions are sought in n-dimensional 
projective space. Note also that the solutions 
of an affine system are specializations of the so- 
lution rays of its homogenized projective ver- 
sion. Going back to Cayley and Bezout in the 
last century, solvability of such a projective sys- 
tem is determined by the vanishing of a certain 
invariant, its resultant. This invariant general- 
izes the Sylvester resultant of two polynomials 
in a single variable (Knuth 1981) and the deter- 
minant of the coefficient matrix on a homoge- 
neous linear system. In 1916 Macaulay (1916) 
showed that the resultant can be expressed by a 
quotient of two determinants whose correspond- 
ing matrices have coefficients of the input poly- 
nomials as their entries. These matrices have 
dimension exponential in the number of vari- 
ables, but since there is an easy reduction to an 
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NP-complete problem (Agnarsson et al 1984), 
there is little hope for a polynomial-time solu- 
tion in the number of variables. Finally, if a 
projective system of n - 1 equations and n un- 
knowns has finitely many solutions, these can 
again be found by computing the resultant of 
the system with the addition of a generic linear 
form. That resultant, the so called u-resultant, 
is a polynomial in the generic coefficient vari- 
ables of the added form, and it factors into lin- 
ear factors whose scalar coefficients are exactly 
the components in the corresponding solution 
rays (refer also to the example below). The 
results discussed so far are classical; for mod- 
ern extensions of these to deal with infinitely 
many solutions at infinity, for instance, refer to 
(Lazard 1981) and (Canny 1988b). 

The main result of this article is a new effi- 
cient algorithm to evaluate the resultant. The 
dimensions of Macaulay’s matrices are bounded 
by D, where 

D= (T;‘)~ i=l d = 1 + &di - l), 

di the degree of the i-th projective equation. 
We present an algorithm that computes the re- 
sultant in 

O(nD2 (log2(D) log(log 0) + n)) 

arithmetic steps over the coefficient field, us- 
ing O(D) locations for field elements. The best 



previous methods, described in present day re- 
search by (Lazard 1981), (Grigoryev and Chis- 
tov 1984), (C anny 1988c), and (Renagar 1987b), 
for instance, all required to compute the 
Macaulay determinants by Gaussian elimina- 
tion or the derived algorithms using fast matrix 
multiplication. Hence our result improves the 
time complexity from O(P), where w is the 
matrix multiplication exponent, to essentially 
D2+“(‘), with n = go(l) for d = n(n), and even 
more importantly, we have improved the space 
requirements from 0(02) to O(D). 

Having a fast resultant evaluation procedure, 
one can find solutions of a non-singular system 
quickly. Here non-singular means that the sys- 
tem only has finitely many solutions. One needs 
to factor the u-resultant of the input system. 
Our algorithm provides an efficient method to 
evaluate the u-resultant at a specialization for 
the generic variables. Fortunately, this is all 
one needs in order to apply Canny’s primitive 
element method (Canny 1988a), or the more 
general factorization method for polynomials 
given by black boxes for their evaluation (Kalt- 
ofen and Trager 1988). Both approaches essen- 
tially take O(N2) arithmetic operations, where 
N = JJy==, d; is the number of solutions. 

There are two alternate ways of computing 
solutions to polynomial systems, the classical 
elimination method due to Kronecker (van der 
Waerden 1953) and the modern Grijbner ba- 
sis method due to Buchberger (see the survey 
(Buchberger 1985)). From a theoretical point of 
view, the complexity bound for the first method 
is doubly-exponential in n. The Grijbner basis 
algorithm for O-dimensional ideals has com- 
plexity n3max{ di} Otn3) (Caniglia et al 1988). 
Moreover, the initial reductions in the Griibner 
basis algorithm are identical to the initial Gaus- 
sian row elimination steps on the Macaulay 
matrix. An S-polynomial construction in the 
Grobner basis algorithm corresponds to several 
row reductions in Gaussian elimination. In one 
variable this makes computation of Sylvester re- 
sultants by the Euclidean algorithm quadratic 

time vs. the cubic time algorithm for triangular- 
izing tbe Sylvester matrix. However, this phe- 
nomenon seems difficult to generalize, at least 
in a straight-forward fashion, to multivariate re- 
sultants and the Grijbner basis algorithm. In 
fact, the main problem with performing Gaus- 
sian elimination on this usually sparse matrix 
is the fill-in to quadratic size. This is especially 
costly since this matrix has dimension exponen- 
tial in n. 

