JOHANNES KEPLER
UNIVERSITAT LINZ

Netzwerk fir Forschung, Lehre und Praxis

Fault Tolerance for Distributed Maple

DISSERTATION

zur Erlangung des akademischen Grades

DOKTOR DER TECHNISCHEN WISSENSCHAFTEN

Angefertigt am Institut fiir Symbolisches Rechnen

Betreuung:

Erster Begutachter: A. Univ.Prof. Dipl.-Ing. Dr. Wolfgang Schreiner
Zweiter Begutachter: A. Univ.Prof Dr. Josef Kiing

Eingereicht von:

Karoly Bosa, Dipl.-Ing.

Linz, September 2004

Johannes Kepler Universitat
A-4040 Linz - AltenbergerstraBe 69 - Internet: http://www.uni-linz.ac.at - DVR 0093696

Eidesstattliche Erklarung

Ich erklare an FEides statt, dass ich die vorliegende Dissertation selb-
ststandig und ohne fremde Hilfe verfasst, andere als die angegebenen Quellen
und Hilfsmittel nicht benutzt bzw. die wortlich oder sinngeméfl entnomme-
nen Stellen als solche kenntlich gemacht habe.

Karoly Bosa
Hagenberg, 30. September 2004

Abstract

Distributed Maple is a Java-based system for implementing in distributed
environments parallel programs in the computer algebra system Maple. It
has evolved from Dr. Wolfgang Schreiner’s experience in the development
of parallel computer algebra environments and from learning from the work
of other researchers. As the problems to which the system was applied be-
came more and more complex, the meantime between session failures became
a limiting factor of the applicability of the system. However, the fact that
the parallel programming model of the system is basically functional gave
the chance to develop new fault tolerance mechanisms for Distributed Maple
which are more effective than existing solutions targeted to general parallel
applications (like checkpointing).

In this thesis, we present and describe how we have extended Distributed
Maple with fault tolerance such that the time spent in a long running com-
putation is not any more wasted by the eventual occurrence of a failure.
First we introduced a mechanism for the logging of task return values and
of shared object values such that after a failure a newly started session can
(transparently to the application program) reuse already computed results.
Then we concentrate on node failures and permanent connection failures.
We implemented some new mechanisms by which a session is able to toler-
ate connection and node failures (even if the root node fails) without overall
failure and continue normal operation. Furthermore, the system periodically
attempts to restart the failed nodes and to reestablish the broken connec-
tions. Together these fault tolerance mechanisms allow to run computations
that take much longer than the meantime between session failures.

With these developments, Distributed Maple is by far the most advanced
system for computer algebra concerning reliability in distributed environ-
ments.

Zusammenfassung

Distributed Maple ist eine Java-basierte Software, um im Computeralgebra-
System Maple parallele Programme fiir verteilte Umgebungen zu schreiben.
Die Software wurde aus Dr. Wolfgang Schreiners Erfahrungen mit der En-
twicklung paralleler Computeralgebra-Umgebungen und aus der Arbeit an-
derer Forscher heraus entwickelt. Als die Probleme, auf die Distributed Maple
angewendet wurde, immer komplexer wurden, entwickelte sich die mittlere
Zeit zwischen Systemfehlern zu einem einschrankenden Faktor bei der An-
wendbarkeit der Software. Allerdings gab die Tatsache, dass das parallele
Programmiermodell von Distributed Maple im wesentlichen funktional ist,
die Chance, neue Mechanismen zur Fehlertoleranz zu entwickeln, die effek-
tiver als existierende Losungen sind, die auf allgemeine parallele Anwendun-
gen abzielen.

In dieser Arbeit zeigen wir, wie wir Distributed Maple um Mechanismen zur
Fehlertoleranz erweitert haben, sodass die Zeit, die mit langen Berechnungen
verbracht wird, nicht letztendlich durch einen Programmabbruch vergeudet
wird. Zuerst fithren wir einen Mechanismus ein, um die Ergebniswerte von
Aufgaben und die Inhalte von Objekten so zu speichern, dass nach einem Pro-
grammabbruch ein neuer Programmlauf diese Werte wieder verwenden kann,
ohne sie neu zu berechnen (wobei die Anwendung keinen Unterschied merkt).
Dann konzentrieren wir uns auf das Ausfélle von Knoten und Verbindungen
im verteilten System. Wir haben einige Mechanismen entwickelt, mit de-
nen solche Ausfille (sogar der Ausfall des Zentralknotens) toleriert werden
konnen, ohne dass das gesamte System abbricht sondern mit der Arbeit nor-
mal fortfahren kann. Weiters versucht das System periodisch, ausgefallene
Knoten neu zu starten und ausgefallene Verbindungen wieder her zu stellen.
Zusammen erlauben es diese Mechanismen, Berechnungen durchzufiihren, die
viel ldnger als die mittlere Zeit zwischen Systemfehlern benotigen.

Mit diesen Entwicklungen ist Distributed Maple das weitaus forgeschrittenste
System fiir Computeralgebra, was die Zuverlissigkeit in verteilten Umgebun-
gen betrifft.

Acknowledgements

First of all, I would like to thank my supervisor Wolfgang Schreiner. His
patient guidance, inspiration and helpful suggestions have played a significant
role in the fact this work has resulted in a Ph.D. thesis. I greatly appreciate
the way he combined, on the one hand, giving advices and assistance, and on
the other hand, giving much freedom in the research. Moreover I am grateful
to him, because he has revised and improved my written English tirelessly
in the last couple of years. I hope his effort was not futile.

I want to express my gratitude to my fiancee Anett, who gave me all her
love and understanding. Without her support and patience this work would
never have been completed.

Finally, I am grateful to my parents for their moral support and encour-
agement.

The work on the thesis was supported by the Research Institute for Sym-
bolic Computation (RISC), the Upper Austrian Government (Ph.D. schol-
arship) and by the Austrian Science Foundation (FWF) under the project
SFB P1302.

Contents

1 Introduction 1
1.1 Goals and Motivation 1
1.2 Structure and Originality of the Thesis 2

2 State of the Art 5
2.1 Parallel Computer Algebra with Maple 5
2.2 Fault Tolerance in Distributed Systems 7

2.2.1 Failure Detection in Asynchronous Distributed Systems 7
2.2.2 Fundamental Fault Tolerance Techniques 8
2.2.3 Server Fault Tolerance in Distributed Systems 9

3 Distributed Maple 13

3.1 UseoftheSystem 13
3.1.1 UserManual., 15
3.1.2 Visualization 0. 16

3.2 System and Execution Model 17
3.2.1 The Scheduler 18
3.2.2 Peer Connections 19
3.2.3 The Watchdog Mechanism 20
3.24 Load Balancing oL 20
3.2.5 Shared Objects 21

3.3 Failure Analysis oo 21

4 The Logging Mechanism 23
4.1 Assumptions and Guarantees 24
4.2 Fast Mode 25

4.2.1 Algorithmo oo 25
4.2.2 Implementation 26

4.3 SafeMode o 30
4.3.1 Algorithm o 31
4.3.2 Implementation L. 34

TABLE OF CONTENTS

4.4 Handling of Shared Objects . .
4.4.1 Algorithm
4.4.2 Implementation

5 Tolerating Connection Failures
5.1 Reconnecting with Message
Acknowledging

5.1.1 Assumptions and Guarantees

5.1.2 Algorithm
5.1.3 Implementation

5.2 Tolerating Peer Connection Failures
5.2.1 Assumptions and Guarantees

5.2.2 Algorithm
5.2.3 Implementation

6 Tolerating Node Failures

6.1 Tolerating Non-Root Node Failures
6.1.1 Assumptions and Guarantees

6.1.2 Algorithm
6.1.3 Implementation
6.2 Restarting after Node Failures .

6.2.1 Assumptions and Guarantees

6.2.2 Algorithm
6.2.3 Implementation
6.3 Tolerating Root Failures

6.3.1 Assumptions and Guarantees

6.3.2 Algorithm
6.3.3 Implementation

7 Examples and Test Experience
7.1 New Commands
7.2 A Simple Example for Logging .

7.3 Usage of Tolerating Root Failures

7.4 Test Experience

8 Conclusions
8.1 Comparison with Checkpointing
8.2 Plans for Future Developments

Bibliography

List of Figures

xi

41
41
41

43

44
44
45
46
49
49
49
o1

57
o8
o8
29
61
64
64
65
66
68
68
70
73

85
85
88
90
93

95
96
98

101

109

xii TABLE OF CONTENTS

Index 111

Curriculum Vitae 113

Chapter 1

Introduction

1.1 Goals and Motivation

During the last decade, the field of distributed computing has considerably
evolved. However, as the use of distributed computing systems for long-
running and large scale computations is growing, they become increasingly
vulnerable to failures. Therefore, an indispensable condition for the extension
of the usability of such systems is to increase their reliability. For achieving
this, some fault tolerance mechanisms have to be adopted such that ap-
plications can withstand the number of failures before normal operation is
impaired.

In this thesis, we focus on the new fault tolerance ability of Distributed
Maple. This software is a Java-based system for implementing in distributed
environments parallel programs in the computer algebra system Maple [58].
In contrast to systems for message-based parallel programming, Distributed
Maple is fundamentally based on the concept of functional tasks that return
a result and have no other side-effect. Still this model is very general, e.g.,
it allows tasks to start other tasks, to refer to the handlers of other tasks as
arguments and to return task handlers as results (thus it supports general
communication structures). A comprehensive survey on the system and its
applications is given in [66].

However, as we began to attack larger and larger problems, the meantime
between session failures (less than a day) became a limiting factor in the
applicability of the system. We therefore started to investigate how to extend
the time scale of distributed computations to many days as is required for
realistic applications.

Our goal for the thesis was the following: by taking advantage of the fact
that the parallel programming model of the system is basically functional, we

2 INTRODUCTION

intended to develop new fault tolerance mechanisms for Distributed Maple
which are more effective than existing solutions targeted to general parallel
applications. Another requirement was that the implemented fault tolerance
has to be transparent to the application.

To achieve this goal, we invented and introduced some new fault tolerance
mechanisms to Distributed Maple [64, 65, 8, 9, 10] by which the system can
continue normal operation in the following failure situations: any node (be
it a non-server node or be it the server itself) fails or a connection between
any two nodes breaks. To cope with the possibility that the systems fails
due to other reasons, another mechanism [64, 65, 8] continuously saves the
intermediate computing results during the execution; thus we can restart the
system and continue the computation from a saved state.

As the outcome of our work, the applicability of the system is extended by
the developed fault tolerance mechanisms. This work has considerably prof-
ited from the deliberate restriction to the programming and execution model
mentioned above. Thus Distributed Maple has become the most advanced
system for computer algebra concerning reliability in distributed environ-
ments.

1.2 Structure and Originality of the Thesis

In the followings, we present how the rest of the thesis is organized.

Chapter 2 (State of the Art) gives a survey on the fields that are rel-
evant to the thesis. Section 2.1 gives an overview on the use of Maple for
parallel computer algebra. Section 2.2 describes ongoing work on fault toler-
ance in distributed systems.

Chapter 3 (Distributed Maple) gives an overview about the original
Distributed Maple (without fault tolerance). Section 3.1 introduces into the
usage of the system and collects the commands of the user interface. Sec-
tion 3.2 gives a short overview about the system architecture and the execu-
tion model of Distributed Maple. These two sections are based on the research
work of Dr. Wolfgang Schreiner. At the end of the chapter, Section 3.3 anal-
yses the possible failure situations which may occur in Distributed Maple.

Chapter 4, Chapter 5, and Chapter 6 describe the achievements of the
thesis. The explanations of the fault tolerance mechanisms in these chapters
are usually divided to three parts:

INTRODUCTION 3

e The section “Assumptions and Guarantees” determines what kind of
conditions have to be satisfied for the proper working of the mecha-
nism and what kind of guarantees are provided by this mechanism in
exchange.

e The section “Algorithm” gives a general description of the fault toler-
ance mechanism.

e the section “Implementation” presents how the mechanism has been
implemented in Distributed Maple and lists the corresponding data
structures (implemented as Java classes).

Chapter 4 (The Logging Mechanism) presents the “Logging” mecha-
nism which we introduced to reuse already computed results after a session
failure. This mechanism is explained in three stages. In Section 4.2, the basic
functionalities of the “Logging” mechanism are presented (these are collec-
tively called the Fast Mode). This “Fast Mode” was developed by the author
jointly with Gabor Kusper and Dr. Schreiner. Later, it has been refined re-
peatedly by the author. In Section 4.3, the “Logging” mechanism is extended
to the Safe Mode which allows tasks to refer each other in their descriptions
and results. This Safe Mode was elaborated only by the author. Section 4.4
shows how shared objects are handled in the “Logging” mechanism. The
handling of the shared object was designed and accomplished by the author
together with Gabor Kusper.

Chapter 5 (Tolerating Connection Failures) deals with the tolerance
of connection failures in Distributed Maple. In Section 5.1 the “Reconnect-
ing” and in Section 5.2 the “Tolerating Peer Connection Failures” mecha-
nisms are described. These two mechanisms were invented and implemented
by the author.

Chapter 6 (Tolerating Node Failures) explains three mechanisms by
which Distributed Maple sessions are able to tolerate node failures. All three
mechanisms were discovered and implemented by the author. Section 6.1 in-
troduces the “Tolerating Non-Root Node Failures” mechanism first by which
tasks can be migrated such that a session may tolerate the failure of individ-
ual (non-root) nodes without overall failure. In Section 6.2, this mechanism is
extended with the “Restarting after Node Failures” mechanism which is able
to reduce the loss of resources after node failures. Section 6.3 describes the
“Tolerating Root Failure” mechanism that allows the system to cope with
root node failure without overall failure.

4 INTRODUCTION

Chapter 7 (Examples and Test Experience) collects the new Dis-
tributed Maple commands which belong to the fault tolerance features in
Section 7.1 and shows by some examples in Section 7.2 and in Section 7.3
how they can be used. Then it analyses the performance of the fault tolerance
mechanism in Section 7.4.

Chapter 8 (Conclusions) summarizes our results. Section 8.1 compares
the fault tolerance features of Distributed Maple with a checkpointing mech-
anism recently developed by another group for a particular parallel program-
ming environment. Section 8.2 outlines further development directions.

Chapter 2

State of the Art

In this section, we sketch a survey of those research areas which are relevant
to the thesis.

2.1 Parallel Computer Algebra with Maple

Distributed Maple has evolved from Dr. Schreiner’s experience in the devel-
opment of parallel computer algebra environments and from learning from
the work of other researchers. The programming interface of the system is
based on a para-functional model as adopted by the PARSAC-2 system [39]
for computer algebra on a shared memory multiprocessor. The model was
refined in PACLIB [31] on which a para-functional language was based [57].
In the following, we give a short overview about some research which is
more or less directly relevant for our work. This section is mostly epitomized
from [66].

Many papers on parallel computer algebra can be found in [20, 73, 30, 29];
summaries are also available in [54] and [26].

An early approach to use Maple as an engine for parallel computer algebra
was ” Sugarbush” [15] that used the coordination language Linda to manage
concurrent activities on multiprocessors and computer networks. The system
was used e.g. for parallelizing big number arithmetic [16]; because of its
special kernel it fell out of use with decline of Linda support.

Without any special parallel programming support, [71] used Maple in a
workstation cluster to parallelize the characteristic set algorithm. Maple ker-
nels were directly started on various machines and communicated by reading
and writing to files in a global network file system. Because of the large
process granularity, this approach nevertheless achieved good speedups.

The |[MAPLE|| (" Parallel Maple”) environment [67] used the Guarded

5

6 State of the Art

Horn Clause language Strand for coordinating the activities of multiple Maple
kernels running on multiprocessors and computer networks. Since the system
depended on a special version of the Maple kernel, it could not be distributed;
with the decline of Strand, it fell out of use.

[13] describes an environment where Maple computations can be dis-
tributed across a network of workstations by use of the DSC system [18§]
which on the basis of standard Internet services ships source code and input
data to computers for execution and retrieves the produced output. The sys-
tem was used with good success for the parallelization of various polynomial
algorithms.

The parallel Maple system described in [6] extended the kernel by message
passing primitives for the Intel Paragon distributed memory multiprocessor
and provided a corresponding Maple programming interface. This framework
only allowed the main program to create other tasks (no nested parallelism).
The system was not distributed and is not use any more.

FoxBoz [19] provides via a Maple interface access to parallel polynomial
factorization algorithms implemented in C++ on top of the message passing
library MPI. This is a complementary approach to Distributed Maple and
the systems mentioned above, because it allows Maple to use an external
parallel program but not to write a parallel program that uses Maple.

The computer algebra system " muPad” is on the surface similar to Maple.
Its kernel can be dynamically extended by a package for "macro parallelism”
implemented in PVM [43]. This package allows to write master-worker pro-
grams for distributed environments based on the concepts of message passing,
global variables and work groups. The parallel programming model is on a
considerably lower level than Distributed Maple.

PVMaple was developed for solving systems of differential equations [48].
Similar to the Intel Paragon Maple and to muPad, it provides a Maple inter-
face for writing message passing programs. However, inspired by Distributed
Maple, it uses an external process for performing the actual interprocess com-
munication on top of PVM; Maple and this process communicate via shared
files. The system runs on clusters of PCs under MS Windows.

Recently, the authors of PVMaple have produced the prototype of a grid-
wrapper for Maple called Maple2g [49, 50]. Its essentially core is a proxy
software that connects to the Globus middleware such that a Maple master
process can use Globus to submit computational jobs to computational nodes.
Maple processes may cooperate by message-passing (similar to PVMaple) on
the basis of the Java-based MPI implementation mpiJava. Initial tests per-
formed with a small number of grid nodes indicate that reasonable efficiency
can be obtained in such scenarios. However, it was also found that local
cluster computations based on native MPI tools for communication were

State of the Art 7

substantially faster than grid-based computations using the Globus-based
counterparts. Maple2g is restricted to one-level master-slave relationships
between nodes; it is planned to generalize these relationships to allow hier-
archical grid-based applications.

2.2 Fault Tolerance in Distributed Systems

2.2.1 Failure Detection in Asynchronous Distributed
Systems

In practice, one of the major differences between distributed and sequential
systems is that in a distributed session, there may be possibilities to avoid
overall failure and to continue the entire computation even if some individ-
ual components fail. In our days, the field of fault detection and recovery
techniques is a very complex and crucial area of distributed computing. Un-
fortunately, the capabilities of general fault detection mechanisms are very
restricted in asynchronous environments by Fischer-Lynch-Paterson’s (FLP)
impossibility result [22].

The FLP impossibility result deals with Consensus problems (like leader
election, voting or failure detection in distributed system), in which all func-
tioning processes have to propose and agree on a value (called decision value).
Roughly, the FLP impossibility result says the following: if we consider a sys-
tem of completely asynchronous processes (or nodes), where

e we cannot make assumptions about relative speeds of the processes or
the speed of communication,

e but we assume that the communication is reliable and at most one node
may fail (stop permanently) at any time,

then we can never determine if a node/process has died or if it is just very
slow in sending messages. The main corollary of this result is that any kind
of Consensus problem has no solution in totally asynchronous systems under
these conditions.

Therefore, developing fault tolerance for an asynchronous system requires
making some assumptions about the system or about the kinds of faults which
can be handled. Usually one assumes an upper bound in communication and
processor speed, and declares a process dead if it does not respond within a
certain time.

The concept of unreliable failure detectors introduced by [14] gives a min-
imal set of properties that a failure detector must have for solving the Con-
sensus in asynchronous distributed systems. An unreliable failure detector

8 State of the Art

may also make a mistake in detecting a failed process, but it is able to cor-
rect this error at a later time. This is guaranteed as long as the unreliable
failure detector meets the following two requirements [14]:

Completeness There is a time after which every process that crashes is
permanently suspected by some correct process.

Accuracy There is a time after which some correct process is never sus-
pected by any correct process.

This technique has some practiced advantages. For instance, if such a
failure detector is distributed (this is the usual case) and each node can ac-
cess to its own detector, then detectors do not need to agree in the detected
failed nodes. Furthermore, the failure detection service does not have to be
centralized. Therefore, this concept is ideal for large scalable distributed ar-
chitectures, like Globus [68].

2.2.2 Fundamental Fault Tolerance Techniques

There exist various fundamental techniques to tolerate detected failures in
distributed systems [7, 34]:

e To organize a distributed activity as a collection of transactions whose
effects become durable on commit time; this is a popular basis for
database-oriented applications but does not integrate well with parallel
programming models.

e By replication of resources or services on multiple servers such that, if
server fails, a request is handled by another one. Since parallel program-
ming systems are concerned about optimal use of resources, only few
systems apply this approach [1, 3] (see also the description of primary
backup systems in the next section).

e Most frequently, parallel programming environments pursue fault tol-
erance by checkpointing: they regularly save global snapshots of the
session state on stable storage such that a failed session can be re-
started from the last saved state (potentially migrating tasks to other
machines); stable storage can be implemented by disks or by replicated
copies in the memories of multiple machines [52, 56]. Some systems
perform checkpointing transparently to the application, often on top of
PVM [17, 12, 28, 40, 37] or MPI [55]. Other systems rely on application
support for checkpointing [5, 46].

State of the Art 9

e Many metacomputing and message passing frameworks do not provide
built-in fault tolerance at all. Rather they include failure detection
and handling services that enable the user to deal with failures on the
application-level. Examples of such systems are the Globus toolkit [68],
the Harness environment [44], PVM [27] or FT-MPI [21].

All these approaches are relatively complex because they have to deal with
general parallel computations; for special problems much simpler solutions
exist [32]. However, also parallel programming models that are more abstract
than message passing should allow to deal with fault tolerance in a simpler
way. While this is not yet completely true for the coordination language
Linda [4], the functional programming model provides this potential to a
large degree [33].

2.2.3 Server Fault Tolerance in Distributed Systems

One of the popular way to achieve server fault tolerance is to apply the
approach of primary backup systems [11, 53, 74]. Primary backup systems
provide fault tolerance capabilities by replicating the state of primary server
on one or more backup servers. In case of a primary server failure, one of the
backup server is promoted as the new primary server and the connections
between the new server and the clients are re-established.

In the recent developments, these backup mechanisms are often mixed
with some kind of transport-level fault tolerance technique [2, 70, 42]. Such
systems use some kind of extension of a transport-level protocol like TCP
for two reasons. First, they can reduce the extra overhead of the logging the
primary server state during the normal operation by broadcasting the TCP
byte stream from a client to primary and backup servers simultaneously.
Secondly, they can hide a server failure from the clients, because the modified
TCP protocol keeps the connections between the server and the clients alive
while a backup server is activated.