Our new resultant algorithm is based on two 
recent results in computational algebra. For 
one we make use of Wiedemann?s (1986) fast 
method for computing the determinant of a ma- 
trix using a linear number of matrix times vec- 
tor operations. In the case of Macaulay’s ma- 
trix, the matrix times vector product can be 
shown to be equivalent to computing a multi- 
variate polynomial product in which the prod- 
uct is a dense polynomial bounded in total de- 
gree. In order to compute this product in lin- 
ear time in the number of terms in the answer, 
we make use of the new sparse interpolation 
algorithms (Ben-Or and Tiwari 1988), (Zip- 
pel 1990), and (Kaltofen and Lakshman 1988). 
In this particular setting, the term-structure 
of the answer polynomial is known and one 
only needs to perform the last step of the Ben- 
Or&Tiwari algorithm. We can show that both 
the pointwise evaluation and interpolation prob- 
lems, which correspond to transposed Vander- 
monde systems, can be solved in the same 
asymptotic time regular Vandermonde systems 
are solvable. 

We wish to point out that our algorithm is 
an exact method. There are numerical meth- 
ods based on homotopical transformation of so- 
lution paths (see, e.g., (Drexler 1977), (Gar- 
cia and Zangwill 1979), (Li et al. 1988), and 
(Zulehner 1988))) and on Newton iteration (Re- 
nagar 1987a). These methods are, however, not 
universally applicable. 

This paper first introduces some notation for 
the Macaulay resultant matrices. Then we pro- 
vide the fast total degree bounded multivari- 
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ate polynomial product algorithm. Finally, we 
show how that result can be combined with 
Wiedemann’s determinant algorithm to give our 
fast and space efficient resultant method. 

2. The Multivariate Resultant 

We now give a brief description of the mul- 
tivariate resultant of a system of polynomial 
equations. Th e interested reader can consult 
(Macaulay 1916) and (Canny 1988c) for further 
details. Given n homogeneous forms fr , . . . , fn 

. 
in the variables xi,. . . ) x,, their resultant is 
defined as the ratio of the determinant of a 
certain matrix A4 (whose construction is de- 
scribed below) and the determinant of a par- 
ticular submatrix A of M. The rows of M are 
indexed by the monomials in ~1, . . . , x, of de- 
gree d = 1 + Cyzl(di - l), where di is the de- 
gree of the polynomial fi. Therefore, M has 
D = (dzlT’) rows. 

A polynomial is said to be reduced in the vari- 
ablesx;,,x;, ,..., x;, for 15 ir,iz ,..., ik 2 n iff 
for all j, 1 _< j 2 k, its degree in xii < d;j. A 
polynomial is said to be just reduced if it is re- 
duced in any n - 1 of the n variables xi, . . . , x,. 

Consider the homogeneous form 

F = fig1 + fm + . . . + fnsn (1) 

where deg(g;) = d - d; and g; is a generic 
polynomial in x1,. . . ,x, (i.e., coefficients are 
not specialized) reduced in x1, . . . , xiwl. The 
columns of M are labelled by the monomials 
of g; and the rows are labelled by monomi- 
als in Zi,..,, E, of degree d. The entries in 
the column labelled by a particular monomial 
-+a’ = X 5;’ . . . 5;” of gi are the coefficients of fi, 
the coefficient of a particular monomial Z# in fi 
is placed in the row labelled by the monomial 
5?+6. There are exactly as many rows in M as 
columns. Notice that the way in which the ma- 
trix M is set up depends on the way the f; are 
ordered. A different matrix is obtained with a 
different ordering of the polynomials. 

The submatrix A is obtained by deleting the 
rows in M whose labels are reduced (in any 

n - 1 variables) and the columns containing 
the coefficients of x4 in fi in the deleted rows. 
Thus, A has D - D’ rows and columns where 
D’ = Cj n,. di. The resultant is given by 
R= det(M)Jdet (4, P rovided det(A) # 0. 
Otherwise one chooses a different ordering of 
the polynomials, say f2,. . . , fn, fr. If for all 
such orderings the determinants of the corre- 
sponding A’s are zero, R is defined to be zero. 
The fundamental property of the resultant is 
that the f; have common zeros if and only if 
R = 0. 

The common zeros of n non-homogeneous 
polynomials fr, . . . , fn in n variables xl, . . . , x, 
can be recovered by homogenizing the fi by the 
addition of a homogenizing variable zn+i and 
introducing a new form fn+l = ~1x1 + 2~2x2 + 
. . . + un+lx,+r where the ui are indeterminates. 
The resultant of these n + 1 forms is now a poly- 
nomial in the ui, the u-resultant of fr, . . . ,fn. 
Provided the homogeneous system has finitely 
many solution rays, this u-resultant factors into 
linear factors in ~1,. . , , u,-,+r over the algebraic 
closure of the coefficient field, and the coeffi- 
cients of the ui in each factor correspond to the 
components in the solution ray of the homoge- 
nized system. 