The main disadvantage of primary backup systems is that they require
extra hardware components, at least a backup server (which is not exploited
at all during the normal operation). Hence, this approach gives a suitable
solution only for those applications that are important enough to pay for ex-
tra hardware (e.g.: e-commerce applications). Another problem with primary
backup system is the limited number of tolerated server failure. Namely, if
the (last) backup server also fails, the whole session fails (or aborts) inde-
pendently from the state of the rest of members in the session.

In ST-TCP [42], the TCP byte stream is “tapped” at an intermediate
point between the client and the primary server by some kind of physical

10 State of the Art

network interface; byte sequences sent by either the server or a client are
forwarded to at least one backup server. The backup servers keep their state
consistent with the state of the primary server by executing the same se-
quence of requests as primary server does. By this, a backup server is able to
substitute for the primary server immediately in case of server failure (active
backup server).

Unfortunately, this kind of server replication technique can be used if
and only if operation of the server is deterministic. Replication of non-
deterministic servers in this way has not been solved yet. Nevertheless, this
mechanism may be also capable to detect a Byzantine failure of primary
server since the backup servers receives the responses of the primary server
sent to the clients. If the system contains more than one backup server and
their generated responses are different from that one which the primary server
issued, the faulty server can be determined by some kind of voting algorithm.

Another approach for the automatic handling of server failures is to select
a machine as the new root from the the rest of the distributed session. This
can be done by a leader election algorithm. The specification of leader election
in synchronous systems says (roughly) that a system is always able to reach
a state in which all operational nodes agree on the leader. In asynchronous
systems (with failures) as stated above, this kind of consensus problems is
not solvable [22].

In the Inwvitation Algorithm, Garcia-Molna gives a specification based on
the idea of groups for solving leader election in asynchronous system [25]. A
group is a set of nodes that agree on a leader. This algorithm is used by the
group communication system in Amoeba [35] to reconfigure a group after a
node crashes.

In the Invitation Algorithm, each node has a unique priority and each is
a member of a common group. A node ¢ monitors the leader of the group by
sending a message periodically and waiting for a reply. If it does not arrive
within a limited time period, 7 triggers a leader election. In the first step,
© makes new a group with itself as the leader and the only member. Then
a leader 7 sends a message check to every other node periodically asking
whether there exists any other leader. If at least one node replies that it is
a leader, the node 7 suspends its leader election activity for a time that is
inversely proportional to its priority (this may help to prevent initiating of
concurrent elections). After this time expired, ¢ resumes its started leader
election and invites every other leader by a message merge to join a new
group with node 7 as leader.

When a leader receives a message merge, it forwards it to all members
of its own group. Any node j which receives such an invitation (directly or
indirectly) accepts it by sending a message accept to node i (the proposed

State of the Art 11

potential leader), which acknowledges it with a message answer. If j receives
this message answer within some timeout period, then it joins the new group
with ¢ as a leader. Otherwise, j establishes a singleton group with itself as
the leader again and starts to send check messages.

Unfortunately, the specification of Invitation Algorithm is too strong in
some situations [69], because it does not allow to break a connection between
two nodes.

12

State of the Art

Chapter 3

Distributed Maple

Distributed Maple is a Java-based system for implementing parallel programs
in the computer algebra system Maple [58]. The starting point of develop-
ment on Distributed Maple was in 1998 the goal to parallelize parts of the
software library CASA (computer algebra software for constructive algebraic
geometry). CASA has since 1990 been developed by various researchers at
RISC-Linz [45] on the basis of the computer algebra system Maple [72].

The system has been employed successfully to develop the parallel ver-
sions for various non-trivial methods and applications in computer algebra
and algebraic geometry, e.g., bivariate resultant computation, real root iso-
lation, plotting of algebraic plane curves, plotting of surface to surface inter-
sections and neighborhood analysis of algebraic curves [61, 62, 63].

Distributed Maple is portable and has been used in numerous parallel and
networked environments, e.g. clusters of Linux PCs and Unix workstations,
a Sun HPC 6500 bus-based shared memory machine, an Origin 2000 NUMA
multiprocessor, and heterogeneous combinations of these. In [60], we have
analyzed the system performance in these environments in large detail.

Since the system does not require any special kernel extensions it should
also be portable to any new commercial version of Maple. Furthermore, an
interface of the coordination program to another computer algebra system
Mathematica has been developed [47]. Starting from the initial design [59],
the system has gradually been refined and extended. The follow general de-
scription is based on [58, 66].

3.1 Use of the System

The user interacts with Distributed Maple via a conventional Maple fron-
tend (text or graphical), i.e., she or he operates within the familiar Maple

13

14 DISTRIBUTED MAPLE

environment for writing and executing parallel programs (see Figure 3.1).
Maple commands establish a distributed session in which computational tasks
can be processed on any connected machine. The following simple example
demonstrates the usage of the environment:

gemini!5>maple
[N~/ Maple V Release 5.1 (Universitaet Linz)
I\ [/1_. Copyright (c) 1981-1998 by Waterloo Maple Inc. All rights
\ MAPLE / reserved. Maple and Maple V are registered trademarks of
| S, > Waterloo Maple Inc.
| Type 7 for help.
> read‘dist.maple‘;
Distributed Maple V1.1.15 (c) 1998-2001 Wolfgang Schreiner (RISC-Linz)
See http://www.risc.uni-linz.ac.at/software/distmaple
> dist[initialize] ([[condor,linux], [pinwheel,octane]]);
connecting condor...
connecting pinwheel...

okay
> t := dist[start] (int, x"n, x);
t =0
>r :=1 + dist[wait](t);
(n + 1)
X
r :=1+ ——————--
n+1
> dist[terminate];
okay

> quit;

To use the system, the user first has to load the file dist.maple which imple-
ments the interface to the distributed backend by a Maple package dist. By
dist[initialize], she or he can trigger the establishing of the distributed
backend. In our example, two additional Maple kernels are created on ma-
chine condor of type linux and on machine pinwheel of type octane, re-
spectively. The machine types are used to lookup the system-specific startup
and performance information which is located in a file dist.systems.

If the remote processes are successfully started, the user can start the
processing of her computational tasks right away by issuing the command
dist[start]. The command dist[wait] blocks the current execution until
the corresponding task whose identifier is given in the command as an ar-
gument has terminated and then return its result. Finally, the user has to
use the dist[terminate]. This command closes the distributed session by
destroying all remote Maple kernels and closing all network connections.

DISTRIBUTED MAPLE 15

LM sioad ol &l
genini

[=] Mapke ¥ Release §.|
Insert Format Zprendsiesd

esle] (o] [Z1T

| w11

1 1 L 1 i 1 I L 1 1 1 1
2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 21

u-‘NUb“!
-

> read dist . mapla‘,

Distributed Maple ¥1.1.15 (c) 1998-2001 Wolfgang Schreiner (RISC-Linz)

See http: //www. risc.uni-linz. ac. at/software/distmaple

> dist[initialize){[(perseus, | inux], [hydra, | inux) .,
[draco, 1imux], [catus, 1inux]]);

connecting perseus. .

connecting hydra. ..

connecting draco. ..

connecting cetus

connecting swan

x) Mapie V 2D o %=

File Edit Style /Axes Projection

- .

n.g i
akay \
> raad “distsoft/init.maple*;
|
| Welcome to CASA 2.4.3 for Maple V.5

1
[AY I A K
L W O |
/! L Copyright (C) 1990-1999 by Research Institute \
| LY for Symbolic Computation (RISC-Linz), the \
\ CASAa 2.4.3 | Universiky of Linz, A-4040 Linz, Austria X \
| | |
_ 111 | For help type ‘?casa’ or '7?casa, <topic}’ J
i I I \ I
[ey
-1.5 -4 0.5 '] 0.5 1 L5

Figure 3.1: The User Interface of Distributed Maple

3.1.1 User Manual

In this section, we give a detailed but not complete description of the pro-
gramming interface in Distributed Maple [58].

Initialization and Termination of a Distributed Session

e dist[initialize] (machineList) initializes a distributed Maple ses-
sion by starting remote processes and establishing the corresponding
network connections. Each element of machineList is a list [machine,
type] where machine is the domain name (or IP address) of a machine
and type is a predefined key which denotes a machine type. By this type
parameter, the system is able to determine the system specific startup
and performance information for every supported platform.

e dist[terminate] () terminates the current distributed Maple session
by destroying all remote Maple kernels and closing all network connec-
tions. This procedure should be called before quitting the interactive
Maple session.

16 DISTRIBUTED MAPLE

e dist[all](command) executes command on every Maple kernel con-
nected to the distributed session.

Functional Parallelism

e dist[start](f, a, ...) creates a task that computes f(a, ...) on some
Maple kernel connected to the distributed session.

e dist[process](f, a, ...) This call creates a task that computes f(a,...)
on a separate (possibly newly created) Maple kernel. This kernel has
executed all the commands issued through previous calls of dist[all]
in the corresponding order. During the execution of the task, no other
task is scheduled on the kernel.

e dist[wait](#) suspends the current execution until task ¢ has com-
pleted and then returns its result. While the current execution is sus-
pended, other tasks can be executed by the corresponding Maple kernel.

e dist[select](taskList) suspends the current execution until the exe-
cution of some task in taskList has completed; it then returns a selector
for this task, i.e., a list [indez, result] where indez denotes the position
of the task in the list and result is its result.

Shared Objects

e (:= dist[datal() creates a shared object d that may be used to
communicate data between different tasks. The object is initially empty.

e dist[get](d) returns the value of shared object d; if d is still empty,
the current task is blocked until a value is put into d.

e dist[put](d, v) puts the value v into the shared object d and releases
all tasks blocked on an attempt to get a value from this object.

e dist[clear](d) resets the shared object d into the empty state. Fur-
ther attempts to get a value from d blocks the corresponding task.

3.1.2 Visualization

Distributed Maple supports on-line visualization to illustrate the dynamic
behavior of a session during its execution. When the user issues a command
dist[visualize] during the session, a window pops up in which the work-
load status of each machine and the utilization of the total system resource
are displayed (see the window on the right side on the top in Figure 3.1).

DISTRIBUTED MAPLE 17

a,) user interface b,) user interface
| |
root v n v
Maple
dist.maple
vA la) task<t,d> v‘
dist.Scheduler
))
] 1] 1
[i [i
v ‘ ‘ v 1b lask<t,d>v ‘ 1e) resulf<t,r> 2b) request<t,n”>‘ v 2c) replygt,r>
dist.Scheduler [q1 — — = = = [™]dist.Scheduler
VA 4* 1c task<t,d>v4 1d) resul<t,r> 2a) wait<t> 4* 2d) result<t,r>
dist.maple dist.maple
Maple Maple
n n

Figure 3.2: a.) System Model b.) Ezecution Model

This real-time visualization window is split to two parts. Its upper half
part shows which machine processes one or more tasks and which one has
no any job at the same time (workload). The lower half part of the win-
dow displays how many machine works together at the same time (resource
utilization).

3.2 System and Execution Model

A Distributed Maple session comprises a set of nodes (machines, processors)
each of which holds a pair of processes: a (e.g. Maple) kernel which performs
the actual computation, and a scheduler (a Java Virtual Machine executing
a Java program) which coordinates node interaction (see Figure 3.2a). The
scheduler communicates, via pairs of sockets, with the kernel on the same
node and, via sockets, with the schedulers on the other nodes. The commu-
nication protocol between the scheduler and the kernel is implemented by
dist.maple interface. The root is that node from which the session was estab-
lished by user interaction with the kernel. Initially, a single task is executing
on the root kernel; this task may subsequently create new tasks which are dis-
tributed via the schedulers to other kernels and may in turn create new tasks.

The parallel programming model is basically functional (see Figure 3.2b):
from the perspective of a scheduler, a kernel on node n may emit a number
of messages task:<t, d> where ¢ identifies the task and d describes it. The

18 DISTRIBUTED MAPLE

task needs to be forwarded to some idle kernel which eventually returns a
message result:<t, r> to n where r represents the computed result. r is
stored in a table resultTable on n. When a kernel emits wait:<?>, this task
is blocked until the scheduler responds with the result of £. Thus, if this result
is not yet available, the scheduler may submit to the now idle kernel another
task; when this task has returned its result, the kernel may receive the result
waited for or yet another task.

A task identifier ¢ encodes a pair <n, i> where n identifies the node on
which the task was created and ¢ is an index. Initially, every kernel receives
from the scheduler the index n of the current node and an interval [imin, imaz]
which it may use to assign an unique identifier t=<n,i> with i, < < e
to every newly created task (the scheduler reserves part of the representable
index range for the creation of additional kernels). The identifier ¢ of a task
thus always describes the node n on which the task was created (and on which
the task result is stored); this node n thus serves as the rendezvous point
between node n’ computing the result of ¢ and node n” requesting this result.

When the scheduler on n receives a task:<t, d> from its kernel, it thus
allocates a result descriptor that will eventually hold the result r; the task
itself is scheduled for execution on some node n’. When a kernel on some node
n” issues a wait:<t>, the scheduler on n” forwards a request:<t, n”> to
n. If r is not yet available on n, this request is queued in the result descriptor.
When the kernel on n’ eventually returns the result:<t, r>, the scheduler
on n’ forwards this message to n, which constructs a reply:<t¢, r> and
sends it to n”.

By a message all:<command>, all nodes can be initialized together,
because its argument command is executed on every Maple kernel in a session.

3.2.1 The Scheduler

As mentioned before, the scheduler is a Java program which distributes and
coordinates the tasks created by all kernels. After establishing of a distributed
session was triggered by the user, an initial scheduler process alias root sched-
uler is created first by the local Maple kernel. Then this scheduler reads all
system-specific startup and performance information from a file dist.systems
and starts the other instances of the scheduler on remote machines. Then
each of these remote instances starts and initializes its own local computa-
tion kernel.

After a distributed session has been created, every scheduler instance
accepts tasks from its local Maple kernel and forwards them to the root
scheduler. The root schedules these tasks among all nodes connected to the
session by a simple load balancing algorithm (see in Section 3.2.4).

DISTRIBUTED MAPLE 19

a.) b.)

connection to the kernel connection to the root

| L

waiting for a
.—4 new connection
request

7peer connection
m_»‘_’to node i

I v I v [v

connection connection connection to the kernel
to node 1 to node n

Figure 3.3: a.) Scheduler Architecture on the Root b.) Scheduler Architecture on Non-
Root Nodes

The root scheduler consists of a number of concurrent threads as shown
in Figure 3.3a. A central server thread implements the main functionalities
of the scheduler. This thread takes out the received messages from the cen-
tral input buffer one by one and processes them sequentially. To each input
channel, an other kind of thread called input thread is assigned that listens
on the channel. If a message arrives from a channel, the corresponding input
thread puts it into the central input buffer.

To send a message, the sender (thread) has to put the message into the
corresponding output buffer. Namely, each output channel has an own buffer
(there is no central output buffer) and an own thread, too. These threads are
called output thread and their task is to read the message from the output
buffer and to write it on the output channel.

The architecture of non-root schedulers is almost the same, but they
have two additional threads called connect thread and watchdog thread (see
Figure 3.3b). The role of connect thread is to wait for peer connection re-
quests from other non-root nodes and to establish input/output channels for
a peer connection after such a request (see for more details in Section 3.2.2).
In the watchdog thread, the mechanism watchdog is implemented (see Sec-
tion 3.2.3).

3.2.2 Peer Connections

Initially, there exists a connection only between the root (the local node) and
each remote node. However, all nodes know of each other, i.e., of a machine
address and the number of a port on which a connect thread is listening
for connection requests. When a node needs to send a message to one of its

20 DISTRIBUTED MAPLE

peers, thus a direct connection is established for the message transfer. These
connections remain persistent through the rest of the session.

3.2.3 The Watchdog Mechanism

The only mechanism originally available in Distributed Maple for handling
faults is a watchdog mechanism on every non-root node that regularly checks
whether a message had been recently received from the root. If not, it sends a
ping message to the root that has to be acknowledged. If no acknowledgement
arrives from the root within a certain time bound, the node shuts itself down.

3.2.4 Load Balancing

A core problem of distributed system is to exploit the system resources most
efficiently by load balancing. The various load balancing techniques tries
to reduce the global execution time by assigning statically or dynamically
more workload to more powerful resources. Static load balancing attempts
to determine appropriate shares of work to be distributed to processors at
application startup, while dynamic load balancing may redistribute some
part of the work during the execution in order to compensate for differences
in processors performance [38].

Distributed Maple has a very simple static load balancing algorithm which
is able to measure neither the performance nor workload of the processors.
Namely, to initialize a distributed session, the user has to give names or IP
addresses of all machines of which the session consists and a predefined key
for each machine which denotes a machine type (e.g.: linux, octane, origin,
ultrasparc, etc.). By these machine types, the root scheduler can find (among
others) some system-specific performance information in a file dist .systems
for each machine. These are the followings:

e the relative speed is a performance factor of a machine type,

e the mazload denotes the maximum number of executable but not yet
started tasks that a kind of machine may hold at a time,

e and the minload denotes the minimum number of executable but not
yet started tasks that a kind of machine should hold at a time.

The root scheduler always distributes the task among the nodes by us-
ing these static performance factors independently the real workload state
of processors at a time. Of course, this solution is less efficient than a load

DISTRIBUTED MAPLE 21

balancing according to the real workloads (e.g.: some other users or applica-
tions maybe use the corresponding machines, t00), but it is still sufficient for
our current requirements.

Roughly, the root scheduler first attempts to schedule a task to the fastest
node on which there is no any task under processing. If there is no such a
node, the root scheduler tries to find the fastest node on which the number of
scheduled but unfinished tasks is less than the mazload. If the root scheduler
does not find such a node, it schedules the task to the queue of own local
kernel. If the number of scheduled but unfinished tasks on a node becomes
less than the minload, the node notifies the root scheduler about this fact.

3.2.5 Shared Objects

The functional model is not the only one by which tasks in Distributed Maple
may interact with each other: they may also use self-synchronized shared
objects for a producer/consumer (or, more general, dataflow-like) kind of
operation. From the perspective of a scheduler on some node n, the local
kernel may issue a message data:<t> which requests the allocation of a
shared object with identifier ¢ taken from the range of task identifiers assigned
to the kernel. Actually, a shared object is not else as an result descriptor that
is stored on node n (on the node where it was created).

If we compare the shared objects with tasks, the only difference is that
a shared objects receives its value r by a message put:<t, r> instead of
result:<t, r>. Any task that knows ¢ may issue a put message, if the
corresponding shared object is still empty. However if a kernel on some node
n’ needs the value r, it also sends a message wait:<¢> to node n as in the
case of requesting task results.

3.3 Failure Analysis
There are numerous possibilities for faults that may cause a session failure:

e a machine becomes unreachable (usually a transient fault, i.e., the ma-
chine is rebooted or is temporarily disconnected),

e a process in the scheduling layer or in the computation layer crashes
(a bug in the implementation of the Java Virtual Machine, of the Java
Development Kit, of Maple, or of Distributed Maple itself) or

e the computation itself aborts unexpectedly (a bug in the application).

22 DISTRIBUTED MAPLE

While the last issue can be overcome and the Distributed Maple software
itself is very stable, there certainly exist bugs in the lower software levels
that are out of our control; machine/network/operating system faults may
happen in any case.

All of the possibly fault cases mentioned above can be classified into the
following failure types [41]:

Communication failures This kind of failures cover those situations in
which a message is lost or duplicated or becomes corrupted.

Stop failures A session or a part of a session (e.g.: a kernel process, a
scheduler process, or a node) can stop somewhen in the middle of its
execution by several reasons.

A connection may also interrupted such that communication becomes
impossible at all (permanently or for a limited period).

Byzantine failures A faulty process (or machine) can exhibit completely
arbitrary behavior.

We do not deal with the tolerating of Communication failures and Byzantine
failures (our system currently is not able to handle corrupt, lost or duplicated
messages and corrupt task executions). In the functional parallel program-
ming model, the Communication failures may be handled similarly as in the
message passing or any other general parallel programming model; there ex-
ist already numerous general and effective algorithms for tolerating of this
kind of failures [41].

We focus on Stop failures and we assume in this paper that only such
failures may occur (a part of the system can exhibit Stop failure simply by
stopping somewhere in the middle of its execution). In more detail, we deal
with the following error situations:

the root of the tree of computation nodes crashes,

e some non-root node crashes,

some Maple process aborts,

a connection between the root and another node breaks and

e a connection between two non-root nodes breaks.

We say that a node crashes if the machine stops execution or reboots, or
if the Distributed Maple process aborts. In the original system, we had to
restart the computation in each of these cases. If the root crashes, the system
aborts; in all other cases, it deadlocks and must be stopped manually.

Chapter 4

The Logging Mechanism

The first step towards fault tolerance is to store from time to time consistent
states of a computational session. If the session fails for any reason, the
computation does not need to be restarted from the scratch, because it can
continue from such a stored intermediate state of the session.

To achieve this goal, one of the most popular general algorithm is check-
pointing, which regularly saves global snapshots of the session state [17, 12,
28, 40, 37, 55]. The checkpointing algorithm can deal with all side-effects of
processes (because it saves the whole state of each node and the sent but
not yet received messages). However, the execution phase of the system is
periodically interrupted by a checkpointing phase which has some negative
consequences for the performance.

The functional programming model of Distributed Maple simplifies the
problem, because the tasks are computed and return results without causing
any side-effects. Consequently, it is enough to log the results of tasks and
values of the shared objects for storing a consistent state of a session. If
the session fails for any reason, we can thus start it and read the logged
data (transparently to the application program) without re-executing the
corresponding tasks.

This “Logging” mechanism [64, 65, 8] is based on the centralized archi-
tecture of the system and only requires that the root is connected to a stable
storage system. Every task created by any node is forwarded to the root
which schedules it for execution on another node (see Section 3.2). After a
session failure, the root attempts to recover the corresponding task result
before scheduling the task. Thus the recovery process does not need to send
additional messages (no extra communication) and a computed task is re-
covered if and only if its result is needed for the further computation.

However, logging task results needs extra work to be done, because in
normal operation, tasks are processed on various nodes and the results are

23

24 THE LOGGING MECHANISM

not sent to the root. Hence, we need an extra message to send each result to
the root in order to log it.