In the case of two homogeneous polynomials 
in two variables or two inhomogeneous polyno- 
mials in a single variable, the resultant reduces 
to the familiar Sylvester resultant. In the case 
of n linear forms, the result ant reduces to the 
determinant of the coefficient matrix. To illus- 
trate these concepts, we shall give a small ex- 
ample. 

Resultant Example (Lazard 1981): Given is 
an affine system in two variables augmented by 
a generic linear form: 

fl = x2 + xy + 2x + y-1=0, 
f2 = x2 + 3x - y2 + 2y - 1 = 0, (2) 
fl = ux +vy+w =o. 

Following is the matrix corresponding to the u- 
resultant of (2), with z the homogenizing vari- 
able. The divisor det(A) is in this case a 
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X y z x y % xy 22 yz z2 

‘1 0 0 1 0 0 0 0 0 0 
1 1 0 0 1 0 u 0 0 0 
2013010u00 
0 1 0 -1 0 0 2, 0 0 0 
12 12 3 ozuVuo 

-1 0 2 -1 0 3 0 w 0 u 

non-zero rational.The labels at the rows and 
columns correspond to its construction.Notice 
that 

det(M) = (u-v++)(-~u+v+u))(w+u~)(u-~0) 

corresponding to the affine solutions (1, -l), 

C-3, l), (09 0, and one solution at infinity. 

3. Fast Polynomial Multiplication 

In this section, we describe an efficient algo- 
rithm for computing the product of two to- 
tal degree bounded multivariate polynomials. 
More precisely, we prove the following: 

Theorem 1. Given twomultivariatepolynomi- 
ah fh . . . , x,) and f2(z1,. . . , zCn) over a field 
of characteristic zero and of total degrees Sr and 
62, respectively, their product g(sl, . . . , z~) can 
be computed in O(M(T) log(T)) arithmetic op- 
erations, where M(T) denotes the numbers of 
arithmetic operations needed to multiply two 
univariate polynomials of degree T, and T = 

( 
&+62 +n 

> 
pro&ct ;. 

the total number of terms in the 

Notice that a multidimensional FFT-based 
multiplication algorithm performs O(M(P)) 
arithmetic operations in this case, where 6 = 
61 + 62. Also, the best univariate polynomial 
multiplication algorithm over an arbitrary field 
has M(T) = O(T log(T) log(log T)) complex- 
ity (Schonhage 1977). Our algorithm works by 
evaluation, pointwise scalar multiplication, and 

-1 0 0 0 0 0 
2 -1 0 0 2) 0 

-1 2 0 0 u, 2, 
0 -1 0 0 0 w J 

interpolation: 
- fr and f2 are evaluated at specially chosen 

integer points. 
- The values of g at these points are computed 

by multiplying the corresponding values of fi 
and f2. 

- g is interpolated from its values at the special 
points. 

We now describe the algorithm in detail. 

3a. Evaluating a Multivariate 
Polynomial at Special Points 

Let f(x~,...,x~) = alml + a27722 -I- . . . + atmt 
where the m; are distinct monomials and ai are 
constant coefficients. We want to evaluate f at 
the points 

(1 ,“‘, 1>7 bl , . . . ,Pn>, . . . , (I$‘, . . . ,P?) 

where pi denote distinct primes. Let 

vi = (mi)z,=pJ,lsj<n and b; = f(pf,. . . ,P:). 

We want to compute the bi for 0 5 i 5 t - 1. 
Let 

v= 

a= 

al 

a2 
. . . 

at 

1 

2rl 

v; t-1 

. . . 

2)* 
-1 

-1 
1 

1 , b= 

bo 
bl 
. . 

bt:l 
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V is a Vandermonde matrix. Clearly, V”a = 6. 
Rewrite this as 

(VTV)V-La = b. (3) 

Let V-la = a’. Solving a (t x i) Vander- 
monde system is equivalent to interpolating a 
univariate polynomial of degree t - 1 from its 
values at t points. This can be performed in 
O(M(t) log(t)) arithmetic operations (cf. (Aho 
et al 1974)). Formula (3) now becomes 

(VT’V)a’ = b 

with 
VW - - 

( 

c”Vi 
xv; xv: . . . Cvf-1 
Cv” Cv” . . . xv; 

. . . -. 
- i 

3 
c Li-1 iv; xi;+1 - .: &t-1) 

which is a Hankel matrix. The product of a (t x 
t) Hankel matrix and a vector can be computed 
in O(M(t)) arithmetic operations. It can be 
read off from the coefficients of the product of 
polynomials 

f = 72+x v;*+c TJy+. . .+c vyZ2(t-‘) 

and 
g = ai&l + a&zt-2 + . . . + a:. 

Therefore, (VnV)u’ can be computed using at- 
most O(M(t) log(t)) arithmetic operations if 

all the entries of VTrV can be computed in 
O(M(t) log(t)) arithmetic operations . But the 
entries of V”V are the first 2(t- 1) power sums 
of the vi. Now, Newton’s identities for comput- 
ing the power sums sj = C vi from the elemen- 
tary symmetric functions oj of v; lead to the 
Toeplitz system of equations Ws = w where 

w= 

1 0 . . . . . . 0‘ 

-01 1 . . . . . . 0 

02 -cl .,. . . . 0 
. , 
. . *. *. . . : 

ct --at-1 * . . . . . 0 

. *. . -. . 

. . 

0 . . . (-I,, . .: ;, 125 

s= , TN= 

01 

-2q 

303 
. . . 

tat 
. . . 
0 I 
. 

A (t x t) Toeplitz system can be solved in 
O(M(t) log(t)) arithmetic operations (Brent et 
al 1980). The elementary symmetric functions 
oi can be read off from the coefficients of the 
polynomial JJf=, (2 - vi) which can be com- 
puted in O(M(t) log(t)) arithmetic operations 
(cf. (Aho et al 1974)). This method can eas- 
ily be generalized to evaluate f(zr , . . . , z,) at 

points tL..,l), (PI,...,P~), ..d~L.d> 
for T 1 t in O(M(T)log(t)) arithmetic opera- 
tions. Another approach to the entire problem 
is to pre-multiply V”a by a vector of indetermi- 
nates, and apply the Baur and Strassen (1983) 
all partial derivatives algorithm to the resulting 
single entry. However, for that solution it is not 
clear that linear space can be accomplished. 

3b. Dense Interpolation 

The final step of the polynomial multiplication 
algorithm is the interpolation step. We now 
describe a dense interpolation scheme. The 
algorithm needs as input the total degree 6 
of the polynomial to be interpolated and its 
values at special points. Let g(zr,. . . ,2,) = 
alml + a2m2 + . . . + aTrnT be the polynomial 
to be interpolated. We have m; = zf;*’ . . . x?l” 
such that Cj e;g 5 S; a; and v; are as before, 

and T = (&in) is th e maximum possible number 
of terms in g. 

Evaluate g at points (1, . . . , l), (pr, . . . , p,), 
(~‘4,. . . ,pz), . . . , (pT-‘, . . . ,pz-‘). Let the re- 
spective values be denoted by go, 91, . . . , gr-1. 



Clearly, 

= 
This is a transposed Vandermonde system of 
equations and the ai can be computed in 
O(M(t) log(t)) steps (Kaltofen and Lakshman 
1988). It now follows that the multiplication 
algorithm performs O(M(T) log(T)) arithmetic 
operations in all as both the evaluation step 
and the interpolation step can be completed 
in O(M(T) log(T)) arithmetic operations. The 
pointwise multiplication step only needs O(T) 
arithmetic operations. This proves Theorem 1. 

4. Evaluating the Resultant 

Let A be a (k x k) matrix and b be any k- 
dimensional vector over a sufficiently large field. 
By an A&step we mean computing the product 
Ab. Wiedemann (1986) gives a randomized Las 
Vegas algorithm to compute the determinant of 
A via Ab-steps. We have: 

Theorem 2. The determinant of a (k x k) ma- 
trix A over a field with 50k210g(k) or more ele- 
ments can b;e computed by a Las Vegas type 
randomized algorithm in O(k) Ab-steps and 
0( k’log( k)) arithmetic operations. 

We show next that the product of M, the 
Macaulay resultant matrix defined in 52, and 
a vector b E QD, Q the rationals, can be read 
off from a polynomial sum of products. In fact, 
this follows from the way the matrix M is de- 
fined. The entries of the vector b are labelled by 
the monomials of 9; in (1) as are the columns 
of M. The product of a row labelled by the 
monomial m and the vector b is simply the co- 
efficient of the monomial m in the polynomial 

sum of products 

3 = f& + f232 + ’ ’ a + fn&, (4) 

where j; represents gi with the coefficients of 
the monomial m’ specialized to the value of 
the component b which is labelled by the same 
monomial m’. This idea is best demonstrated 
by considering the example in $2. 