Furthermore, our “Logging” mechanism is complicated by the fact that
task arguments and results may embed task identifiers and that the schedul-
ing layer of Distributed Maple has only a limited amount of information
about the activities of the computing layer.

The system supports two kinds of logging modes which are based on dif-
ferent assumptions (see Section 4.1) and can be selected on the startup of
a session: Section 4.2 describes the Fast Mode, which is quite simple and
very effective. Section 4.3 discusses the more general Safe Mode which con-
tains some additional operations. Section 4.4 explains how the “Logging”
mechanism is extended in order to incorporate shared objects.

4.1 Assumptions and Guarantees

For the correct working of the “Logging” mechanism, our assumptions are
the following:

e The root has access to a writable file system on which it can implement
a stable storage.

e The communication is reliable between the system components. Mes-
sages are never corrupted or duplicated and they may be lost only in
Stop failure situations.

e All system components work correctly (no Byzantine failures).

Please note our assumptions do not exclude Stop Failures which may
occur in arbitrary periods. If the system satisfies these conditions, we can
provide two kind of logging and recovery mechanisms, which are called:

Fast Mode is the base of the “Logging” mechanism. In this mode, we re-
strict our consideration to programs whose tasks are first order: neither
any task description nor any task result contains a task identifier, i.e.,
task identifiers are not passed as parts of task arguments and are not
returned as parts of task results.

Safe Mode is the advanced “Logging” mechanism, in which we allow to use
higher-order tasks (tasks which receive task identifiers as arguments or
return them as results).

In both modes, we guarantee, that if the system fails in Safe Mode, we can
restart it and we can continue the computation from a saved state. However,
human activity is needed for the restarting of the system.

THE LOGGING MECHANISM 25

user Iintertace

root |
3
Y taskidh(d) | |
d = ||
* |
descr.t * i 1) task<t,d> ** **
result.t !
t [
r 2
A : A A
6 5) result<t,r>

4) task<t,d>

Figure 4.1: Logging task description and task result in Fast Mode

4.2 Fast Mode

In Fast Mode, all basic functionalities of the “Logging” mechanism are al-
ready realized but methods are missing for handling task identifiers embedded
in task descriptions and in task results.

4.2.1 Algorithm

The “Logging” mechanism utilizes the fact that in Distributed Maple the root
is in charge of task distribution: every new task:<t,d> is forwarded to the
root which eventually assigns it to some node for execution. The operations
dealing with result logging and failure recovery are as follows (see Figure 4.1):

Logging When the root receives a task: <t,d>, it computes a numeric hash
code h(d) and appends to file taskid.h(d) the task identifier ¢. Then
the root starts an asynchronous thread to write the task description d
into a new file descr.t.

When a node sends a result:<t?,7> to some node n different from the
root, it forwards a copy to the root. When the root receives this result,
it creates an asynchronous thread to write the task result r into a new
file result.t.

All data are written in a format that enables a reader to recognize
incomplete writes. At any time, taskid.h(d) holds a sequence of task
identifiers t (the last of which may be incomplete) for which there may
exist description files descr.t and/or result files result.t (both with

26 THE LOGGING MECHANISM

possibly incomplete contents). When the session terminates without
failure, the log files are discarded.

Recovery When a session is re-started after a failure, the root may receive
from a node n a task:<t,d> such that a file taskid.h(d) exists. If
for some complete task identifier ¢’ in this file there exist file descr.t’
with a complete description identical to d and file result.¢’ with a
complete result r, the root need not schedule this task for execution
but may immediately return result:<t,r> to n.

The comparison of task descriptions is required because task identifiers
need not be identical across sessions; since the result r of a task only
depends on its description d, the identity of descriptions is a sufficient
condition to ensure the identity of results.

The mechanism is simple and efficient: the only overhead occurs on the
root for writing the log files (the potentially large task descriptions and results
are written by asynchronous threads) and, if a task is created on a node other
than the root, the sending of a duplicate result to the root.

4.2.2 Implementation

The most important issue which we had to determine at the beginning of
the implementation was how to identify logged results. We cannot use task
identifiers for this purpose, because they are not the same in different sessions
(however, we should store the task identifiers, too, because they are needed
for the recovery of higher-order tasks, as we can see later in Section 4.3). The
only thing which uniquely identifies a task result is its description. Thus, the
“Logging” mechanism has to store the task descriptions, too.

Roughly, the mechanism works in the following way. As mentioned before,
the root receives all task descriptions created by all nodes. Before the root
schedules a task for execution, it tries to restore the result of the task from the
storage system (because the result may be computed and stored in a previous
session). If it cannot restore it, it saves the description and schedules the task.
When the result is computed, the root receives it and saves it to the storage
System.

The system stores each piece of data (descriptions and results) in different
files, so that the loss of data can be minimized after a I/O failure. The logged
data are identified by both the task identifiers and hash codes generated from
the task descriptions.

The implementation of this mechanism has to take care of some other
issues:

THE LOGGING MECHANISM 27

e Two or more task descriptions may have the same hash code.

e The description of a task may not be stored (yet) or it is stored but
corrupted.

e The result of a task may not be stored (yet) or it is stored but corrupted.

New Data Structures and Messages

Two additional kinds of messages had to be implemented:

e By a message stable:<mode>, the logging mechanism can be switched
on or off and the active logging mode can be changed. It has only one
argument, which is the identifier of such a mode (value 1 switches on
the Fast Mode, value 2 switches on the Safe Mode and value 0 switches
off logging).

e In a message store:<t, r>, a computed task result is sent to the root
in order to save the result to the storage system. The message has two
arguments, the identifier ¢ of a task and the result r of this task.

New Files

The “Logging” mechanism saves all necessary data into a logging directory
using the following files:

e A file result.t contains a task result identified by file extension t.

e A file descr.t contains a task description identified by file extension ¢.
In Fast Mode, this file is only needed to identify a result of a particular
task for recovery. But in Safe Mode described in Section 4.3, the sys-
tem may restore the description of a particular task from this file by
identifier ¢, too.

e The file taskid.h(d) contains basically the identifier of the task as-
signed to task description d. The file extension h(d) is a numeric hash
code computed from d. This file allows of access the corresponding files
result.t? and descr.t by a task description. Unfortunately, we cannot
guarantee that a composed hash code is unique for each task descrip-
tion. Therefore, it may occur, that a taskid.h(d) file contains more
than one task identifier (because two or more task descriptions have
the same hash code).

28 THE LOGGING MECHANISM

S t :=the

element in t next element
Skidy/—‘ of taskid. h(d)

=]
sSTOP By an ahsyn%ronous °
threa
roolt Sﬁietddules -t is stored in
ask:<t, taskid.h(d),

—d is stored in
descr.t’.

>
o

= tent of yes Does yes
r:=content o result. t’ d’:=content
result. t’ exist? of descr.t’

root sends
result:<t,r>
to i

Does
taskid. h(d)
exist?

(root receives
task: <t, d> from,
node i)

Figure 4.2: Recovery in Fast Mode

The system has to be able to check whether a particular file contains valid
or corrupted data, because a previous session could crash during the writing
of this file. Therefore, every file contains a new line character at its end and
the restore mechanism always checks whether the end of a file is a new line
character (data cannot contain this character). If this is not the case, the
system does not read and restore the content of the file.

Every file is written without any buffering procedure in order to minimize
the loss of data in case of a session failure.

Starting Logging in Fast Mode

The user can switch on the Fast Mode by the call dist[logging] (1). It is
allowed to issue this call only after a session is established (see the description
of call dist[initialize] in Section 3.1.1).

The effect of this command is that the Maple frontend sends a message
stable:<1> to the root scheduler. When the root scheduler receives this mes-
sage, it creates the logging directory (if it does not exist) and it broadcasts
message stable:<1> further to every node. By this notification, every node
changes to Fast Mode.

Result Recovery by Task Description

When the root scheduler wants to check whether a result has already been
stored for a task description d, it generates a hash code h(d) from d and
looks for a file taskid.h(d) (see Figure 4.2). If such a file exists, it takes

THE LOGGING MECHANISM 29

storage system

connectif)n to thi kernel I l

connection connection
to node 1 tonode n

Figure 4.3: Scheduler Architecture on the Root in Fast Mode

the first task identifier ¢ contained by this file and it compares d with the
content of file descr.t. If they are identical, the root scheduler recovers the
result contained by result.? .

If descr.t does not exist, or it exists, but its content is either corrupted
or not equal to d, then the root scheduler takes the next task identifier from
taskid.h(d) and it tries to recover the task result for d by this identifier, too.
If there is no more element in taskid.h(d), the recovery operation cannot
restore the result for description d. The recovery mechanism may be also
unsuccessful, if taskid.h(d) or a particular result file is missing, or their
contents are corrupted.

Modified Task Message Handling

When a scheduler on a non-root node receives a message task:<t, d> from
a local kernel, it forwards this message to the root. If the Fast Mode is active
and the root scheduler receives a message task:<t, d>, it checks whether it
can restore the result by description d from the storage system (as described
in the previous paragraph).

If the recovery is unsuccessful, the root scheduler creates a concurrent
thread to save d into a file descr.t¢ (separately from the main scheduler
functionality implemented in the central server thread, see Figure 4.3). Then
the task t is scheduled to a node.

If the recovery is successful, the root restores the result r of the task ¢
and sends it in a result:<t?, r> message to the node which created this task
(the identifier of this node can be determined from the task identifier ¢).

30 THE LOGGING MECHANISM

Store Message Handling

When a kernel has computed the result r of a task ¢, it sends a message
result:<t, r> to the local scheduler. This scheduler forwards this message
to the node which created task ¢ and also sends a duplicate of r in a message
store: <t, r> message to the root. If the root scheduler receives a message
store:<t, r>, it creates a subsequent concurrent thread to save r into a file
result.t (separately from the main scheduler functionality implemented in
the central server thread, see Figure 4.3).

4.3 Safe Mode

The mechanism described in Section 4.2 guarantees correct results if task
arguments and result do not embed task identifiers. However, assume that
a task t creates another task and embeds its identifier ¢’ in result r. If r is
logged and the session fails, in the recovery session this result may be read
from the log such that task identifier ¢’ is re-created. A task may subsequently
issue a wait:<t’> referring to a no more existing task or, even worse, to a
task that computes a different result than in the failed session.

In order to allow higher-order tasks (tasks which receive task identifiers
as arguments or return them as results), we have to guarantee that each task
description is always logged to the storage system before other task descrip-
tions or task results which may contain its identifier are logged. The idea is
that the description of any task created by a previous session can always be
recovered and rescheduled, if another task refers to it by its identifier, but
its result is not available. How can we achieve this?

We analyzed the possible relations between the tasks and we managed
to determine those situations in which a task ¢ may know the identifier of
another task ¢’. These are the following:

e If ¢ establishes ¢’ (¢ is the parent of ¢”).

e If ¢t and ¢’ have a common parent and ¢’ is established earlier than t.
In this case, the description of ¢ may contain the identifier of ¢”.

e If the parent task of ¢t” embeds the identifier of ¢’ into its result. ¢ may
receive this result as the answer for its issued wait message.

e At last, if ¢’ is the parent of . ¢’ may build in its own identifier into
the description of its spawn task t.

We subsequently refined the “Logging” mechanism to satisfy the following
conditions:

THE LOGGING MECHANISM 31

Condition A A task description may be written to the storage system if and
only if all task descriptions previously created by the same node have
been completely stored (because the current task description might
contain the identifier of such tasks). If the description of the current
task were stored earlier than the descriptions of some previously created
ones and the system crashed before the descriptions or the results of the
previously created tasks were completely written to the storage system,
then the next session would refer to some no more existing tasks.

Condition B A task description may be scheduled to a node if and only if
the task description has been completely stored to the storage system.
Otherwise, this task might create some other tasks whose descriptions
contain its task identifier. If these task descriptions were stored earlier
than the description of their parent task and the system crashed before
the description or the result of this parent task were completely written
to the storage system, then the next session would refer to a no more
existing task.

Condition C The result of a computed task may be sent to another node
if and only if all the task descriptions created by this task have been
completely stored to the storage system. Otherwise, the result of the
computed task might contain the identifier of its spawn tasks. If another
task received this result and created some new tasks description by
using of the received identifier (or the result is simple logged) before
the description of these spawn tasks were completely written to the
storage system, then the next session would refer to no more existing
tasks.

4.3.1 Algorithm

In order to distinguish task identifiers of different sessions, we introduce a
session identifier s. In a session that does not represent the recovery of a
previously failed session, the session identifier is initialized to 0 and a file
session is written with content 0. In a recovery session, the previous iden-
tifier s is read from session, the new session identifier is taken as s+1 and
overwrites the content of session. If the recovery session also fails, a new
recovery session may be initiated and thus the session identifier may grow to
an arbitrary size (subject to an implementation limit).

A task identifier now encodes a triple <s,n,7> that embeds the number s
of the session in which the corresponding task was created. The mechanism
described in Section 4.2 is now generalized as follows:

32

THE LOGGING MECHANISM

user Iintertace

root | after a thread Storage System
— finished -]
description d
Maple

51

| store descriptions |

(((

dist.maple

thread 1/1 | thread n/1 |

** 2.) create and
link a thread for UrieEe) 172

Y - thread 1/3 >

\ writing of the 1 | . | n
description d

N

Figure 4.4: Logging Task Description in Safe Mode

Logging To support higher-order tasks, the basic “Logging” mechanism de-

scribed in Section 4.2 has to be extended with some additional function-
alities such that the previously mentioned three conditions are satisfied:

e For achieving Condition A, the root maintains a queue for each

node (see Figure 4.4). When it receives a task:<t,d> and the
result for description d cannot be recovered, the root creates a
thread to write d to the storage system as in Fast Mode. But in-
stead of starting this thread immediately, the root places it as the
last element into the queue of that node from which the message
arrived. If this newly inserted thread is the first element of the
queue, it is started immediately. Every thread which is the first
element of a queue writes a description asynchronously to the stor-
age system. Before a thread finishes its activity, it starts the next
thread in the queue. So, the descriptions created on the same node
are written sequentially to the storage system. Since the order of
messages sent from a node to another does not change during a
transmission, we can guarantee that these task descriptions are
stored in the order of their creation.

For achieving Condition B, the root schedules a task to an idle
node if and only if logging of the task description is completed.
This practically means the previously mentioned threads have to
schedule the tasks after they logged the task descriptions to the
storage system.

For achieving Condition C, a result message received from a local
kernel is not anymore forwarded immediately to the root or to

THE LOGGING MECHANISM 33

the node on which the corresponding task was created (because
the description of each spawn task created by the computed task
has to be logged first to the storage system). To inform the cor-
responding node (on which the result message is created) about
the completed logging process of a task description, the root uses
a new message type called ack:<t>, where ¢ is task identifier
belongs to the logged task description (see Figure 4.4).
Furthermore, for each scheduled task ¢, the node computing the
result of £ maintains a set S;. S; denotes all tasks created by t;
for a subset S the acknowledgements about completed logging
of descriptions have already arrived. If a result:<t, r> message
arrived from the local kernel, where r is the computed result of ¢,
but S; — S} is not an empty set, then the message will be stored
locally. When an ack:<t’> is received, where ¢’ is an element of
S; (¢’ is a spawn task of t), Sy — S will be evaluated again. The
locally stored result of ¢ may be forwarded to other nodes if and
only if S; — S} is an empty set.

Recovery In addition to the actions described in Section 4.2, we have to
deal with task identifiers that may (via logged descriptions or results)
refer to previous sessions: the root is in charge of such tasks.

If a kernel on node n issues a wait:<t> where the session identifier
of t is not that of the current session, the scheduler on n sends a
request:<t,n> to the root. If the root receives this request, it looks
up whether it holds a result descriptor for ¢; if yes, it proceeds as usual,
i.e., it responds with the result or, if this is not yet available, queues
the request in the descriptor.

If the root does not hold a result descriptor for ¢, it creates one and
queues the request there. It then looks up file result.t for the result
of t logged in a previous session. If this file exists and holds a complete
result 7, the scheduler writes » into the descriptor and responds with
reply:<t,r>.

Otherwise, the scheduler looks up the file descr.t for a description d
of t. If the file does not exist or holds an incomplete description (which
is only possible if the task ¢ was created in a session operating in fast
mode), the scheduler aborts the session; the computation has then to
be restarted from scratch.

Otherwise, the scheduler creates a new task:<t,d> which is handled
as usual. When a kernel issues a result:<t,r> of a task created in a
previous session, the scheduler forwards this result to the root.

34 THE LOGGING MECHANISM

There is one more case which has to be covered to allow higher-order
tasks. Assume that the description and the result of a task ¢ is logged into
descr.t and result.t. After a session has failed, the description of a task ¢’
may be identical with the logged description of ¢ in the next session and the
result of ¢ is recovered as the result of ¢’. This means neither descr.t’ nor
result.t’ files are established. So, if session fails and restarted again, there
may exist a task ¢” in the newest session whose description or result contains
task identifier ¢’ as an argument. In this case, one of the kernels may send a
wait:<t¢’> to the root (because ¢’ was created in a previous session), but ¢’
does not exist any more.

The problem is either the corresponding result or at least the correspond-
ing description is available in the storage system, but these informations can-
not be assign to t’. Therefore, the root establishes a file 1ink.#’ when the
result of ¢ is recovered as the result of ¢’ by their identical descriptions. This
file contains the task identifier of ¢. So, if a wait:<t’> is issued in a later
session and root cannot recover either description of or result of ¢’) then it
attempts to recover one of them by the content of link.t%".

4.3.2 Implementation

In Safe Mode, a task description or a task result may contain some identifier
of another task. It may thus occur that a message wait:<t> refers to a task
identifier ¢ which was created in a previous session. Therefore, such a message
is forwarded to the root, which tries to recover the corresponding result. For
this, the logged data are identified in the storage system by task identifiers
(as described in Section 4.2.2).

During the implementation of this mechanism, we took care of the fol-
lowing cases:

e The corresponding result may already be in the memory of the root
(it is more efficient to use the values in the memory instead of reading
them from file).

e The result is available in the storage system and we are able to restore
by its task identifier.

e The correct result is not available in the storage system, hence, the
root tries to recover the description of the task by the task identifier in
order to reschedule it and recompute the result.

e Neither the result nor the description of a task are available. In Safe
Mode, this situation can occur if and only if a task result is recovered by

THE

New

LOGGING MECHANISM 35

a hash code generated from a task description (in this case, the current
task identifier is different from logged one), therefore the current task
identifier is not stored in the storage system. In a latter session, one of
the nodes may refer to this not logged task identifier and the root tries
to recover the result by this identifier.

and Modified Data Structures

Every task is uniquely identified by its task identifier which consists
of 3 parts:

1. A session identifier (see below).
2. A node identifier which says which node created the task.

3. A task indexr which enumerates all tasks created by the node.

The current session is uniquely identified by a session identifier which
is part of the identifier of every task and of every shared object. Ac-
cordingly, the system always can determine which session created a
particular task or shared object (see for more details in the description
of the sessionid file in this section).

clientTable is a hash table whose keys are node identifiers and whose
elements are references to threads. This data structure is located only
on the root and it is needed for the synchronized logging of task de-
scriptions (see Figure 4.5).

running_tasks is a list which contains the identifiers of all the tasks
which are under processing on the primary Maple kernel of a node at
the same time (when a running task executes a command dist [wait],
it is blocked and another task can start execution). The head of this list
refers to the currently active task. This list is needed when the system
wants to determine the parent of a task (see Figure 4.6).

externUsed is a hash table whose keys are the identifiers of the ex-
ternal Maple kernels which are located on the same node and whose
elements are the identifiers of the tasks which run on these external
kernels. This hash table is needed when the system wants to determine
the parent task of a task (see Figure 4.6). An external Maple kernel
can be started by a call dist[process] (see Section 3.1.1).

taskids_list is a queue which contains identifiers of such tasks whose
descriptions have not been saved by the logging mechanism yet. This
queue occurs only as an element of a created_tasks hash table.

36

THE LOGGING MECHANISM

e created_tasks is a hash table whose keys are identifiers of those tasks

which are under processing on the current node (on the primary Maple
kernel or on the external Maple kernels) or which have already finished
their execution but which have spawned some tasks whose descriptions
have not been saved by the logging mechanism yet. Every element of
this table contains a taskids_list queue which holds the identifiers of
the tasks spawned by the corresponding task. When a task has finished
its execution, the scheduler does not send further its result, until the
corresponding entry of this hash table contains an empty taskids_list
queue (see Figure 4.6).

result_of_the_finished_tasks is a hash table whose keys are identi-
fiers of those tasks which have already finished, but which have spawned
some tasks whose descriptions have not been saved by the logging mech-
anism yet. This hash table stores the results of these tasks, until the
scheduler can send further their results (see Figure 4.6).

After a thread has saved a task description, it sends a message ack:<t>
to the node which created this task (where ¢ is the identifier of the task).

New Files

e A file sessionid stores the identifier of the last session which used the

logging mechanism. When the dist[initialize] command is executed,
the system initializes the current session identifier. It checks whether a
previous session identifier exists on the storage system. If it exists, it
reads and increments it. If it does not exist, the current session identifier
is set to 0.

A file link.# contains the identifier of a task whose description is iden-
tical with the description of ¢. Namely, the system does not create a file
descr and a file result more than once for the tasks whose descrip-
tions are identical. But it creates a file 1ink for each latter task, which
contains identifier of the first logged task. With this file, the system is
able to recover the common result and the common description of these
tasks by their identifiers.

Starting Logging in Safe Mode

The user can switch on the Safe Mode by the call dist[logging] (2). This
call may be issued only after a session is established (see the description of
call dist[initialize] in Section 3.1.1).

THE LOGGING MECHANISM 37

Storage System

connection to the kernel

connection connection
to node 1 to node n

Figure 4.5: Scheduler Architecture on the Root in Safe Mode

The effect of this command is that the Maple frontend sends a message
stable:<2> to the root scheduler. After the root scheduler has received this
message, it creates the logging directory, (if it does not exist) and it saves the
current session identifier into a file sessionid. Then it broadcasts message
stable:<2> further to every node. By this notification, every node changes
to Safe Mode.

Logging Task Descriptions in Safe Mode

When the root scheduler wants to save a task description to the storage
system, it creates a concurrent thread for doing this, but it does not start
the thread immediately (see Figure 4.5).

First, the root scheduler checks whether the identifier of the node which
created this task occurs as a key in this hash table. If it does not occur, there
is no description from this node currently being logged. Therefore, the root
scheduler puts the reference of the thread with the node identifier as a key
into this hash table and starts the thread.

If an entry whose key is the searched node identifier occurs in this hash
table, the thread has to wait until the predecessor threads have finished
their execution (see the threads denoted by white ellipses on Figure 4.5).
Therefore, the root scheduler replaces the reference of the previous thread
with the reference of the new thread in the corresponding hash table entry
and creates a link from the previous thread to the new thread. Thus the
previous thread can start the new one before it finishes its execution.

Before a thread finishes, it checks whether another thread from the same

38 THE LOGGING MECHANISM

a.) D.)

y
v 7.)result:<t’,r'>
running_tasks

funning_tasks 2.) remove t’
) v
t

V 4.) task:< t,d >

2.) determine

Scheduler the id of the Scheduler
parent task
’T task:< t,d > ¢ 1) result:<t'r'> ¢ created tasks
dist.maple dist.maple .) remove t
3.) put t created_tasks t 4
to the

Maple corresponding

Maple 3.) store result:< t',r>

result_of_finished_tasks
6.) take
t result:<t’,r'>

result of
v

t’ tt

taskids_list

Figure 4.6: Handling of Spawned Tasks

node waits for a logging and, if yes, starts it. Otherwise, it removes its own
entry from the clientTable.

Modified Task Message Handling

When a scheduler receives a message task:<t, d> from a local kernel in Safe
Mode, it identifies the parent task ¢’ of task ¢ from a list running_tasks (see
Figure 4.6a) or from a hash table externUsed (depending on whether the mes-
sage came from the primary Maple kernel or from an external Maple kernel).
Using ¢’ as a key, the scheduler adds ¢ as an element to a queue taskids_list in
the corresponding entry of a hash table created_tasks. Afterwards, if the cur-
rent scheduler is different from the root scheduler, the message task:<t, d>
is sent further to the root.

After the root scheduler has received a message task:<t, d> from a node
(or it received it from a local kernel) and has added ¢ to the corresponding
entry of created_tasks, it attempts to recover the result r of ¢ as described
in Section 4.2.2. If the root can recover r , it saves the identifier ¢” of the
logged task (from which r was recovered) to a file 1ink. ¢. Then root scheduler
sends r in a message result:<t, r> to the node which created this task and
it also sends a message ack:<t> to the same node. If the root scheduler
can not recover r, it creates a concurrent thread in order to save d to the
storage system (d is logged as described previously in Subsection “Logging
Task Descriptions in Safe Mode”). Only after the logging of d is complete,
this thread schedules the task ¢ to a node for execution and sends a message
ack:<t> to the node which created this task.

Before a scheduler sends a task to a Maple kernel for processing, it adds
a new entry to created_tasks. The key is the identifier of the task and the

THE LOGGING MECHANISM 39

element is an empty taskids_list. Afterwards, the scheduler puts the task
identifier to the end of running_tasks or puts the task with the identifier of
an external Maple kernel as a key to a hash table externUsed (depending on
whether the scheduler sends the task to the primary Maple kernel or to an
external Maple kernel).

Modified Result Message Handling

When a Maple kernel sends a result r in a message result: <t, r> to the local
scheduler, this scheduler removes ¢ from running_tasks (see Figure 4.6b) or
removes the corresponding row from externUsed (depending on whether the
result message came from the primary Maple kernel or from an external
Maple kernel). Then, using ¢ as a key, the scheduler checks whether the
corresponding entry/taskids_list is empty in created_tasks. If it is empty, the
system is allowed to use r and to remove this entry from the created_tasks
hash table. If it is not empty, the system is not allowed to use r until this
entry has become empty. Therefore, the scheduler puts r with ¢ as a key to
a hash table result_of_the_finished_tasks.

Acknowledgement Message Handling

When a scheduler receives a message ack: <t>, it takes ¢ and starts to look
for it in created_tasks. More precisely, the scheduler compares ¢ with the
first element of every taskids_list in created_tasks (it is enough to check the
first elements, because the descriptions of tasks which are created by the
same node are saved sequentially and therefore the ack messages also arrive
sequentially). If the scheduler finds an element which equals ¢, it removes it
from the corresponding entry/taskids_list. If this entry becomes empty, the
scheduler removes the entry from created_-tasks (whose key is the identifier
t’ of the parent task). The scheduler checks whether there exists a result
r’ for t’ in result_of-the_finished_tasks. If the result exists, it removes the
corresponding entries from both created_tasks and result_of_the_finished_tasks
and it sends a message result:<t’, r’> to the node which created the task
t’ (the session begins to use r’).

Modified Wait/Request Message Handling

If a scheduler on a non-root node n receives a message wait:<t> from a
local kernel, where ¢ consists of a group <s, n, > and s less than the current
session identifier (task was created in a previous session), then the scheduler
sends a message request:<t, n> to the root.

40 THE LOGGING MECHANISM

STOP
(root sends
a reply: <t, r>
to i)

Is
result r inthe
resultTable

(root receives
request: <t, i>
from i)

STOP Is t

original handling no created in a yes Can r bg yes root recovers r
of request previous recovere
message ession? esult. t 2 from result. t
l:
o
root recovers d Can Cana t
es i ription no es !
from descr. t y Ssr%cpbgred be recovered y root recovers t
and schedules it om descr. from link.t from link. t
to an idle kernel. ? ?
tfhro§t-rr9§eiv% t is ashared (1t tsggtg a root recovers r
Sendsa! object which has not value T, root [

! sends a .
réplyL tr> got avalue yet re:<_t,r> from result. t

Figure 4.7: Task recovery by task identifier

When the root scheduler receives a message wait: <t> from a local kernel
or a message request: <t, n> from another node, where ¢ either was created
on the root in this session or was created on any node in a previous session,
it looks for the result r of ¢ in a table resultTable (see Figure 4.7). If r
is located there, the root returns it either in a message result:<t, r> to
the corresponding local kernel or in a message reply:<t, r> to node n
(depending on where the request came from).

If r is not in resultTable and ¢t was created in a previous session, the
root scheduler tries to recover the result r from a file result.t. If r cannot
be recovered from this file, the root scheduler attempts to recover it from
another file result.¢’ which is identified by task identifier ¢’ which is the
content of a file 1ink.¢. (* Remark for Figure 4.7: If ¢’ can be recovered
from link.?¢ then the system does not need to check the existence and the
correctness of result.t’, because a link file may be created if and only if the
corresponding result was already recovered successfully by its description in
a previous session).

If the recovery is successful, the root scheduler sends back the result
r either in a message result:<t?¢, r> or in a message reply:<t, r> to
the requester. Otherwise, the root scheduler attempts to restore the task
description d from file descr. ¢. If it is successful, the root scheduler schedules
d in a message task:<t?, d> to a node for execution (the requester will get
r, after the root receives it in a message result:<t, r>).

If it does not manage to recover either the description, the system treats
t as an identifier of a shared object which has not got any value yet (if the
identifier denotes a task, the program will consequently deadlock; this error

THE LOGGING MECHANISM 41

cannot occur when the logging was performed in Safe Mode).

4.4 Handling of Shared Objects

As mentioned in Section 3.2.5, a shared object is nothing but a result de-
scriptor; the only difference is that a shared object t that us still empty can
receives its value r by a message put:<t,r> that may be issued by any task
knowing ¢.

4.4.1 Algorithm

For handling the shared objects, the logging and recovery mechanism is ex-
tended as follows:

Logging Since there is no task description d of a shared object, no hash file
is written and no description file is created, if a data:<t> message is
issued.

If a put: <t,r> is issued on a node different from the root, a duplicate
of this message is forwarded to the root and processed analogously to
the store: <t,r> messages for task results.

Recovery If the root receives a message request:<t, n> where ¢ refers
to a previous session and is destined for a shared object, it proceeds
analogously to the description in Section 4.3.1 except for the following
situation: if the result descriptor does not yet exist, the root creates
one and records the request. If the complete result r of ¢ is logged, the
request may be immediately answered by a reply:<t,r>. Otherwise,
the root need not do anything because the result will be computed by
another task t’.

4.4.2 Implementation

A shared object has no description, its value is determined by a task issuing
dist[put] command. The following activities which handle the shared objects
are changed in the “Logging” mechanism.

Modified Put Message Handling

If the dist [put] command has been executed, a scheduler receives a message
put:<t, r> from a local kernel. After the scheduler processed this message, it

42 THE LOGGING MECHANISM

sends a message store:<t, r> to the root. When the root scheduler receives
this message, it handles it as described in Section 4.2.2.

Wait Message Handling

If the dist[get] command has been executed, a scheduler receives a mes-
sage wait:<t> from a local kernel. In this case, the processing of the wait
message is the same as described in case of the tasks (see Section 4.3.2).
The root scheduler cannot make a distinction between the recovery of
tasks or of shared objects. This means, if it cannot restore a result of a shared
object by an identifier, it tries to recover the content of the corresponding
link file or description file as described in Section 4.3.2. Of course, these files
exist if and only if the corresponding identifier refers to a task. So, the root
does not find these files for a shared object. Therefore, the root treats the
identifier as that of a shared object which has not got any value yet.

Restrictions

It is not allowed to use the dist[clear] command when the logging mech-
anism is switched on because the system is not capable to save and store a
consistent state of the computations for the logging mechanism, when the
value of a shared object changes.

Chapter 5

Tolerating Connection Failures

The previous chapter dealt with a mechanism by which a session restarted
after a failure can reuse previously computed results. In this chapter (and in
Chapter 6), we explain some mechanisms that enable a session to cope with
some kinds of failures without aborting or deadlock.

These mechanisms handle connection failures which may occur in a Dis-
tributed Maple session. To detect this kind of failures, the already mentioned
watchdog mechanism is applied both on the root and every node. Because
of consequences of the FLP impossibility result [22] (see Section 2.2.1), this
failure detector mechanism cannot make a distinction between the following
situations:

e A connection breaks.
e A node crashes.

e A node is too slow in sending messages (the network latency is longer
than the limited time period which the watchdog uses).

Therefore, we have to consider the possibility that any of these situa-
tions has occurred, when the failure detector reports a connection failure.
Consequently, we chose the following strategy for handling failures in the
system [8, 9, 10]. If the watchdog mechanism on a node detects that an-
other node became unreachable, the percipient node handles the situation as
a connection failure first. It closes the connection to this node and tries to
establish a new connection to it.

Secondly, if the percipient node is the root and the reconnection is un-
successful, then the unreachable node is regarded as a failed node and every
message arrived from this node is rejected. If the percipient node is a non-
root node and the reconnection is unsuccessful, then it attempts to connect

43

44 TOLERATING CONNECTION FAILURES

to the unreachable node trough the root. Later, either the root may declare
the unreachable node as failed node or the percipient node may attempt to
connect to this node again.

In the rest of this chapter, we explain the two mechanisms that handle
connection failures: in Section 5.1 “Reconnecting with Message Acknowledg-
ing” and in Section 5.2 “Tolerating Peer Connection Failures”.

5.1 Reconnecting with Message
Acknowledging

In this section, we describe the “Reconnecting” mechanism of Distributed
Maple. Its task is to attempt to recreate an interrupted connection between
the root and any other node and to resend lost messages. For achieving this
goal, this mechanism introduces a message acknowledging mechanism.

In practice, the “Reconnecting” mechanism is called after the root detects
that a node has become unreachable, but before the “Tolerating Non-Root
Node Failures” mechanism described in Section 6.1 is applied.

5.1.1 Assumptions and Guarantees

For using the “Reconnecting” mechanism, the following conditions have to
be satisfied:

e communication is reliable(we suppose messages never become corrupted
or duplicated and messages are lost only in case of connection failures),
and

e no Byzantine failures occur.

The benefit of the “Reconnecting” mechanism is that if the reconnection
is successful then the tasks which have already been scheduled to the recon-
nected node do not need to be rescheduled to another node and their started
(and perhaps finished) processing does not have to be repeated (unlike the
“Tolerating Non-Root Node Failures” mechanism). If the reconnection is un-
successful, the “Tolerating Non-Root Node Failures” mechanism can still be
called.

In other words, a session is able to reduce the loss of resources in some
kinds of failure situations by the “Reconnecting” mechanism. Furthermore,
the message acknowledging mechanism introduced by this mechanism is in-
dispensable for the accomplishment of the “Tolerating Root Failures” mech-
anism described in Section 6.3.

TOLERATING CONNECTION FAILURES 45

a.) b.) c.) d.)
root root root root
k, msg.1 k, . k', 3 k', .3
k, msg.2 k% msg mso
k’, msg.3
A A A A
Y Y Y Y
L L L L

okay<k> =
msg.2 msg.3 J msg.3

msg.1 ping<k>

Figure 5.1: a.) and b.): Message Acknowledging c.)and d.): Resending of not Acknowl-
edged Messages after Reconnection

5.1.2 Algorithm

A necessary condition to detect this kind of failure is that the root cannot
contact some node for a certain period of time. We thus let the root use the
watchdog mechanism (see Section 3.2.3). By this, the root checks periodi-
cally the connection to every node even as the non-root nodes check their
connections to the root.

If a node 7 observes that the root has become unreachable, it waits for
a connection request from the root for a limited time period. If the request
does not arrive, 7 shuts itself down. When a root observes node ¢ becomes
unreachable, it tries to reconnect to ¢ in the same way in which a node
creates a peer connection to another node during normal execution. If it
does not get back any reply, then it starts the “Tolerating Non-Root Node
Failures” mechanism (see Section 6.1). If 4 receives a connection request from
the root, it sends back a positive acknowledgement (independently whether
it has already observed the connection failure or not).

There is a problem that the root and the reconnected node 7 now have to
deal with: the management of those messages that were sent and might be
lost. For solving this, the root can resend some task, result and wait messages

46 TOLERATING CONNECTION FAILURES

to node 7, and node 7 can resend some task, result, store and wait messages
to the root. The root also deals with those messages which were sent through
it to ¢ by any other node. All other nodes (except the root and) are not
affected by a connection failure in case of successful reconnection.

For resending the corresponding messages, every node maintains a set
M;, which contains all messages sent to j (see Figure 5.1a). On the root,
this set contains also those messages which were sent by any other node to j
through the root. For a subset M}, acknowledgements have already arrived
from j (see Figure 5.1b). For acknowledging these messages, the system uses
the modified ping message and its acknowledgement. Namely, if the number
of non-acknowledged messages reaches a certain bound in Mj;, a ping:<k>
message is sent and the set M;; becomes M;— M7 where £ uniquely identifies
this ping: <k> message (such a message is also sent in the original case, see
Section 3.2.3). If an acknowledgement arrives with index £, every element of
M; . is added to M. After j has been reconnected, each message in M; — M7
has to be sent again (see Figure 5.1¢ and d).

Since it may occur that a message reaches its destination, but it has
never been acknowledged due to a connection failure, some messages may
arrive twice after a reconnection. This is not a problem, because the system
tolerates redundant messages.

5.1.3 Implementation

The first step for achieving the “Reconnecting” mechanism is to start a new
watchdog thread on the root similarly as on the non-root nodes. By this
thread, the root is able to check the reachability of non-root nodes. Further-
more, we have to take care of the following issues during the implementation:

e A non-root node has to be able to accept a connection request from the
root at any time even if it has not detected any connection failure yet.

e After a successful reconnection, the set of messages which are lost due to
a connection failure between the root and a node has to be determined
In a session.

New Data Structures and Messages

e Pingld is an integer variable. On every node ¢, this variable is assigned
to each connection via which ¢ interacts to another node and it is always
initialized with 0 after the corresponding connection is established. This
variable is used as a counter to generate unique identifiers for ping
messages sent to the same node.

TOLERATING CONNECTION FAILURES 47

e The new version of the message ping:<index> has an argument index
which uniquely identifies the message.

e Originally, okay messages are used for acknowledging of ping messages.
The new version of the message okay:<index> has an argument index,
with which the acknowledged ping message can be identified.

e A MsgRegistry is a hash table whose keys are numbers which identify
ping messages and whose elements are lists of messages. On a node i,
such a hash table is assigned to each connection via which ¢ interacts
to another node.

e A message reconnection:<z> can be sent only locally to the server
thread either by the watchdog thread on the root or by the connect
thread on a non-root node. The server thread on the root receives
such a message if and only if the watchdog thread detects that a node
has become unreachable. A server thread of a non-root node receives
this message if and only if the root has already reconnected to it The
argument ¢ is the identifier of the unreachable node.

Initialization of Data Structures on a Root

During a session initialization, an empty hash table MsgRegistry is created
to each connected node.

A watchdog thread is started if and only if this mechanism is activated.
This can be done by the call dist[logging] (4) (see Section 7.1).

Message Acknowledging

As mentioned in Section 3.2.3, the couple of ping and okay messages are
originally used by the watchdog mechanism. A message ping is sent if any
message has not arrived from a connected node for a limited period of time.
This message is always acknowledged with a message okay by a connected
node. Since the sequence of the messages sent via a connection cannot be
changed, the ping and okay messages can be used for acknowledging received
messages as follows.

For this, a variable pingld and a hash table MsgRegistry is assigned on
node ¢ to each connection via which ¢ interacts with another node 5. Before a
message (different from ping and okay) sent to j, the current value of pingld
is used as a key to store the message in MsgRegistry (see Figure 5.1a).

A message ping:<inder> is sent to j if either any message has not been
recently received from j (original purpose) or the number of messages in

48 TOLERATING CONNECTION FAILURES

MsgRegistry reaches an upper limit. The value of its argument indexr comes
also from the current value of pingld, but then pingld is incremented (see
Figure 5.1b).

If node j receives a message ping: <indexr> from i, j simply returns index
in a message okay:<inder> to «. When this okay message arrives at ¢, the
list of messages which is stored with indez as a key in MsgRegistry is removed
(see Figure 5.1b).

In case of a successful reconnection, it is enough to resend those messages
which are contained by the corresponding MsgRegistry (i.e., which have not
been acknowledged by the reconnected node, see Figure 5.1 ¢ and d).

Modified Watchdog Thread

If a watchdog thread on a non-root node detects that the root became un-
reachable, it waits for a connection request from the root for a limited time
period. If the request does not arrive, the node aborts.

If the new watchdog thread on the root detects that a node i became
unreachable, it sends a message reconnection<i> to the server thread.

Modified Connect Thread

If a connect thread of a node receives a connection request from the root, it
sends a message reconnection<root/d> to the server thread of the node.
Its argument rootld denotes the identifier of the root.

Reconnection Message Handling

When the server thread of the root receives a message reconnection:<:>,
it first informs the user about the failure. Then it attempts to recreate the
connection to node ¢ in the same way in which a non-root node creates
a peer connection to another node during normal operation. If 7 does not
respond to this connection request, the root performs “Tolerating Non-Root
Node Failures” mechanism on ¢ (see Section 6.1). If the connection to i is
reestablished, the root increments the corresponding pingld. Then, it takes
and deletes all messages from the corresponding MsgRegistry and resends
them to .

If a server thread of a non-root node receives a message reconnecti-
on:<rootld>, it simply resends the non-acknowledged messages to the root,
similarly to the root.

TOLERATING CONNECTION FAILURES 49

5.2 Tolerating Peer Connection Failures

The connection between two non-root nodes is called peer connection. Such
connections are established on demand during the execution. By the “Tol-
erating Peer Connection Failures” mechanism, a session is capable to cope
with peer connection failures without overall failure. The principle is simple:
if a non-root node cannot send a message to another such node, it sends this
message to the root which forwards it to the final destination.

This mechanism uses the same message acknowledging mechanism for
resending lost messages as the “Reconnecting” mechanism (see Section 5.1).

5.2.1 Assumptions and Guarantees

The “Tolerating Peer Connection Failures” mechanism requires the following
assumptions:

e communication is reliable (we suppose messages never become cor-
rupted or duplicated and messages are lost only in case of connection
failures),

e no Byzantine failures occur, and

e cither connections never fail between root and non-root nodes or the
“Tolerating Non-Root Node Failure” mechanism is switched on (see
Section 6.1).

In practice, the “Tolerating Peer Connection Failures” mechanism is never
used without the “Tolerating Non-Root Node Failures” mechanism. There-
fore, we must take over an additional assumption, which is still required for
the working of this other mechanism (see Section 6.1.1). This supposes that
the root node has an ability to access to a reliable storage system.

If the system satisfies these conditions, the “Tolerating Peer Connec-
tion Failures” mechanism guarantees: if some peer connections between non-
root nodes break, then the system is able continue normal operation with-
out any deadlock situations (by resending of the corresponding messages
through the root).

5.2.2 Algorithm

The watchdog mechanism located on every non-root node is also used to check
regularly the peer connection between these nodes. If a node ¢ detects that
another node j became unreachable to ¢ via a peer connection, i attempts

30 TOLERATING CONNECTION FAILURES

0 0
1.) nodei [~ _| node |
0 _ 1
: connection)
2.) node i <request node |
root root
3a.) / \
node i node |
0 e 1
3b.) nodei [~ reply node |

Figure 5.2: Handling of Peer Connection Failure

to establish a new peer connection to j in order to resend the messages to 7,
which might be lost (see Figure 5.2). To determine the set of such messages,
the same message acknowledging mechanism is used like in “Reconnecting”
mechanism (see Section 5.1.2).

e If 5 does not respond to the connection request of 7 in a certain time,
all messages which must be delivered from ¢ to j are sent through the
root for a certain time (then ¢ may attempt to contact j again).

e If 5 responds to the connection request of i in time, 7 sends to j the
number of detected connection failures between itself and j. If this value
is greater than the number of connection failure detected by j between j
and i, then j recognizes that j has not detected a connection failure
yet. Hence, 5 also resends the not acknowledged message to 1.

If nodes on both sides of a peer connection observe a failure of the con-
nection roughly at the same time (and both of them tries to connect to the

other one), then it may occur that two pieces of one way connections are
established.

TOLERATING CONNECTION FAILURES 51

5.2.3 Implementation

The “Tolerating Peer Connection Failures” mechanism is based on an ex-
tended version of the watchdog mechanism originally available in Distributed
Maple (see Section 3.2.3). Namely, the non-root nodes check the connections
between each other with the same strategy in this new watchdog version
as they have already checked their connection to the root in the previous
version, too.