Resultant Example continued: In order to 
multiply M by 

b = (bl bz . . . bs blo)Tr, 

we compute f& + f2j2 + f&, where ij1 = bls + 

b + b3, ii2 = bqx + bsy + bs, and 3, = b7xy + 
b8x + bgy + bra. We have 

fm + f2g2 + fm = . . . + (Mm,*, b>m + . . . 

where (Mm,,, b) represents the dot product of 
the row of M labelled by the monomial m and 
the vector b. 

The product of the sub-matrix A and a vector 
(,I E ~0-0’ can be obtained in a similar fashion 
by starting with the matrix M and padding b’ to 
b E QD with zeros in those components whose 
labels are the same as the labels of the columns 
of M deleted to obtain A. This observation 
and the use of theorems 1 and 2 lead to the 
following: 

Theorem 3. The resultant of n homoge- 
neous polynomials over a field of characteris- 
tic zero in n variables can be computed cor- 
rectly by a Las Vegas randomized algorithm us- 
ing O(nD2(M(D) log(D)+&)) arithmetic op- 
erations requiring to store at most O(D) field 
elements. 

Proof. Using the polynomial multiplication al- 
gorithm described in the section 3,we can com- 
pute an M&step in O(nD + M(D)log(D)) op- 
erations. Hence we can find det(M) and det(A) 
in O(D (M(D) log(D) + nD)) arithmetic oper- 
ations if the values of all fi in (4) at the points 

P”l,.. .,$iforOsj<D-lcanbecomputed 
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within that time. We show that it can be done 
by separating the linear, quadratic, and higher 
degree fi* Clearly, the linear fi can be evalu- 
ated in O(nD) steps. For the quadratic ones, 
say there are 1 of them, the total number of 
terms is bounded by 

D for all n 2 4, I 5 12. 

For the fi with deg(fi) > 3, for their total num- 
ber of terms we have 

n + Cdi/3Cdi - ‘1 
n-l 

The first inequality follows from 

for all r,s > 3, Ic 2 2, 

which in turn is established by induction on Ic. 
Since the total number of terms on all the poly- 
nomials is bounded by D, they can be evalu- 
ated in O(M(D) log(D)) steps. Notice that one 
computes the values of the sum in (4) before 
performing a single sparse interpolation. El 

5. Conclusion 

We have given a method that allows to compute 
resultants and u-resultants of polynomial sys- 
tems in essentially linear space and quadratic 
time. We believe that our algorithm constitutes 
the first improvement over Gaussian elimination- 
based methods for computing these fundamen- 
tal invariants. The resultant has many impor- 
tant properties for the geometry of the vari- 
ety the system defines, see for example (Ba- 
jaj et al. 1988). One important property of the 
u-resultant is that its linear factors over the al- 
gebraic closure of the coefficient field determine 

the solutions in the non-singular case. 
There are several problems that arise from the 

introduction of our new algorithm. One is that 
we cannot yet apply Canny’s generalized char- 
acteristic polynomial algorithm (Canny 1988b) 
to locate isolated points in case there are com- 
ponents of higher dimesion in the variety. This 
is an important consideration for the affine case, 
since projectivization may introduce infinitely 
many solutions at infinity. The reason we can- 
not apply Canny’s method is that we do not 
know how to compute the characteristic polyno- 
mial of the Macaulay matrices in time quadratic 
in the dimension of the Macaulay matrices. 
However, we can compute the minimal poly- 
nomial of the Macaulay matrices in this time 
using Wiedemann’s algorithm. Using this, we 
can compute the “generalized minimal polyno- 
mial” of a system of homogeneous equations 
(in the sense of (Canny 198813)) in the same 
time it takes us to compute the u-resultant of 
the system of equations. We conjecture that 
the trailing coefficient of the generalized min- 
imal polynomial has linear factors correspond- 
ing to the isolated zeros of the system just as 
the u-resultant does in the purely O-dimensional 
case. If so, we can 
zeros of the system 
ties), in essentially 
it takes to compute 
O-dimensional case. 

find all the isolated affine 
(but not their multiplici- 

the same amount of time 
all the zeros of the purely 

Secondly, it might be possible to compute 
the resultant in time of essentially linear de- 
pendency on the dimension of the Macaulay 
matrix, as is the case for the Sylvester resul- 
tant (Schwartz 1980). And finally, it appears 
important to us to possibly develop a theory 
of subresultants, again generalizing the one for 
Sylvester resultants (Brown and Traub 1971). 
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