In the course of the implementation of the “Tolerating Peer Connection
Failures” mechanism, we took care of the following cases:

e In contrast to the connections between root and non-root nodes, the
peer connections are established during the execution, if they are needed.
Therefore, the system has to be able to check, whether a connection is
created successfully.

e If the establishing of a peer connection was unsuccessful, the corre-
sponding two non-root nodes have to interact via the root.

e If the establishing of a peer connection was unsuccessful, the corre-
sponding non-root nodes may try it again after some time.

e If a peer connection breaks, both non-root nodes have to become aware
of this.

e The non-root nodes have to determine which messages might be lost
due to a peer connection failure.

Furthermore, we had to investigate the situation in which a node fails but
a non-root detects this event earlier than the root and it tries to resend the
lost messages through the root. In that case, if the root does not detects the
node failure before it receives these messages it forwards them. Otherwise, it
simply does not deal with them. Of course these message are lost (again) in
both cases. Eventually the root detects the node failure and among others
these lost messages are handled and resent again as described in Section 6.1.
Thus some redundancy may occur in such a situation, because some messages
might be resend twice.

New Data Structures

e peerConnections is a bit set, which is located in every non-root node.
Each bit in this data structure belongs to a possible peer connection to

52

TOLERATING CONNECTION FAILURES

another non-root node. If a peer connection is created between two non-
root nodes, then the corresponding bit is set on both nodes. If a non-
root node 7 observes that a peer connection is broken, the corresponding
bit is cleared in peerConnections on i.

currentPeers is a bit set, which is located in every non-root node.
Each bit in this data structure belongs to a possible peer connection to
another non-root node. From time to time, its content is synchronized
to the content of peerConnections. A non-root nodes checks only those
existing peer connections by watchdog mechanism whose bits are set
in currentPeers. If a non-root node ¢ detects that a peer connection
broke, the corresponding bit is cleared in currentPeers on i.

status is a hash table whose keys are non-root node identifiers and
whose elements are integer values. If such a value is 0, messages may
be sent directly to the corresponding non-root node via peer connec-
tion. If such a integer value is greater than 0, messages are sent to the
corresponding non-root node through root.

numberOfFailures is a hash table whose keys are non-root node iden-
tifiers and whose elements are integer values which show how many
times the peer connection to the corresponding non-root node broke.
If a non-root node observes that another non-root node has become
unreachable via peer connection, the non-root node increments the cor-
responding value in this data structure. When a new peer connection is
established, the corresponding values of these two non-root nodes are
compared. If they are not equal, one of non-root nodes does not observe
the peer connection failure between this two nodes.

A message brokenpeer:<¢> is sent if a non-root node observes that
one of non-root nodes became unreachable via peer connection. The
argument ¢ is the identifier of the unreachable non-root node.

sockets is a hash table whose keys are non-root node identifiers and
whose elements are references to those sockets via which a node inter-
acts with other nodes.

inThreads is a hash table whose keys are non-root node identifiers
and whose elements are references of input threads which handle the
arriving messages from the corresponding non-root nodes.

A message outclose is sent if a node intends to stop one of its output
threads. The corresponding thread does not deliver this message, but
it finishes its own execution.

TOLERATING CONNECTION FAILURES 23

Activating of Tolerating Peer Connection Failures

The “Tolerating Peer Connection Failures” mechanism can be switched on
together with the “Tolerating Non-Root Node Failures” mechanism by the
call dist[logging] (3).

If this mechanism is activated, a variable pingld and a hash table MsgReg-
istry is initialized for all established peer connections and the messages sent
via such connections is acknowledged with the message pair ping: <index>
and okay:<inder> even as in the “Reconnecting” mechanism (see the de-
scription of pingld, MsgRegistry and message acknowledging in Section 5.1.3).

Modified Message Sending Protocol between Nodes

When a non-root node ¢ wants to send a message to another non-root node 7,
i tries to sent it directly via a peer connection. If such a connection has not
existed between i and j yet and the value referred by j in the hash table
status is equal to 0, then 7 sends a connection request to an announced
communication port of j, on which the connect thread of j is listening (see
Figure 5.2).

e If the peer connection is established successfully between ¢ and j, both
nodes exchange their identifiers between each other first in order to
identify themselves.

Then 4, which issued the connection request sends to 7 the correspond-
ing value from the hash table numberOfFailures located on i. The con-
nect thread on 7 compares this received value with another one referred
by 7 in the hash table numberOfFailures located on j. If the received
value is the greater one (which means a previous peer connection be-
tween 7 and j failed, but j has not detected it yet unlike), then the
Closing_Peer operation is called with ¢ as an argument by 7.

Afterwards, both nodes set the corresponding bit in their own bit sets
peerConnections. At last, they start input threads and output threads
belonging to the created peer connection and they put references to
the related socket and to the newly started input threads to their hash
tables sockets and inThreads. A message can be sent via this peer con-
nection only after this procedure.

e If node j does not respond to the connection request of ¢ during a
limited time, ¢ sends the message to 7 through the root and it sets the
corresponding value of the hash table status to a positive number. This
implies that every message sent from ¢ to 5 will be delivered through
the root until the value referred by j as a key in status become 0 again.

54 TOLERATING CONNECTION FAILURES

e If the value referred by j in status is greater than 0, ¢ simply sends the
message to 7 through the root

Modified Watchdog Thread

The new watchdog thread of non-root nodes extends the activity of the orig-
inal watchdog, such that it periodically checks an existing peer connection
if the bit assigned to this connection in the hash table currentPeers is set.
Namely, the action of a watchdog thread is split to time periods. When such
a time period starts, the watchdog thread synchronizes the content of cur-
rentPeers to the content of peerConnections. Hence, during a time period,
the watchdog thread waits for messages via only those peer connections (or
forces a reply via them at least) which were established in a previous watch-
dog period (in other words, each connected non-root node has at least one
such a time period to send some message via a new created peer connection).

If a watchdog thread detects that a non-root node ;7 became unreachable
via peer connection, it simply calls the Closing_Peer operation with 7 as an
argument.

After the checking of all peer connections in a watchdog time period, the
watchdog thread decrements all those values contained in status which are
greater than 0.

Closing Peer Operation

This operation is called with an argument j after a peer connection failure
either by the watchdog thread if it detects that a non-root node 5 has become
unreachable or by the connect thread due to a connection request from 7. To
avoid to apply this operation to the same broken connection twice (which
may cause deadlock), the value of the bit j in bit set peerConnections is
investigated first. If the checked bit is cleared, the Closing Peer operation
returns. Otherwise, it clears the checked bit in peerConnections and the same
bit in currentPeers, too (the Closing Peer operation is encapsulated and it
can be invoked by only one thread at the same time).

Then it increments the corresponding value referred by j in numberOf-
Failures. It closes the communication channel to j by using the corresponding
references stored in hash tables sockets and inThreads and by sending a mes-
sage outclose to the corresponding output thread. Finally, this operation
sends a message brokenpeer: <j> to the server thread.

TOLERATING CONNECTION FAILURES 95

Brokenpeer Message Handling

When a non-root node i receives a message brokenpeer:<j>, it forwards
this message to the root and resends to j those messages from the corre-
sponding MsgRegistry which have not been acknowledged yet (like in the
case of “Reconnecting” mechanism, see Section 5.1.3).

When the server thread of the root receives a message brokenpeer: <j>
from a node 1, it informs the user of that ¢ cannot interact with j via peer
connection.

26

TOLERATING CONNECTION FAILURES

Chapter 6

Tolerating Node Failures

In this chapter, we introduce some fault tolerance mechanisms to avoid a ses-
sion failure in case of the failure of any node (even if the root). Furthermore,
we present a simple algorithm by which a session is able to restart failed
nodes in order to reduce the loss of resources.

Lots of systems [5, 37, 36] which provide automatic restart and recovery
in response to node failures use checkpointing. This is a generally usable
and stable algorithm, but it is not efficient enough (e.g.: the execution phase
is periodically interrupted by checkpointing phase in normal operation, the
whole session has to return to the last checkpoint after a node failure, etc).
Furthermore, this mechanism is not able to tolerate server (or root) failure
without overall failure.

One possibility to achieve tolerating server (or root) failure without ses-
sion failure is to apply some kind of leader election algorithm. If the server
fails, one of the other session members is elected as the new server. The
problem with such approaches is that most leader election algorithms were
developed only for synchronous distributed system or had assumptions that
were too strong for real-life applications [41] (e.g.: that links between nodes
never fail). If the new server is selected, a distributed session can be restarted
from a consistent, state.

To our knowledge, the Invitation Algorithm made by Garcia-Molna for
asynchronous distributed systems [25] comes closest to our research (for more
details see Section 2.2.3). But this algorithm still cannot handle the situation
in which a session/network is split to two or more parts. In such a case, a
group of the nodes which lost the connection with the original server triggers
a server election (there may exist more than one server at the same time).
Moreover, an analysis of the Invitation Algorithm [69] shows that its specifi-
cation is undesirably strong: in some situations, it requires that a connection
between two nodes never fails.

d7

28 TOLERATING NODE FAILURES

In Distributed Maple, the applied functional task model helps a lot for
simplifying the problem of node failures, because we have to restart only
those tasks which were under processing on the failed node [64, 65, 8] (and
of course resend the lost messages). Hence, the whole session does not have
to interrupt its execution and can return to a stored consistent state of it.

The case of root failures is not so simple. We also developed a leader
election algorithm to choose a new root from the pool of non-root nodes
after a root failure was detected [9, 10]. However, in contrast to the Invitation
Algorithm, no situation may occur in which there exist more than one root
at the same time. If the new root is elected, the features of the functional
task model and of the “Logging” mechanism facilitate to set a consistent
state of the new root (without stopping the whole execution and returning
to a stored state of the session).

In the rest of this chapter, we present and describe three mechanisms: in
Section 6.1 “Tolerating Non-Root Node Failures”, in Section 6.2 “Restarting
after Node Failures”, and in Section 6.3 “Tolerating Root Failures”.

6.1 Tolerating Non-Root Node Failures

In this section, we sketch a mechanism that enables a session to cope with
non-root node failures without aborting (the root continues operation with
the remaining nodes).

6.1.1 Assumptions and Guarantees

For using the “Tolerating Non-Root Node Failures” mechanism, we assume
that the Safe Mode of “Logging” mechanism described in Section 4.3 is
switched on and works correctly. Namely, if a non-root node becomes un-
reachable, the root restores the corresponding logged task descriptions from
the storage system in order to reschedule them to other nodes. (The Safe
Mode guarantees, that every task description is saved to the storage system,
before it is scheduled.)

This means, we also use all the assumptions here which we have already
for the proper functioning of logging mechanism in Section 4.1:

e access to a reliable storage system,

e reliable communication (we suppose messages never become corrupted
or duplicated, but we do allow to lose messages in case of connec-
tion break),

TOLERATING NODE FAILURES 29

e 1no Byzantine failures.
If the system meets these conditions, this mechanism guarantees:

e all guarantees of the Safe Mode and

e even if some non-root nodes fail or some connections between the root
and a non-root node break permanently, then the system is able to
continue normal operation (by rescheduling of the corresponding tasks
and resending of the corresponding messages).

Furthermore, we must also mention that the application of the functional
task model in the system permits the continuous processing of scheduled tasks
on faultless nodes even if a node failure is detected and tolerated in a session.

6.1.2 Algorithm

As mentioned in Section 5.1, the root regularly monitors the connection to
each node by watchdog mechanism. If a node becomes unreachable to the
root and the root cannot contact to it by the “Reconnecting” mechanism,
then this mechanism is started.

First of all, the “Tolerating Non-Root Node Failures” mechanism declares
the unreachable node dead (see Figure 6.1). However, this does not necessar-
ily mean that the node is actually dead; it may be slow in responding, the
connection to the root may have been transiently interrupted, or the con-
nection to the root is permanently broken but connections to other nodes
still exist. We therefore must assume that even a dead node still may send
messages to the root or to any other node. Thus, when the root designates a
node as dead, it informs all other nodes correspondingly: every node closes
the connection to the dead node and ignores any remaining messages from
this node (such messages may arrive between the handling of the notification
and the closing of the connection).

There are two main problem that the root now has to deal with:

1. the management of all result descriptions that have been stored on the
dead node, and

2. the rescheduling of all tasks that were executing on the node at the
time of its alleged death.

Since the root is in charge of task scheduling, the root sees every task
created in the session. Furthermore, by the logging mechanism discussed in
Section 4, the root sees every result computed in the session. For every node
n, the root can therefore maintain two sets 7, and S,:

TOLERATING NODE FAILURES

user interface
|

root * stable storage
descr. t
5.) restore d
Maple
dist.maple descr. t’ result. t’
fl (]
-
8.) restore I’
A A
3)

% }_

9)reply:< t',r'>
- |) reply
6.) task:< t,d >
1) taski<td a ‘ 7.) request:< t',n>‘ ‘

4.) dead:<n>

Y Y

2.)request:<t’,n>
AV -
dist.maple dist.maple
Maple Maple
n n

Figure 6.1: Tolerating Non-Root Node Failures

1. T, denotes all tasks scheduled on n; for a subset 7, the results are
available (in the logging files). All tasks in 7,, — 7} have to be executed
again; the root puts them back into the pool of tasks to be scheduled
for execution.

2. S, denotes all tasks or shared objects whose descriptions are stored on
n; for subset S; the results are available (in the logging files). The root
becomes the owner of elements in S,; it allocates the corresponding
result descriptors and, for all elements of S}, fills them with results.

Subsequently, every node will send requests for a result in S,, to the
root. However, there may be still outstanding requests sent to n but
not yet answered at the time of its death. Every node n’ therefore holds
a table R, of all request: <t,n’> messages sent to node n but not yet
answered by a reply:<t,r>. When n is marked dead, the node resends
all messages in R,, to the root which will eventually answer them.

Thus all tasks scheduled on an eventually dead node n are executed (pos-

TOLERATING NODE FAILURES 61

sibly on a different node n’) and every descriptor originally housed by n
finds a new home on the root to which all open and all future requests are
redirected.

6.1.3 Implementation

The “Tolerating Non-Root Node Failures” mechanism is based on the watch-
dog mechanism originally available in Distributed Maple. This means, the
root checks periodically all nodes. If a non-root node does not send any
message to the root during a limited time period, the root thinks, the node
became unreachable. In the course of design of this mechanism, we took into
consideration that watchdog mechanism cannot make a distinction between
the following situations (as discussed in the beginning of Chapter 5):

e A non-root node crashes.
e The connection between the root and a non-root node breaks.

e The answer from a non-root node arrives too late (the network latency
is longer than the limited time period which the watchdog uses).

If the root interrupts the connection to a node (maybe, it tries first to recon-
nect to the node by “Reconnecting” mechanism described in Section 5.1, if
this mechanism is activated), but the node is still alive, the node will abort
after some time.

When the root observes that a node became unreachable, it reschedules
those tasks which were scheduled on the node and sends a broadcast to all
other nodes. Due to this broadcast, all nodes (the root and the others) resend
those messages to the root which might be lost. Namely, the task results which
were located on the unreachable node are restored and provided by the root.

New Data Structures and Messages

e crash is a hash table whose keys are non-root node identifiers and
whose elements are boolean values which show the states of a non-root
node. If a value is false, the corresponding node lives. If a value is true,
the corresponding node became unreachable.

e sockets is a hash table whose keys are non-root node identifiers and
whose elements are references to those sockets via which the root or a
node interacts with other nodes.

62 TOLERATING NODE FAILURES

e inThreads is a hash table whose keys are non-root node identifiers
and whose elements are references of input threads which handle the
arriving messages from the corresponding non-root nodes.

e A message outclose is sent if a node intends to stop one of its output
threads. The corresponding thread does not deliver this message, but
it finishes its own execution.

e scheduled _tasks is a hash table whose keys are node identifiers and
whose elements are lists of task identifiers which are scheduled for pro-
cessing to the corresponding node. This data structure is located only
in the root.

e A message dead:<z> is sent if the watchdog of the root observes that
one of nodes became unreachable. The argument ¢ is the identifier of
the unreachable node.

Initialization of Data Structures on a Root

During a session initialization, the root puts for each newly established con-
nection the references to a socket and to the corresponding input thread to
a hash tables sockets and inThreads. It also inserts a value “false” with an
identifier of each connected node as a key into a hash table crash.

An empty hash table scheduled_tasks is created and a watchdog thread is
started if and only if this mechanism is activated. This can be done by the
call dist[logging] (3) (see Section 7.1).

Initialization of Data Structures on Nodes

A hash table crash is filled up with value “false” for every non-root node on
each non-root node at the time of the session initialization.

As written in Section 3.2.2, if a non-root node intends to send a mes-
sage to another non-root node via a peer connection, but such a connection
does not, exist between these two nodes yet, then it is created. After such a
connection has been established, the nodes on both sides put references to
the related socket and to the corresponding input thread to the hash tables
sockets and inThreads.

Modified Task Scheduling

Before the root schedules a task in a message task:<t, d> to a node 1,
it puts the task identifier ¢ with node identifier 7 as a key to a hash table
scheduled_tasks (see Figure 6.2a).

TOLERATING NODE FAILURES 63

a.) b.) c_)

root root root
STABLE STABLE 3)restored \ STABLE
4+ STORAG| 3) save <t r'> STORAG! TORAG!

scheduled_tasks scheduled_tasks
i } i 4

il v

2.) save <t,

scheduled_tasks

1) task:<td

3.)insert t 4.)insert t again

4.)removet’

4) task:<td 3
)

i j i j v i

L) result:<' 1 b
Y

Figure 6.2: a.) Task Scheduling b.) Result Logging c.) Rescheduling

If the root receives a message store:<t’, r’> from a node 7, it logs
the received result r’ and removes the task identifier ¢’ from hash table
scheduled_tasks by using j as a key (see Figure 6.2b). If the root does not
find ¢’ in the corresponding row of hash table scheduled_tasks, then ¢’ denotes
a shared object.

Then the root checks whether any received message wait:<t¢’> or mes-
sage request:<t’, n> has already waited for the result r’. If such a request
has arrived, it sends back r’ (namely, if the node which emitted the task ¢’
fails, then all requests related to r’ are forwarded to the root).

Dead Message Handling

By the watchdog thread of the root, the root monitors the nodes. If this thread
detects that a node ¢ became unreachable, it sends a message dead:<i> to
the server thread of the root (but only after an unsuccessful reconnection
to 4, if the “Reconnecting” mechanism has been activated, see Section 5.1).

When the server thread of the root receives a message dead: <i>, it first
informs the user about the failure. Then it closes the communication channel
to ¢ by using the corresponding references stored in hash tables sockets and
inThreads and by sending a message outclose to the corresponding out-
put thread. Then it adjusts the corresponding line in hash table crash to a

64 TOLERATING NODE FAILURES

value “true” by using 7 as a key and it broadcasts message dead:<:> to all
reachable nodes.

Afterwards, the root checks in hash table scheduled_tasks whether any
task was under processing on node i, restores the descriptions of such tasks
from the storage system and reschedules them (see Figure 6.2c).

Finally, it looks through stack externStack and table extern Waits whether
there exists any unanswered request which was forwarded to node ¢ and sends
them to itself (on every node, these two data structures contain the wait
messages received from the local primary and additional Maple kernels).

If a non-root node receives a message dead:<i>, it checks whether it
has a peer connection to node i. If yes, it closes the socket of this connec-
tion and stops the input threads belonging to it by using the references in
hash tables sockets and inThreads (the corresponding output thread is also
stopped by sending a message outclose). It also put a value “true” with s
as a key to hash table crash. Finally, similarly to the root, the node resends
the unanswered wait messages to the root which were sent to node 1.

Modified Communication Protocol

Before the root broadcasts a message, it checks in hash table crash, which
nodes live and sends the broadcast message only to them.

Before sending a result message to a non-root node, it is checked whether
the node is reported as unreachable. In this case, the message is not sent.

If a node wants to send a request message to an unreachable node, then
it sends it to the root. When the root receives a request message or a wait
message with a task identifier created by an unreachable node, it tries to
restore its result from the storage system. If this is not possible, the root will
eventually receive an answer by a store message and then send an answer.

6.2 Restarting after Node Failures

We have implemented a quite simple mechanism by which the root may
attempt to restart the crashed or aborted nodes.

6.2.1 Assumptions and Guarantees

It does not make sense to use the “Restarting” mechanism without the
“Tolerating Non-Root Node Failures” mechanism. Therefore, we reckon the
“Restarting” mechanism as some kind of extension of the “Tolerating Non-
Root Node Failures” mechanism.

TOLERATING NODE FAILURES 65

a) user interface b) user interface
. | . |

root * root *
Maple Maple
dist.maple dist.maple
Scheduler Scheduler ‘
I
I I
|
o \ /
ol] e (n) | | e (n) (n+1)
Scheduler | |] " Scheduler Scheduler ’,,,,,1‘ m Scheduler |]
- - - ------- - oo - Ko
3K by) o
dist.maple dist.maple dist.maple t distxaple dist.maple Lo
Maple Maple Maple i 3 Maple' Maple
/ \

Figure 6.3: a.) A node becomes unreachable to the root. b.) The Toot restarts the node
with new identifier. If the unreachable node still alive, it eventually aborts.

Accordingly, we can use the same assumptions for this mechanism which
we use for “Tolerating Non-Root Node Failures” mechanism described in Sec-
tion 6.1.1. No more assumptions are needed (nevertheless, if we want to use
the “Restarting” mechanism together with the “Tolerating Root Failures”
mechanism, then an additional restriction has to be introduced, see in Sec-
tion 6.3.1). The benefit of the “Restarting” mechanism is that it minimizes
the loss of resources (nodes) during an execution.

6.2.2 Algorithm

After the unsuccessful reconnection to node i, the “Tolerating Non-Root
Node Failures” mechanism is started. The root also starts an asynchronous
thread to try to restart eventually 7 in the same way as in initial phase (see
Figure 6.3). If this is managed, node i gets a new identifier instead of i, be-
cause all the results that have been stored on 7 earlier are provided by the root
during the rest of the execution. The targets of the wait messages have to be
determined uniquely from the node identifier contained in the task identifier.

By changing the identifier of the restarted node, we can guarantee that
all other nodes interact to the newly started node. Namely, if node i did not
fail, just disconnected to the root, it may send some messages to some other
nodes. But in this case, these nodes simply drop these messages (because

66

TOLERATING NODE FAILURES

i is declared dead by “Tolerating Non-Root Node Failures” mechanism).
¢ eventually aborts.

6.2.3 Implementation

The central element of this mechanism is a concurrent thread on the root,
called restarter thread. If a node is designated as dead, this thread periodi-
cally contacts to the server thread to attempt to start a new node instead of
the unreachable one on the same machine. To achieve this, we had to take
care of the following issues:

e If processes of a disconnected node (which was designated as dead) and

a newly started one run on a machine at the same time, then all other
node must not contact the dead node instead of the new one.

After a node has been restarted, there are two possibilities to continue
normal operation. The first is that the last consistent state of the node
is restored effectively to the node (this implies the reloading of those
task results to the restarted node which were stored on this node earlier
and which are served currently by the root). The other way is that
the tasks created newly on the restarted node are distinguished (and
handled separately) from those tasks that were created also on this
node before its failure (these tasks have already been migrated to the
root). We chose the second solution.

The activities of the server thread and restarter thread have to be
synchronized. Otherwise, it may occur that the restarter thread triggers
the restarting of a node, before the previous restarting operation of that
node (successfully or unsuccessfully) has finished. In such a case, more
than one node may started with the same node identifier on the same
machine.

A simply and effective solution for the first two issues as mentioned al-

ready is to give a new and unique identifier for the restarted node (or in other
words, starting and initialization another node instead of the failed one on
the same machine).

New Data Structures

e starting flags is a hash table whose keys are identifiers of dead nodes

and whose elements are boolean values. If a value “true” means a

TOLERATING NODE FAILURES 67

restarting attempt of a node has already been triggered, but not fin-
ished. By this data structure, a kind of synchronization is achieved
between the server thread and the restarter thread.

Activating Restarting Mechanism

The user can switch on the “Restarting after Node Failures” mechanism
together with the “Reconnecting” mechanism by the call dist[logging] (4).

Insert Operation

After a node i is designated as dead, the server thread on the root calls the
Insert Operation of “Restarting” mechanism. This puts a value “false” with ¢
as a key to a hash table starting_flags and checks whether the restarter thread
has already been started. If it does not run yet, this operation starts it.

The Restarting

If the restarter thread is started, it waits for a bounded time period. Then
it selects those keys (or node identifiers) from the hash table starting_flags
whose values are “false”. By using these selected identifiers as keys, it looks
for a machine name (or an IP address) and a system type for each of them
from hash tables name and system (in Distributed Maple, among others these
two data structures are used for storing session initialization information).

The restarter thread sends these tuples of machine names and system
types in messages start:<name, system> to the server thread (in Dis-
tributed Maple, start messages are originally used only for establishing and
initialization nodes at session initialization phase). Finally it sets the referred
values of the selected node identifiers to “true” in hash table starting_flags
and it starts to repeat its activity from the beginning.

The server thread handles start messages received from restarter thread
in the same way as at session initialization, except some minor changes:

e If the server thread received a start message from the restarter thread,
but reestablishing of a node 7 is unsuccessful, then it adjust the referred
value of 7 to a “false” in hash table starting_flags.

e If the server thread received a start message from the restarter thread,
and reestablishing of a node is successful (this operation guarantees that
the (re)started node gets a new and unique identifier), then it informs
the user about the successful restarting and calls the Remove Operation
of the “Restarting” mechanism. At last, it activates the corresponding

68 TOLERATING NODE FAILURES

fault tolerance mechanisms on the restarted node by sending a message
stable:<mode> and it initializes the restarted node by sending every
message all:<command> issued already in the session (in Distributed
Maple, these all messages are stored in a list allMessages on every node
and they are originally used for initialization of additionally created
Maple kernels).

Remove Operation

After a node ¢ has been restarted successfully, an operation is started, which
removes the corresponding line from the hash table starting_flags by using 7 as
a key. If starting_flags becomes empty, this operation stops the restarter thread.

6.3 Tolerating Root Failures

This mechanism is able to change the root node such that a session may
tolerate the failure of the root without overall failure. We achieved this root
fault tolerance by developing and applying a new leader election algorithm
for our asynchronous distributed system. In this algorithm, one or more dis-
tinguished nodes with some special properties (in a general case, all nodes
may have such properties in a session) are able to substitute for the root.

6.3.1 Assumptions and Guarantees

The “Tolerating Root Failures” mechanism is based on all already mentioned
fault tolerance mechanisms (“Logging”, “Tolerating Non-Root Node Fail-
ures”, “Tolerating Peer Connection Failures” and “Reconnecting”) except
“Restarting after Node Failures”. Therefore, the same assumptions are made
as were described for the previous mechanisms: a reliable and stable storage
system, reliable communication, no Byzantine failures and only Stop failures
may occur. There are two more important assumptions. First, the storage
system is independent from the root and at least one non-root node has ac-
cess to it. Second, the description of the main task which is performed by
the root kernel is initially stored by this storage system.

At no time during the execution of the system, there may exist more than
one root. If the root becomes unreachable to another node, this means either
the root crashed (see Figure 6.4a) or the connection between the root and
the node broke (see Figure 6.4b, ¢ and d). In the second case, the system has
to be able to decide about the election of a new root. To guarantee this, the
current root always has to be connected to n/2 nodes at least (see Figure

TOLERATING NODE FAILURES 69

a_) Storage System b_) Storage System

()

shadow i

—
node i+1 [
node 1 noden 1 node n |- -!

node 1 node 1

l | L |
>n/2 <n/2

Figure 6.4: a.) The root crashes. b.) The connections between the root and some non-
shadow nodes break c.) The network is split. The root is connected to at least n/2 pieces
of non-root nodes. d.) The network is split. The shadow node is connected to at least n/2

pieces of non-root nodes.

6.4c); a non-root node may become the root if and only if at least n/2 non-
root nodes (beyond itself) accept it as the root (see Figure 6.4d), where n is
the initial number of the non-root nodes.

It is possible to use the “Restarting after Node Failures” mechanism to-
gether with this mechanism, but the additional restriction is needed: an un-
reachable node may be restarted if and only if the root has declared it dead
(see Section 6.1) and more than n/2 nodes have acknowledged this declara-
tion (the “Tolerating Node Failures” mechanism warrants that every message
from a dead node is dropped).

If the system satisfies the conditions and restrictions mentioned above,
we guarantee the following:

e If the root node crashes, then the system is able to continue normal
operation such that a non-root node becomes the new root (see Fig-
ure 6.4a).

e If less than the half of number of non-root nodes become unreachable
to the root, the system is able to continue normal operation. The lost

70 TOLERATING NODE FAILURES

nodes may be restarted later by the “Restarting after Node Failures”
(see Figure 6.4c).

e If more than the half of number of non-root nodes disconnect perma-
nently from the root and there is at least such a node among these
nodes that has access to the storage system, then the system is able
to continue normal operation such that a non-root node becomes the

new root. If the previous root is still alive, it eventually aborts (see
Figure 6.4d).

e If the system/the network is split to more than two almost equal parts,
where neither the root nor one of the shadow roots can connect enough
nodes, then each node aborts.

Furthermore, we would like to emphasize one more advantageous feature
of our root fault tolerance mechanism. Namely, the processing of scheduled
tasks on faultless nodes is never interrupted or suspended due to a root failure
and a root election. It can be possible, because the parallel programming
model of the system is based on functional tasks.

6.3.2 Algorithm

At the initialization of the session, all nodes get the identifier of a special non-
root node which can access the storage system. This node is called shadow
root or simply shadow. The subsequent explanation assumes first that there
is only one such shadow. In the last part of this section, we will generalize
the mechanism to an arbitrary number of (potential) shadows.

Triggering the Root Election If the root becomes unreachable to a non-
shadow node £k and the reconnection time expires, k sends a root_lost
message directly to the shadow node . If node ¢ has become also un-
reachable, k£ aborts. Shadow 7 maintains a set R of the identifiers of
all nodes that cannot contact the root. When i receives the root_lost
message from £, it adds k£ to R. From the moment that the first node is
added to R, ¢ waits for a certain period of time. If during this period,
no message arrives from the root, ¢ starts the root election. However, if
during this time a message from the root arrives (i.e. the root is not un-
reachable to 7), the election is canceled (see Figure 6.4b). In this case,
i waits until the root declares k& dead (which must eventually happen
since k cannot contact the root), and then it sends an abort message
to k (which causes k to abort, but the root will eventually restart k).
Summarizing, root election is only started in the situations illustrated
in Figure 6.4 a, ¢ and d.

TOLERATING NODE FAILURES 71

Performing the Root Election Shadow node ¢ broadcasts a check_root
message to all live nodes except those whose identifiers are in R. When
a node [receives such a message, it sends back an acknowledgement
message. Node [also checks the root within a certain time bound. If the
root is reachable to [, then [sends back a root_connected message to
the shadow node . Otherwise, it sends back a root_lost message to 1.

Node i waits for the acknowledgement messages of the check_root
broadcast for a limited time period and counts them. If this sum plus
the size of R is less than n/2 where n is the initial number of the non-
root nodes, i aborts (see Figure 6.4c). Otherwise, it waits further for
root_lost and root_connected messages and counts them, too. If it
receives a root_lost message, it adds the identifier of the sender to
R (if 7 observes that a node whose identifier is in R became unreach-
able, i deletes the corresponding identifier from R). If the number of
root_lost messages reaches the bound n/2, i sends a new_root mes-
sage to all other nodes. If this bound has not been reached, but a
root_lost or a root_connected message has been received from each
acknowledged node that is reachable to i, 7 aborts.

Each node that has received the new_root message accepts ¢ as the new
root even if the old root is still reachable to it. Summarizing, the shadow
node 7 becomes the new root only in cases represented in Figure 6.4a
and d. In case depicted in Figure 6.4d, the old root eventually realizes
that less than n/2 nodes are connected and aborts.

Initialization of the New Root After the shadow root has become the
root, it loads the main task from the storage system and schedules
it to its own kernel. Then it declares the old root and those nodes
dead which did not acknowledge the receipt of the check_root message
(when the connected nodes receive this declaration, they resend those
wait messages to the new root which might be lost, see Section 6.1).
After a node has accepted a new_root message, it resends all store and
task messages to the new root which are not acknowledged by the old
root, (task messages are acknowledged by the root if and only if they
have already been logged). It also sends the identifiers of those tasks in
a scheduled_tasks: <task_identifiers> message to the new root which
are under processing on this node. The new root keeps these pieces of
information in the table scheduled_tasks as tuples of a node identifier
and a task identifier (this table is the same which are already used
by the root in the “Tolerating Non-Root Node Failures” mechanism in
Section 6.1).

72 TOLERATING NODE FAILURES

shadow :=
the next shadow
root from the
shadow_roots

START
(root became
unreachable to
node k)

shadow :=
the first shadow
root from the
shadow_roots

shadow == null

<
]
12
k broadcasts
STOP check_root message k sends root_lost
k aborts exce| te%ugsoed\'levhose message to
pids arein R shadow
k waits for
ack&\owlec{ ﬁments K sends
and count'them in
k aborts ack_sum root_connected
— message to each

nodethat sent [<
check_root
message to k

k waits for root_lost
and root_connected
messages for a no
limited time period
and counts them
in sum -

k waits for

‘L
S S new_rofot
message from
° @ sh?%o,w
for alimited
Ids of senders of time period
root_lost messages STOP
are added toR k aborts

k broadcasts
n?wflrloot mes?a e STQP ves <few rooltsmessage
o all connecte shadow is the Carrived?

new root

no Is
ksz;li)(gﬁs Shadow reachable

Figure 6.5: The generalized root election method on node k where n is the initial number
of the non_root nodes. R is a set which consists of the identifiers of those nodes that sent

root_lost message to k. |R| signs the size of R.

STOP yes

k is the new
root

Task Handling and Termination If the new root receives a task:<t, d>
message, the “Logging” mechanism tries to restore the result of the task
from d. If it does not manage, it checks whether d may be already logged
with a different identifier ¢’. If yes, it checks whether ¢’ occurs in the
table scheduled_tasks. If t’ occurs in this table, the new root drops this
message, because it is already under processing somewhere. Otherwise,
it schedules this task to a node.

In the normal case, when there is no root failure during the execution,
the termination of the system is always triggered by user interaction.
But now that the root of the session is changed, this is not possible any
more (because the user interface of the system is located on the initial

TOLERATING NODE FAILURES 73

root, see Figure 3.2a). Therefore, after the shadow root has become the
root and its initialization is finished (all lost message are resent and
all lost tasks are rescheduled), the new root investigates the content of
table scheduled_tasks. If it is empty (which means all non-root nodes
are idle) and if there is no any scheduled task on the root either, then
the system terminates. Otherwise the execution continuous, but the
checking of this condition is repeated every time when a store:<t, r>
arrives. In a later session, the system is able to recover the result of the
whole computation by the “Logging” mechanism.

Generalization of the Root Election Above description uses only one
shadow node. Now, we generalize the mechanism such that we use a
list of the shadow nodes. This list is called shadow_roots; all nodes re-
ceive it at the initialization of the session. The order of shadow nodes
in shadow_roots is fixed.

If the root is unreachable to a node k£ and the reconnection time expires
but the first node in the shadow_roots has become also unreachable, &
sends a root_lost message to the first live node in this list (see Figure
6.5). If such a node does not exist, k aborts. If k£ has already sent a
root_lost message to a node and some check_root messages arrive
from some other nodes, it replies with a root_connected messages.
If k£ is the next shadow root, it broadcasts a check_root message as
described in the previous section.

Finally, the number of the elements of R on each shadow root decides
the result of the root election. In the worst case, neither shadow node
becomes the root and the whole system aborts.

6.3.3 Implementation

As mentioned in Section 6.3.1, all already described fault tolerance mecha-
nisms (except the “Restarting after Node Failures”) have to be activated for
the “Tolerating Root Failures” mechanism. There are two reasons for it. The
first reason is that the guarantees of these mechanisms are required for the
working of our root fault tolerance mechanism. The other reason is that the
using of many data structures introduced by the already presented mecha-
nisms are indispensable for the “Tolerated Root Failures” mechanism. There-
fore, many data structures whose descriptions are located in previous sections
and which are established for other purposes occur frequently in this Section.

During the implementation of this mechanism, we took care of the fol-
lowing issues:

74

TOLERATING NODE FAILURES

e Since the watchdog mechanism cannot make a distinction between a

node failure and a connection failure, the situation in which a network
is split and the original root and a new elected root may exist at the
same time has to be avoided.

Since Distributed Maple is strongly centralized, the root stores some
extra information collected from all other components of a session. This
information, which is lost due to the root failure, but which is required
for the further execution of the session, has to be recollected efficiently
on the elected root.

The stable storage system has to be independent from the root and the
main task of a Distributed Maple program has to be logged in it.

New Data Structures and Messages

¢ initRootld is a constant and its value is the identifier of the original

root in a session. During an execution, the original root is the only one
which is connected with a user via a Maple frontend.

rootld is a variable which contains the identifier of the current root
node (initially rootld is equal to initRootld).

initNumber is a constant which contains the number of the non-root
nodes after a session initialization.

numberOfConnectedNodes is a variable and it is located on shadow
root nodes. This variable contains the number of those nodes which are
reachable to a shadow root node during the root election.

shadowRoots is a list which contains the identifier of the shadow root
nodes. The order of elements in this list determines a priority order
among the shadow roots, too.

By a message shadow:<name, path> , a new shadow root node can
be defined. The message has two arguments. The first argument name
is the name (or internet address) of a machine. The second argument
path is the access path of logging directory on this machine.

A message check_root is sent to all reachable nodes by a shadow node
that can contact neither to the current root nor to another shadow
node which have more priority.

TOLERATING NODE FAILURES 75

e A message root_lost:<state> has an argument state which is a boolean
value. This message may be sent in two cases:

1. If a non-root node loses the contact with the current root, it sends
a root_lost:<true> to the first live shadow root in a list of
shadowRoots.

2. If a message check_root arrives from a shadow root k£ to a non-
root node. In this case, if the non-root has already sent a mes-
sage root_lost:<true> to k, nothing happens. If the non-root
node can still interact with the current root or the current root
although became unreachable to this node, but it can contact
another shadow root with higher priority, then it sends back to
shadow root k a message root_lost:<false> (in the implemen-
tation of the “Tolerating Root Failures” mechanism, we do not use
root_connected: messages as in the description of its algorithm.
Instead of it, the message root_lost:<state> is applied with a
boolean value “false” as its argument).

e By a message new_root, the new root is announced in a session. Any
node which receives such a message, accepts the sender of the message
as the new root (see in more details below).

e In a message scheduled_tasks:<load, t1, t2, ...> , each node sends
the identifiers of those tasks to the new root which are scheduled to
this node for processing. Furthermore in the first argument load, the
number of those tasks is sent which are already under processing on
the node. This message is used for the initialization of load balancing
mechanism (see Section 3.2.4) and a hash table scheduled_tasks (see
Section 6.1.3) on the new root. The argument’s number of this message
is varying (depending on the number of scheduled tasks on a node).

e receivedRootLost is a list and it contains the identifiers of those
nodes from which a message root_lost:<state> has arrived. A term
|received Root Lost| denotes the number of elements of this list in the
description of implementation.

e trueRootLost is a list and it contains the identifiers of those nodes
from which such a message root_lost:<state> has arrived whose
argument state is equal to value “true” A term |trueRootLost| denotes
the number of elements of this list in the description of implementation.

76 TOLERATING NODE FAILURES

e notReachableNodes is a list on a shadow root node 7 which contains
the identifiers of those non-root nodes which become unreachable to 7
after a root failure is detected, but before a new root is elected.

e checkroot_sender is a list which contains the identifier of those shadow
root nodes whose sent check_root messages have not be answered yet.

e existing tasks is a list whose elements can be task identifiers. This
data structure is needed for rescheduling those tasks which were under
processing:

— either on the previous root before its failure or

— on some other nodes which fail before the new root is announced
and initialized (but the “Tolerating Non-Root Node Failures” mech-
anism has not be able to reschedule all the affected tasks yet,
because of the root failure).

e numberOfMessages is an integer variable. It counts the received
scheduled_tasks:<load, t1, t2, ...> messages on the new root.

e shadowMessages is a list which contains all shadow:<name, path>
messages issued already in a session. This list is needed for the initial-
ization of restarted nodes.

Activating and Initialization of Tolerating Root Failures

Similarly to other fault tolerant mechanisms in the system, the “Tolerating
Root Failures” mechanism can be activated by the call dist[logging] (5)
after a session initialization. The effect of this command is that the Maple
frontend sends a message stable:<5> to the root scheduler which broad-
casts this message to all nodes.

The shadow root nodes in a session must be given explicitly one by one
by the call dist[shadow] (name, path). name is one of the machine names
which were given at the session initialization and path is the access path of
the directory logging on the given machine. These given data are sent in a
message shadow:<name, path> to the root scheduler which broadcasts this
message to all nodes. If such a message arrives to a node, it is inserted to a
list shadowMessages on every node. Furthermore, the identifier of the given
node is determined and added to another list shadowRoots.

Originally, the execution of a main task of a Distributed Maple program is
always attached to the Maple frontend. Therefore, source code of this task is
never logged into storage system and it is unaccessible for other nodes, too. To

TOLERATING NODE FAILURES 77

guarantee, that a Distributed Maple program is performed until completion
even if the root fails in the middle of execution, other nodes has to be able
to re-run the main task. For achieving this, the source code of a main task
has to be given as the argument in the call dist[main] (source) (for an
example, see Section 7.3). If such a command is issued, the Maple frontend
removes the “new line” characters from the argument source and assigns a
unique label to it. Then it sends the following messages to the root scheduler:

1. By sending a message all:<cat(label, ":=proc() ", source, "
end:")>, source is distributed to every node as a predefined 0-ary
function (the Maple function “cat” which simply concatenates its pa-
rameters is evaluated before the message is sent).

2. By sending a message task:<t, label >, the execution of source is
triggered (task identifier ¢ is generated and assigned to this task as
usual). The root will schedule this task to a node.

A Distributed Maple program may contain more than one dist [main] (sour-
ce) commands, since the assigned labels are unique so are the assigned task
identifiers.

Root_lost Message Handling

When a node £ receives a message root_lost: <state> from another node 1,
k adds 7 to list receivedRootLost; and if the value of argument state is true,
k adds ¢ to list trueRootLost, too.

Check_root Message Handling

When a node ¢ receives a message check_root from node j, node 7 adds the
identifier of j to list checkroot_sender.

New Watchdog Modes on Non-Root Nodes

The leader election of our “Tolerating Root Failures” mechanism is imple-
mented in two new operational modes of the watchdog mechanism located on
the non-root nodes. These are called Root_lost Mode and Shadow_root Mode.
If a non-root node 7 detects that the root became unreachable to it and re-
connection time expires, its watchdog thread changes to the Root_lost Mode,
which does the followings:

1. First of all, the watchdog thread takes from list shadowRoots the iden-
tifier of the first shadow root node which is not designated as dead

78

TOLERATING NODE FAILURES

in hash table crash (see Section 6.1.3) and which can be reached by
establishing a peer connection.

Since an immediate response is required for the establishing of a new
peer connection (and since the recently failed peer connections are de-
tected and closed by the watchdog mechanism before the root failure is
determined), the availability of a node can be determined by checking
if there is not an existing peer connection between the node and node ¢
(if such a connection exists but fails in the meantime, node 7 eventually
aborts, see Step 4).

. If such a shadow root node does not exist, ¢ aborts. If the selected

identifier k is equal to %, then the watchdog thread on i changes to the
Shadow_root Mode. Otherwise 7 sends a message root_lost:<true>
to k.

. It takes one by one the shadow root identifiers which is located in list

checkroot_sender and sends a message root_lost:<false> to them,
except to k.

. Until a message new_root arrives to i, ¢ periodically checks the connec-

tion to the chosen shadow root k similarly to the original watchdog al-
gorithm. If £ becomes unreachable to 4, 7 aborts. If further check_root
messages arrive to ¢ in the mean time, they are answered also with
messages root_lost:<false>.

In this situation, it does not make sense to check the peer connections
of 7 and apply the “Tolerating Peer Connection Failures” mechanism,
because we cannot redirect the lost messages via the root (and neither
via the selected shadow root k, since £ may not become the new root).
The broken peer connection is detected and the lost messages are resent
only after the root election (when the watchdog thread returns to its
normal operation).

. If a message new_root arrives to i, its watchdog thread returns to its

normal operation.

If the watchdog thread on node £ selects from list shadowRoots a shadow

root identifier which is equal to k, then it changes to the Shadow_root Mode.
It works as follows:

1. Node £ sends a message check_root to each node which is not desig-

nated as dead in hash table crash and which has not sent a message
root_lost:<true> to k yet. Variable numberOfConnectedNodes is ini-
tialized with the number of dead nodes in crash.

TOLERATING NODE FAILURES 79

shadowl shadow?2

IreceivedRootLost | :=4
[trueRootLost| :=4

IreceivedRootLost | =4
ltrueRootLost| :=3

root_lost:<true: S

root_losti<trued__

root_lost:<true

root_lost:<false>

shadow1l becomes
the new root, initNumber :=9 (7nodes + 2shadows) shadow? aborts,
since 4+1 > initNumber /2. priority of shadow1 > priority of shadow2 since 3+1 <initNumber /2

Figure 6.6: Root election with two competitor shadow root nodes.

2. Until the condition
numberO fConnectedNodes < |receivedRoot Lost|

or condition
|trueRoot Lost| + 1 > initNumber /2

becomes true, £ regularly checks the connection to the reachable nodes
similarly to the original watchdog algorithm. If £ cannot contact to a
node i anymore, k closes the peer connection to i, decrements the vari-
able numberOfConnectedNodes, adds 1 to list notReachableNodes; and
if 7 occurs in lists receivedRootLost or trueRootLost, then i is removed
from these lists.

If the condition
numberO fConnectedNodes + 1 < initNumber /2

(the sum of the shadow root k£ and reachable nodes is less or equal than
the half of the total number of non-root nodes in a session) becomes
true in the mean time, then k£ aborts.

3. If the condition
|trueRoot Lost| + 1 > init Number /2

(the sum of the shadow root k and the nodes which voted positively
is greater than the half of the total number of non-root nodes in a
session) is true , then k& becomes the new root, see the case of shadow1

80 TOLERATING NODE FAILURES

on Figure 6.6. In this case, the watchdog thread of £ sends a message
new_root to the server thread of £ and the watchdog thread terminates
(because a watchdog thread will be started and initialized for the new
root by the server thread of k). Otherwise k£ aborts, see the case of
shadow2 on Figure 6.6.

While the root election is performed by watchdog threads, the server
threads of the nodes are not disturbed or interrupted in doing of their normal
operation and the processing of already scheduled tasks is continuous on the
Maple kernels.

New_root Message Handling

If a message new_root is received by a node £, then its handling depends on
the sender of this message. If the sender is the watchdog thread of k, then
k has to initialized some additional data structure to become the new root.
But all other activities are common (independently such a message arrived
from the local watchdog thread or from another node).

Thus, if node £ receives a message new_root from its watchdog thread, &
handles this message as the new root:

—_

. An empty scheduled_tasks hash table is created.
2. The connect thread of £ is stopped.

3. The system information is loaded from the configuration file dist.system
(which is located originally on every node).

4. A message new_root is broadcast to every reachable node.

5. For those node identifiers which are designated as dead in the hash
table crash, the Insert Operation of “Restarting after Node Failures”
mechanism is called (for its description, see Section 6.2.3).

6. If the list notReachableNodes is not empty, then the contained node
identifiers are taken from notReachableNodes and the “Tolerating Non-
Root Node Failures” mechanism is performed on them.

7. From the extensions of descr.taskld files located in the directory
logging, all logged task identifiers are restored and loaded to a list
existing_tasks (see Figure 6.7a).

8. A new watchdog thread is started.

TOLERATING NODE FAILURES

a.)

b))

new root

STABLE
descr.tl TORAG

descr.t2
descr.t3
descr.t4

descr.t5 existing_tasks
t1,t2,t3,t4,t5

scheduled_tasks

new root

result.tl STABLE
TORAGI

existing_tasks

M, 12, 18, 14,45

scheduled_tasks

new root

existing_tasks

2.)schedule t4
scheduled_tasks

81

i | t2,t3
i

=

= | |

| [[5 15

4‘scheduled_task51<l,t5 %
scheduled_tasks:<1,t2,t3 %

tm| Eul (twm| w3

Figure 6.7: Rescheduling after Root Failure: a.) Restoring all task identifiers logged in
a session b.) Removing the identifiers of those tasks which are either already computed or

still under processing. c.) Reschedule the remainders.

The following steps are performed on both the new root £ and all other
nodes, if a message new_root arrives:

1. The variable rootld is set to k.

2. The new root k is designated as dead in hash table crash. Namely, crash
refers only to the states of non-root nodes, but %k is not available any
more as a non-root node. Furthermore, if the new root k fails in a later
time and another node becomes the root, then £ will be restarted when
this next new root receives a message new_root (see above, at Step 5
of “new_root message handling” on the new root).

3. The unanswered requests which were forwarded to the failed root are
resent to the new root £ in the same way as in the “Tolerating Root
Failures” mechanism (see Dead Message Handling in Section 6.1.3).

4. All other kinds of messages which were sent to the failed root, but
which have not been acknowledged yet are resent to the new root £ in
the same way as in the “Reconnecting” mechanism (see Reconnection
Message Handling in Section 5.1.3)

82

TOLERATING NODE FAILURES

5. By using the contents of list running_tasks and of hash table exter-

nUsed, the identifiers of all the tasks are sent in a message schedu-
led_tasks:<load, t1, t2, ...> to the new root k£ which are scheduled
to the sender node for processing (see Figure 6.7b). The description
of both data structures running_tasks and externUsed can be found in
Section 4.3.2.

Scheduled_tasks Message Handling

When a message scheduled_tasks:<load, t1, t2, ...> arrives at the root £,
the processing of this message is done as follows:

1. The variable numberOfMessages is incremented.

2. The received task identifier is removed from list ezisting_tasks (see Fig-

ure 6.7b).

. The list of received task identifiers is inserted with the identifier of

sender node as a key into hash table scheduled_tasks (see Figure 6.7b).

. If numberOfMessages is equal to the number of all reachable nodes,

then numberOfMessages is set to 0 and the identifier of all already
computed tasks is restored from the extensions of result.taskld files
(see Figure 6.7c). These restored task identifiers are removed from list
existing_tasks. Afterwards, the task descriptions which are referred by
the identifiers remained in existing_tasks are restored from the storage
system and rescheduled to some nodes.

If no task identifier remains in ezisting_tasks and hash table sched-
uled_tasks is also empty, furthermore there is no scheduled task on the
root, then the session terminates.

The reason why the identifiers of computed tasks are not removed from

ezristing_tasks immediately after this data structure has been initialized with
the extensions of descr.taskld files (in the processing of new_root message)
is the following. There may exist some store:<t, r> messages which are
lost due to the root failure. But they are resent and processed (and their
held task result are logged) before the scheduled_tasks:<load, t1, t2, ...>
messages. Hereby, less tasks are rescheduled redundantly.

Modified Dead Message Handling on the Root

At the end of handling of a message dead:<i>, the root checks whether a
message scheduled tasks:<load, t1, t2, ...> has arrived from node . If it
has already arrived, then the variable numberOfMessages is decremented.

TOLERATING NODE FAILURES 83

Otherwise the root checks whether the number of all reachable nodes
became equal to numberOfMessages by the failure of node i. If they are
equal, Step 4 of “Scheduled_Tasks Message Handling” is executed.

Modified Store Message Handling

At the end of handling of a message store:<t, r>, the session may ter-
minate, if and only if initRootld is not equal to rootld, existing_tasks and
scheduled_tasks are empty,and there is no scheduled task on the root.

In a later session, the system is able to recover the result of the whole
computation by the “Logging” mechanism.

Using Together the Tolerating Root Failures and Restarting after
Node Failures mechanisms

If these two mechanisms are used together, then the Insert Operation of the
“Restarting after Node Failures” mechanism is not called immediately after
a node 7 is designated as dead. But it is called if and only if the broadcast
message dead:<i> is acknowledged (see Section 5.1) by at least the half of
the total number of non-root nodes.

If a node is restarted, every message shadow:<name, path> which is
stored in the list shadowMessages is sent in order to the restarted node.

84

TOLERATING NODE FAILURES

Chapter 7

Examples and Test Experience

In the previous chapters, we described the theoretical background and func-
tionality of the fault tolerance mechanisms in Distributed Maple. Now, we
present how they can be used.

First, we give a short overview about new commands, which are needed
for using the new features. Then, we present by examples the usage of them.
At the end of the chapter, we summarize our test experience related to fault
tolerance in Distributed Maple.

7.1 New Commands

Since the new fault tolerance features of Distributed Maple are transparent
to Maple programs (the programs need not be changed for using them). The
only exception is the “Tolerating Root Failures” mechanism (see below).

All fault tolerant mechanisms integrated in Distributed Maple can be
switched on and off by the command

dist[logging](level);

where the parameter level sets the fault tolerant level of the system. Its value
can be 0, 1, 2, 3, 4 or 5 where 0 switches off all fault tolerant mechanisms; the
values from 1 to 5 activate more and more fault tolerant mechanisms. Namely,
if a higher fault tolerant level is chosen, then all fault tolerant mechanisms on
the lower levels are automatically switched on, too (because the mechanisms
on the higher levels use the features of the mechanisms on the lower levels):

85

86 EXAMPLES AND TEST EXPERIENCE

 Distributed lsmx V Ralase 5.1 Tl
Fios 1 Fie Edt View et Fomal Spvatiwsl Options Windaw Help
zeus(00) | ——i

Rl (e g g >| |2 = S

perseus(0:0) |] e

draoo(1:3) — [=[&]

cotus(0:0]

elwogel[ﬂ.ﬁl > road dist.wapls’ ;

load: 2 Distributed Maple ¥1.1.15 (c) 1998-2003 Wolfgang Schreiner (RISC-Ling)
(3] See http: //www risc uni-linz ac at/software/distmaple
5 > aist(initializel(l

4 [zous, *Iimex-fast™),

3 [parseus, *1inux-fast"],

£ [drace, “1imex-fast™)

1 [eatus, *1imuc-fase*],

0 [eisvogel. limm]));

connecting zeus
connecting perseus
connecting draco
[consase <7 TBE [| oreecring ceros
File Sessions Sefings Help comnecting eisvogel

genint Jtupd okay

gemini /tup>
genini /tup>
genini /tmp>
genini /tmp>
gemini /twp)
gemini /tup> B -
gemini ftmpd > dist[shadow] (draco, “/home/kbosa/work/new _dint2®);
genini /tmp>

gemini /tup> shy

= [>‘n—.~r|~|-,m||n).
~prirgyax SRS [> dist(visualize]{$00,300,2, 120};
=
v
:

okay
> dist[shadow) (perseus, "/hows/kbosa/work/nev_dist2");

okay

2] 25118 ok
genini /twpddist report: rost lost the comnection to zeus. recornection started... L w
dist report: reconnection unsuccessful... > distall]){ "readlib(ifactor=s):*);
dist report: root lost the commection to perssus, recormection started,,.
dist report: reconnection Unsucosssful...
dist report: connection to zeus lost. machine excluded from session,
dist report: connection to perseus lost. machine excluded from session.
dist report: machine zeus is restarted,
dist report: machine perseus is restarted,
cist report: root lost the commection to draco, reconnection started...
dist report: reconnection unsucoessful...
dist report: connection to draco lost. machine excluded from session.

distall){"ifaosl proc{l.a.b) local i
[seg{ifactor{lli}), i=a..b)): emd:");

dist(all){"ifaes? := prec(l,a,b,s) local 1
[soqiifactor{lfi)). i=a..b), dist{put](=s. 'reasdy’)
1: end:=);

4|
[TTime. 76.5¢ |Byles: 1.87M
|

|
0 ""‘.I) koot

Figure 7.1: The user is informed about fault tolerance activities

e 1 ...switches on the “Fast Mode” of the “Logging” mechanism,
e 2 ...switches on the “Safe Mode” of the “Logging” mechanism,

e 3 ...switches on the “Tolerating Non-Root Node Failures” and
“Tolerating Peer Connection Failures” mechanisms,

e 4 .. .switches on the “Reconnecting” and
“Restarting after Node Failures” mechanisms,

e 5 ...switches on the “Tolerating Root Failures” mechanisms.

This command may be issued only after the dist.maple interface to the
distributed backend is loaded from the file dist.maple and the distributed
session is established by the command dist[initialize].

Usage of “Logging” When the user activates one of logging modes, the
system starts to save the results of concurrent tasks to a directory logging.
If the system fails, the user has to restart it. A second (or a later) execution
restores the already computed and logged task result. When the computation
finishes and dist[terminate] command is executed, the directory logging
is removed.

The logging and recovery mechanism is completely transparent to Dis-
tributed Maple sources. If a task is given (a) new identifier(s) in a second,

EXAMPLES AND TEST EXPERIENCE 87

third or later execution, the task can be referred by each of them (see Sec-
tion 7.2).

We suggest to use always the Safe Mode which supports higher-order
tasks and whose extra overhead compared with the Fast Mode is negligible.

Usage of “Tolerating Non-Root Node Failures” and “Tolerating
Peer Connection Failures” These mechanisms monitor the connections
between the nodes in the background and reschedule the corresponding tasks
or resend the corresponding messages if necessary. The user is informed about
their activities by messages. In that case, if on-line visualization is switched on
and a machine becomes unreachable, its name turns red in the visualization
window (see Figure 7.1).

The “Tolerating Non-Root Node Failures” mechanism cannot make a
distinction between connection failure and node failure. If a connection fails
between the root and a node, the corresponding tasks will be redirected and
the node will be lost to the computational session as in the case of node
failures. It may also happen, that a non-root node detects earlier than the
root, the failure of another node and the message “lost peer connection” is
displayed before the user is informed about the node failure.

If we assume that only Stop failures may occur, the system is able to
run on this fault tolerance level till the root node crashes or the session is
terminated by the user. However, if too many nodes become unreachable
to the root, it does not make sense to let the session run further. In such
a situation, the user should kill the processes of the root (if the root is
unreachable, the remaining nodes shut themselves down) and restart the
session (from a saved state).

Usage of “Reconnecting” and “Restarting after Node Failure” As
we have mentioned earlier, the main purpose of these mechanisms are reduc-
ing the loss of resources after failures. By using the “Reconnecting” mecha-
nism, the execution time of the computation may be reduced. Namely, the
tasks which are already under processing (or perhaps finished) on a discon-
nected node do not need to be rescheduled and computed afresh.

If the reconnection is unsuccessful and the unreachable node is excluded
from the session, the root attempts to restart it after some time. If it does not
succeed, it waits some time and tries again, and so on. If the reconnection
or the restarting of a node is successful, the user is informed about it by
messages and name of the machine turns back to black in the visualization
window (see Figure 7.1).

38 EXAMPLES AND TEST EXPERIENCE

Usage of “Tolerating Root Failures” Usage of this mechanism is a
bit more complicated than the others mentioned above i.e. it is not enough
to switch it on. On the one hand, the user should give the name of those
machines (called shadow roots) that may be able to substitute for the original
root in case of need. These machines have to be able to access to the directory
logging. A machine can be declared as a shadow root with the command

dist[shadow|(machineName, pathOfLogDir);

where machineName is the name of the machine which is the same as was
given to the command dist[initialize]; and pathOfLogDir is the access
path of the directory logging on the machine. This command can be is-
sued either before or after command dist[logging]l, too (but only after the
command dist[initialize]).

On the other hand, if the user wants to be sure that her or his Distributed
Maple program will be performed until completion (even if, the root fails in
the middle of execution), all of the non-root nodes have to be able to re-run
the source code of main task. By the command

dist[main](source);

the Maple commands denoted by the parameter source is propagated to all
nodes; the execution of these commands is started immediately on one of
them.

So, if the original root becomes unreachable to a distributed session, the
remaining nodes are able to undertake its role. Within a session, the root node
may change more than once. Since the usage of this mechanism assumes the
working of all other fault tolerance mechanisms mentioned previously, all
different kinds of stop failures are also handled on this fault tolerance level
of the system. However, it still can occur that the system fails, if too many
node fails at the same time. In this case, the user must restart the session
and continue the computation from a saved state restored by “Logging”
mechanism.

7.2 A Simple Example for Logging

In this very simple example, we present the working of the logging mech-
anism. As usual, we load the file dist.maple and initialize the distributed
session first. Our current session consists of the local host and the machine
zeus. Then we switch on the Safe Mode of “Logging” and start to execute a
task (Maple returns immediately an assigned identifier for the started task).

EXAMPLES AND TEST EXPERIENCE 89

But before we would query the result of the task, we trigger a session fail-
ure off.

gemini!5>maple

N~/ Maple V Release 5.1 (Universitaet Linz)
I\ [/]1_. Copyright (c) 1981-1998 by Waterloo Maple Inc. All rights
\ MAPLE / reserved. Maple and Maple V are registered trademarks of
S > Waterloo Maple Inc.

| Type 7 for help.
> read‘dist.maple‘;
Distributed Maple V1.1.15 (c) 1998-2001 Wolfgang Schreiner (RISC-Linz)
See http://www.risc.uni-linz.ac.at/software/distmaple
> dist[initialize] ([[zeus,linux]]);
connecting condor...

okay
> dist[logging] (2);
okay
> t1 := dist[start](int, x°n, x);
tl :=0
> # mmmmmmmm e SESSION FAILURE —--=m====m==-=mmm

If we assume that the computation of the task was finished before the
session failure, the content of directory logging may consist of the follow-
ing files: descr.0, result.0, sessionid and taskid.1332700025. The file
descr.0 and file result.0 contains the description and the computed result
of the task (as we can see the extension of both files is the task identifier). For
the roles of files sessionid and file taskid.1332700025, see Section 4.2.2
and Section 4.3.2. For accessing the result of the task, we have to restart the
System.

gemini!5>maple

IN~/1 Maple V Release 5.1 (Universitaet Linz)
I\ [/1_. Copyright (c) 1981-1998 by Waterloo Maple Inc. All rights
\ MAPLE / reserved. Maple and Maple V are registered trademarks of
S > Waterloo Maple Inc.

| Type 7 for help.
> read‘dist.maple‘;
Distributed Maple V1.1.15 (c) 1998-2001 Wolfgang Schreiner (RISC-Linz)
See http://www.risc.uni-linz.ac.at/software/distmaple
> dist[initialize] ([[zeus,linux]]);
connecting condor...
okay

> dist[logging] (2);
okay

90 EXAMPLES AND TEST EXPERIENCE

> t1 := dist[start] (int, x"n, x);
tl := 134217728

>r :=1 + dist[wait] (0);
(n+1)
X
r :=1+ ———-
n+1
>r :=1 + dist[wait] (134217728);
(n+1)
X
r:=1+ -——-————-
n+1
> dist[terminate];
okay

> quit;

In case of restarting, we issue all the commands from loading dist.maple
to starting the task. The system assigns a new identifier for the task, but it
does not compute it again. If we check again the content of directory logging,
we find an additional file there, called 1ink.134217728. The content of this
file is the original task identifier and its extension is the new task identifier.
By using this file, the task result computed in a previous session can be
restored by the new identifier, too. This feature may become crucial, if a
higher-order task (see Section 4.3) refers an already computed task after the
session has been restarted at least once.

So if we want to display the result of the task, we must issue a command
dist[wait] with one of the task identifiers as a parameter. The system
checks whether a result file or a link file with the given identifier as an
extension exists in the directory logging and recovers the result from them.

At the end, by issuing command dist[terminate], the session is closed
and the directory logging is deleted.

7.3 Usage of Tolerating Root Failures

Our next example is a little bit more complicated. We generate 100 of num-
bers whose order of magnitude are around 103 and at the end this program
returns the complete integer factorization of them. Such a computation with-
out failures usually takes approximately one and half minutes on a distributed
session that consists of 5 machines (local host + 4 remote nodes) where the
machines are Intel Celeron 733 Mhz with 256 MB RAM.

EXAMPLES AND TEST EXPERIENCE 91

gemini!5>maple
IN~/1 Maple V Release 5.1 (Universitaet Linz)
I\ [/1_. Copyright (c) 1981-1998 by Waterloo Maple Inc. All rights
\ MAPLE / reserved. Maple and Maple V are registered trademarks of
| S, > Waterloo Maple Inc.
| Type 7 for help.
> read‘dist.maple‘;
Distributed Maple V1.1.15 (c) 1998-2001 Wolfgang Schreiner (RISC-Linz)

See http://www.risc.uni-linz.ac.at/software/distmaple

> dist[initialize] ([
> [perseus, linux],
> [aquila, 1linux],
> [draco , linux],
> [cetus , linux]
>1;

connecting perseus...
connecting zeus...
connecting draco...
connecting cetus...
okay

> dist[logging] (5);
okay

> dist[shadow] (perseus, "/home/kbosa/work/new_distmaple");
okay

> dist[shadow] (draco, "/home/kbosa/work/new_distmaple");
okay

> dist[all]("readlib(ifactors):");
okay

> dist[all]("ifacs := proc(l,a,b) local i; [seq(ifactor(l[i]), i=a..b)]: end:");
okay

t:=dist[main] ("local random, 1, t1, t2, t3, t4, rl, r2, r3, r4;

readlib(randomize) ; randomize(4711);
random := rand(10°32);
1 := [seq(random(), i=1..100) 1;

t1 := dist[start](ifacs, 1, 1, 25);
t2 := dist[start](ifacs, 1, 26, 50);
t3 := dist[start](ifacs, 1, 51, 75);
t4 := dist[start](ifacs, 1, 76,100);

rl := dist[wait](tl);
r2 := dist[wait] (t2);

VvV VVVVVVVVYVYVYVYV

92 EXAMPLES AND TEST EXPERIENCE

root

2.) frontend is blocked
by command dist[wait]()

6d.) processing of t4

7d.) result oft4

[1.) maintask t

ba.) task t1 5b.) taskt2 5c.) taskt3

B.) result of t

4.) maintask t is blocked
by commands dist[wait](1),
dist[wait]€2), dist[wait}@),
dist[wait]¢4)

6a.) processing of t1 6b.) processing of t2 6c.) processing of t3

7a.) result of t1]

7b.) result oft2

c.) result of t3

Figure 7.2: Execution Model for the Example in Section 7.3

> r3 := dist[wait] (t3);
> rd := dist[wait] (t4);
>
> [op(1..25, r1), op(1..25, r2), op(1l..25, r3), op(1..25, rd)];
> ||);
t =0
> w := dist[wait] (t);
... Here comes the result of factorization of the hundred numbers...
> dist[terminate] ();
okay

First of all, we establish the session with 5 nodes, then we activate all
the fault tolerance mechanisms in Distributed Maple (fault tolerance level
5). Afterwards, we enumerate the shadow root nodes and we give the local
access path of directory logging on each such nodes.

With the command dist[all], we load the library ifactors of Maple to
each node and by using also this command we define a new function, called
ifacs on every node which simple calls the Maple function ifactor for some
elements of a list one by one.

The main function is defined as the parameter of command dist [main].
Its structure is like an ordinary function in Maple (e.g.: it may contain local
variables), except on thing: it cannot be finish with a command “end;” (since
it is given between brackets), but it must return a value. Our current main

EXAMPLES AND TEST EXPERIENCE 93

function generates the 100 numbers first and then distributes them among
4 concurrent tasks equally. Each task is scheduled to some node where it
runs the function ifacs to compute the factorization of the given numbers.
The execution model of this program (without any failure) is depicted in
Figure 7.2; this model assumes that the default configuration of Distributed
Maple is used: maxload = 0 and minload = 0 (see Section 3.2.4).

In case of root failure, one of the shadow root becomes the new root
and the session finishes the whole computation. In such a situation, we can
display the result if we restart the session and issue the request dist[wait]
which refers to the main task.

7.4 Test Experience

The effect of fault tolerance mechanisms on the performance of Distributed
Maple has not been measured yet, but we do not expect it to be significant.
For instance in the case of the “Logging” mechanism, task descriptions and
task results are saved by separate threads and thus do not hamper the normal
flow of operation. These descriptions and results are also communicated in
the basic operation model; their size is therefore bound by the performance
of the communication system rather than by the extra overhead of the sav-
ing mechanism. Additionally, the “Logging” mechanism introduces only one
extra message type, the store: <t, r> message, for saving of the task results
to the storage system (task descriptions are saved when tasks are scheduled).

The overhead in case of the other mechanisms is also not significant,
because these mechanisms maintain only some small extra data structures
both on root node and on each non-root node. They do not use additional
messages during the normal operation.

In the testing phase, we executed some long-running computations, whose
solutions are required approximately 3 or 4 days. During these executions,
we triggered several Stop failure situations (both root and non-root failures)
and the system was able to tolerate these kinds of failures and finish the
computations.

On the average only one long-running test from every 10 failed with cor-
rupted message (message failure). But in such cases, the computations could
always be continued from a saved state of the session.

94

EXAMPLES AND TEST EXPERIENCE

Chapter 8

Conclusions

We have implemented in Distributed Maple some fault tolerance mechanisms
such that we can guarantee the following: the system does not deadlock
and continues normal operation, if any node crashes or some connection
between any two nodes breaks; if the system fails after all, we can restart it
and continue the computation from a saved state. With these developments,
Distributed Maple is by far the most advanced system for computer algebra
concerning reliability in distributed environments. The improvement of the
system is demonstrated by Figure 8.1.

The system can still fail if more than n/2 non-root nodes fail, or if the
root and all shadow nodes fail within a certain time bound (i.e., if there is
not enough time for reconnection).

The system can also fail if neither the root nor one of the shadow nodes
has connected at least n/2 non-root nodes (this may happen if the network
is split to more than two almost equal parts).

There remains only one kind of Stop failure situations which may let the
system deadlock: if a kernel process fails. To solve this problem, we plan to
introduce a new watching mechanism which scans the kernels and restarts
them if necessary.

Our work shows how distributed computations that operate with an
essentially functional parallel programming model can tolerate faults with
relatively simple mechanisms, i.e. without global snapshots as required in
message passing programs. The runtime overhead imposed by the “Logging
mechanism” is very moderate; adding tolerance of node failures (in case of
both root node and non-root node) on top does then not require much extra
overhead.

One reason for this simplicity is the delegation of all logging activities
to a single root node that also performs the task scheduling decisions; the
model is therefore not scalable beyond a certain number of nodes. However,

95

96 CONCLUSIONS

Stop failures without fault tolerance using fault tolerance
system continues the
the root node crashes
system aborts normal operation
less than galrf]grehsalf system continues the
crash within a i
a Gertain time bound normal operation
non-root |more than haJf of
node c?a%hr‘\)/ﬂ noces deadlock system aborts
h certain tlme bound
crashes
the root and all
gpgs oW, {OOt nodes system aborts

certain time bound
one or more connections
between the root and deadlock

non-root nodes break
one or more connections

between non-root deadlock
nodes break

system continues the
normal operation

system continues the
normal operation

one or more Maple

processes fail deadlock deadlock

Figure 8.1: Assessment of Distributed Maple Fault Tolerance

it is suitable for the system environments that we have used up to now (< 30
nodes); many parallel computer algebra applications do not scale well enough
to profit from considerably more nodes.

8.1 Comparison with Checkpointing

In order to put our work in context, we are now going to compare the fault
tolerance features of Distributed Maple with those of systems based on check-
pointing mechanisms. As a concrete example, we take the P-GRADEFE envi-
ronment into which such a mechanism has been recently integrated [37] (see
Figure 8.2). P-GRADE is a parallel programming environment which sup-
ports the whole life-cycle of parallel program development [51]. A P-GRADE
application is always centralized, where a server coordinates the start-up
phase and the execution. The primary goal of the P-GRADE checkpointing
mechanism was to make P-GRADE generated applications able to migrate
among nodes within a cluster. Its secondary goal was to make periodic check-
point for supporting fault tolerance.

In the case of the P-GRADE checkpointing, the main idea was to save the
states of the processes by making regularly snapshots of them. Thus during
the execution a computing phase periodically alternates with a checkpointing
phase. As mentioned in Section 2.2.2, such an approach is relatively complex

CONCLUSIONS

P-GRADE checkpointing

fault tolerance in Distributed
Maple

architecture

centralized

centralized

it is targeted to general

it is restricted to parallel

applicability parallel applications programming models based
on functional tasks
transparency transparent transparent
. a computing phase is
the saving periodically interrupted by continuous
method -
a checkpointing phase
if the system fails || .
it can be restarted from the it is able to

during the
computing phase

last checkpoint

if the system fails
during the check-

it can be restarted
only from the

recognize the corruption of
a file; thus it may reuse each
properly stored datum in a
later session

97

pointing phase previous checkpoint

it is able to continue execution
from the last checkpoint
(except if the server fails)

it is able to continue execution
by the migration of the tasks
(also if the root fails)

in case of
node failure

Figure 8.2: Comparison of Fault Tolerance in Distributed Maple and P-
GRADE Checkpointing

because it is targeted to general parallel applications. In the case of our
“Logging” mechanism, the system saves the computed task results instead
of the states of the processes and this saving operation is continuous. This
solution is simpler, but it is restricted to parallel programming models based
on functional tasks, i.e., tasks that return results without causing any side-
effects. Both mechanisms are centralized and transparent to the applications.

P-GRADE makes a checkpoint if and only if an external tool asks the
server for the saving of a checkpoint. If the system fails during the comput-
ing phase, it can be restarted from the last checkpoint. If the system fails
during the checkpointing phase, it cannot use any already saved information
of this checkpoint and it can be restarted only from a previous checkpoint.
The “Logging” mechanism saves every task descriptor and task result into
separate files and it is able to recognize the corruption of a file; thus it may
reuse each properly stored datum in a later session.

If a node fails (except for the server), the P-GRADE is able to recognize
this and to continue execution automatically from the last checkpoint. In
such a case, Distributed Maple is simply able to continue execution by the
migration of the corresponding tasks (also if the root node fails). Distributed
Maple regularly checks whether a failed node has rebooted again and in this
case restarts the corresponding node process.

98 CONCLUSIONS

Summarizing, the most important advantage of the P-GRADE check-
pointing mechanism is that it is made for general parallel applications. But
its fault tolerance features are limited in that the main purpose was the dy-
namic migration of the processes among the node. The main disadvantage
of the fault tolerant mechanisms in Distributed Maple that they are spe-
cial mechanisms and they cannot be used for any parallel computing model.
The advantages of our mechanisms are the following: the saving method is
continuous; if the system fails in any time, the next session is able to use
all properly saved intermediate task results; if any node or connection fails
during the execution, the system is able to tolerate it and continue normal
operation without human intervention.

Furthermore, an additional advantages of applying of functional task
model is that the normal operation on faultless nodes is always continu-
ous, because it does not have to be interrupted or suspended due to handling
and tolerating of any failure situations detected in a session. Both systems
are centralized, therefore the scalability of these systems is an open question.

8.2 Plans for Future Developments

Distributed Maple shows that the application of cluster computing to com-
puter algebra is able to extend the range of solvable problems. However, its
centralized architecture is not scalable beyond a certain number of nodes.
This fact is the next difficulty to overcome before we can enlarge further the
range of those problems to which the parallel computer algebra algorithms
implemented in this system are applicable.

To achieve more scalability, it would be a good idea to make the system
use an underlying grid infrastructure [23], e.g. the Globus [24] middleware
(similarly to the case of PVMaple [49, 50]). By using grid services, numerous
computers may become available for Distributed Maple sessions.

Of course the chance to access a large number of resources by invoking
grid services is not enough in itself to that the system can become (largely)
scalable. The architecture and the communication protocol of Distributed
Maple also have to be modified and rearrange for handling such a large
number of resources. Furthermore, it is very important to keep and adopt
our fault tolerant achievements to such a proposed scalable architecture.

A possible answer can be the applying of a hierarchical programming
model by which the original execution model of Distributed Maple can be
extended to a tree of computational sessions and subsessions. The core idea
is that when a frontend executes a Distributed Maple algorithm, it requests
from some kind of grid middleware a set of resources which subsequently

CONCLUSIONS 99

form the corresponding computational session. If in the course of the algo-
rithm a parallel subalgorithm is invoked on any computational node of this
session, this node may allocate new resources from the grid middleware and
build a subsession for the execution of the subalgorithm. In this hierarchical
programming model, a tree of sessions can be dynamically constructed whose
resources are collected from all over the Internet.

Since the structures of such a computational session and its subsessions
separately are very similar to the original architecture of the Distributed
Maple, our fault tolerance mechanisms presented in the previous chapters
can be extended to such a proposed environment by minor modification;
this could demonstrate how a distributed system based on functional tasks
simplifies some problems in grid computing.

100 CONCLUSIONS

Bibliography

1]

2]

3]

[4]

[5]

[6]

[7]

8]

David M. Arnow. DP: A Library for Building Portable, Reliable Dis-
tributed Applications. In 1995 USENIX Technical Conference, pages 235—
247, New Orleans, Louisiana, January 16-20, 1995. USENIX.

L. Alvisi, T. Bressoud, A. El-Khashab, K. Marzullo, and Z. Zagorodnov.
Wrapping server-side tcp to mask connection failures. In Proceedings of
Infocom 2001, April 2001.

Ozalp Babaoglu, Lorenzo Alvisi, Alessandro Amoroso, Renzo Davoli,
and Luigi Alberto Giachini. Paralex: An Environment for Parallel Pro-
gramming n Distributed Systems. In 1992 International Conference on
Supercomputing, pages 187-187, Washington DC, July 19-24, 1992.
ACM Press.

David E. Bakken and Richard D. Schlichting. Supporting Fault-Tolerant
Parallel Programming in Linda. IEEE Transactions on Parallel and Dis-
tributed Systems, 6(3):287-302, March 1995.

Adam Beguelin, Erik Seligman, and Peter Stephan. Application Level
Fault Tolerance in Heterogeneous Networks of Workstations. Journal of
Parallel and Distributed Computing, 43(2):147-155, June 1997.

Laurent Bernardin. Maple on a Massively Parallel, Distributed Memory
Machine. In M. Hitz and E. Kaltofen, editor, PASCO’97 — Second Inter-
national Symposium on Parallel Symbolic Computation, pages 217-222,
Maui, Hawaii, July 20-22, 1997. ACM Press, New York.

Kenneth P. Birman. Building Secure and Reliable Network Applications.
Manning, Greenwich, Connecticut, 1996

Kaéroly Bésa, Wolfgang Schreiner. Task Logging, Rescheduling, and Peer
Checking in Distributed Maple. Technical Report 02-10, Research Insti-
tute For Symbolic Computation (RISC-Linz), Johannes Kepler Univer-
sity, Linz, Austria, March 2002.

101

102

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

BIBLIOGRAPHY

Kéroly Bésa, Wolfgang Schreiner. Tolerating Stop Failures in Distributed
Maple. In Distributed and Parallel Systems — Cluster and Grid Comput-
ing, DAPSYS’2002, 4th Austrian Hungarian Workshop on Distributed
and Parallel Systems, pages 203—210, Linz, Austria, September 29 — Oc-
tober 02, 2002. Kluwer Academic Publishers,Boston.

Kéaroly Bdsa, Wolfgang Schreiner. Tolerating Stop Failures in Distributed
Maple. Parallel and Distributed Computing Practices, special issue on
Dapsys 2002, 15 pages, NovaPublishers, 2003 (to appear).

N. Budhiraja and K. Marzullo. Highly-available services using the
primacy-backup approach. In Proceedings of the 2nd Workshop on Man-
agement of Replicated Data, Monterey, CA, 1992.

Jeremy Casas, Dan Clark, Phil Galbiati, Ravi Konuru, Steve Otto,
Robert Prouty, and Jonathan Walpole. MIST: PVM with Transparent
Migration and Checkpointing. In Third Annual PVM User’s Group Meet-
ing, Pittsburgh, Pennsylvania, May 1995.

K. C. Chan, A. Diaz,, and E. Kaltofen. A Distributed Approach to Prob-
lem Solving in Maple. In R. J. Lopez, editor, Maple V: Mathematics
and its Application, Proceedings of the Maple Summer Workshop and
Symposium (MSWS’94), pages 13-21, Boston, 1994. Birkh&user.

T. Chandra and S. Toueg. Unrealiable Failure Detectors for Reliable
Distributed Systems. Journal of the ACM, 43(2): 225-267, 1996.

Bruce Char. Progress Report on a System for General-Purpos Parallel
Symbolic and Algebraic Computation. In ISSAC’90 Int. Symp. on Sym-
bolic and Algebraic Computation, pages 96-103, Tokyo, Japan, August
20-24, 1990. ACM Press.

Bruce Char and Jeremy Johnson. Some Ezperiments with Parallel
BigNum Arithmetic. In M. Hitz and E. Kaltofen, editor, PASCO’97 —
Second International Symposium on Parallel Symbolic Computation,
pages 94-103, Maui, Hawaii, July 20-22, 1997. ACM Press, New York.

A. Clematis and V. Gianuzzi. CPVM — Euxtending PVM for Consis-
tent Checkpointing. In 4th Euromicro Workshop on Parallel and Dis-
tributed Processing (PDP’96), pages 67-76, Braga, Portugal, January
24-26, 1996. IEEE CS Press.

BIBLIOGRAPHY 103

18]

[19]

[20]

[21]

22]

[23]

[24]

[25]

[26]

[27]

28]

A. Diaz, E. Kaltofen, K. Schmitz, and T. Valente. DSC — A System
for Distributed Computation. In M. WWatt, editor, Proceedings of IS-
SAC’91, pages 324-333. ACM Press, 1991.

Angel Diaz and Erich Kaltofen. FoxBox: A System for Manipulating
Symbolic Objects in Black Box Representation. In O. Gloor, editor, IS-
SAC’98 International Symposium on Symbolic and Algebraic Compu-
tation. ACM Press, New York, 1998.

J. Della Dora and J. Fitch, editors. Computer Algebra and Parallism.
Academic Press, London, UK, 1989.

G. E. Fagg and J. J. Dongarra. FT-MPI: Fault Tolerant MPI, Support-
g Dynamic Applications in a Dynamic World. In Recent Advances in
Parallel Virtual Machine and Message Passing Interface, Proceedings
of the 7th European PVM/MPI Users’ Group Meeting, volume 1908
of Lecture Notes in Computer Science, pages 346-353, Balatonfiired,
Hungary, September 10-13, 2000. Springer, Berlin.

Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impos-
sibility of distributed consenssus with one faulty process. Journal of the
ACM, 32(2):374-382, April 1985.

I. Foster, C. Kesselman. The Grid: Blueprint for a New Computing In-
frastructure. Morgan Kaufmann Publishers, 1999.

I. Foster, C. Kesselman. The Globus Toolkit. In The Grid: Blueprint for
a New Computing Infrastructure. Morgan Kaufmann Publishers, 1999.
pp- 259-278.

Hector Garcia-Molina. FElections wn a distributed computing system.
IEEE Transactions on Computers, C-31(1):47-59, January 1982.

Thierry Gautier, Hoon Hong, Jean-Louis Roch, and Wolfgang Schreiner.
Parallel Implementation. In V. Weispfennig, J. Grabmeier, E. Kaltofen,
editor, Handbook of Computer Algebra — Foundations, Applications,
Systems, chapter 2.16. Springer, Heidelberg, 2002.

A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, V. Sunderam.
PVM: Parallel Virtual Machine — A User’s Guide and Tutorial for
Network Parallel Computing. MIT Press, Cambridge, MA, 1994.

V. Gianuzzi and F. Merani. Using PVM to Implement a Distributed
Dependable Stmulation System. In 3rd Euromicro Workshop on Parallel

104

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

BIBLIOGRAPHY

and Distributed Processing (PDP’95), pages 529-535, San Remo, Italy,
January 25-27, 1995. IEEE Computer Society Press.

Markus Hitz and Erich Kaltofen, editors. PASCO’97 — Second Inter-
national Symposium on Parallel Symbolic Computation, Maui, Hawaii,
July 20-22, 1997. ACM Press, New York.

Hoon Hong, editor. PASCO’94 — First International Symposium on
Parallel Symbolic Computation, Hagenberg/Linz, Austria, September
26-28, 1994. World Scientific Publishing, Singapore.

Hoon Hong, Andreas Neubacher, and Wolfgang Schreiner. The Design
of the SACLIB/PACLIB Kernels. Journal of Symbolic Computation,
19:111-132, 1995.

A. Tamnitchi and I. Foster. A Problem Specific Fault Tolerance Mecha-
nism for Asynchronous, Distributed Systems. In 29th International Con-
ference on Parallel Processing (ICPP), Toronto, Canada, August 21-24,
2000. Ohio State University.

R. Jagannathan and E. A. Ashcroft. Fault Tolerance in Parallel Imple-
mentations of Functional Languages. In 21st International Symposium
on Fault-Tolerant Computing, pages 256263, Montreal, Canada, June
1991. IEEE CS Press.

Pankaj Jalote. Fault-Tolerance in Distributed Systems. Prentice Hall,
Englewood Cliffs, NJ, 1994.

M.F. Kaashoek and A.S. Tanenbaum. Group communication in the
Amoeba distributed operating system. In Proc. IEEE 11th International
Conference on Distributed Computing Systems (ICDCS), pages 222
230. IEEE Computer Society Press, 1991.

James Arthur Kohl and Philip M. Papadopoulos. Efficient and Flexi-
ble Fault Tolerance and Migration of Scientific Simulations Using CU-
MULVS. Symposium on Parallel and Distributed Tools, Welches, Ore-
gon, United States. Pages: 6071, 1998.

Jozsef Kovacs, Péter Kacsuk. Server Based Migration of Parallel Appli-
cations. In Distributed and Parallel Systems — Cluster and Grid Comput-
ing, DAPSYS’2002, 4th Austrian Hungarian Workshop on Distributed
and Parallel Systems, pages 30-37, Linz, Austria, September 29 — Oc-
tober 02, 2002. Kluwer Academic Publishers,Boston.

BIBLIOGRAPHY 105

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

V. Kumar, A. Y. Grama, V. N. Rao. Scalable Load Balancing Techniques
for Parallel Computers. Journal of Parallel and Distributed Computing,
1994.

Wolfgang Kiichlin. PARSAC-2: A Parallel SAC-2 based on Threads. In
AAECC-8: 8th International Conference on Applied Algebra, Algebraic
Algorithms, and Error-Correcting Codes, volume 50 of Lecture Notes in
Computer Science, pages 341-353, Tokyo, Japan, August 1990. Springer,
Berlin.

Juan Leon, Allan L. Fisher, and Peter Alfons Steenkiste. Fail-safe PVM:
a Portable Package for Distributed Programming with Transparent Re-
covery. Technical Report CMU-CS-93-124, School of Computer Science,
Carnegie Mellon University, Pittsburgh, Pennsylvania, February 1993.

Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers,
Inc. San Francisco, California, 1996.

Manish Marwah, Shivakant Mishra, and Christof Fetzer. TCP Server
Fault Tolerance Using Connection Migration to a Backup Server. Ap-
peared in Proc. of IEEE Int. Conf. on Dependable Systems and Networks
(DSN 2003), San Francisco, CA, June 22-25, 2003.

T. Metzner, M. Radimersky, A. Sorgatz, and S. Wehmeier. User’s Guide
to Macro Parallelism in MuPAD 1.4.1.. Teubner. Stuttgart, Germany,
1999.

M. Migliardi, V. Sunderam, A. Geist, and J. Dongarra. Dynamic Recon-
figuration and Virtual Machine Management in the Harness Metacom-
puting System. In Computing in Object-Oriented Parallel Environments
— Second International Symposium (ISCOPE 98), volume 1505 of Lec-
ture Notes in Computer Science, pages 127-134, Santa Fe, New Mexico,
December 8-11, 1998. Springer.

Michael Munk and Franz Winkler. CASA — A System for Computer
Auded Constructive Algebraic Geometry. In J. Calmet and C. Limongelli,
editors, DISCO’96 — International Symposium on the Design and Im-
plementation of Symbolic Computation Systems, volume 1128 of LNCS,
pages 297-307, Karsruhe, Germany, 1996. Springer, Berlin.

Taesoon Park and Heon Y. Yeom. Application Controlled Checkpointing
Coordination for Fault-Tolerant Distributed Computing Systems. Paral-
lel Computing, 24(4):467-482, March 2000.

106

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

BIBLIOGRAPHY

Cleopatra Pau and Wolfgang Schreiner. Distributed Mathematica —
User and Reference Manual. Technical Report 00-25, RISC-Linz, Jo-
hannes Kepler University, Linz, Austria, July 2000.

Dana Petcu. PVMaple, a Distributed Approach to Cooperative Work
of Maple Processes. In Recent Advances in Parallel Virtual Machine
and Message Passing Interface, 7th European PVM/MPI User’s Group
Meeting, volume 1908 of Lecture Notes in Computer Science, pages 216—
224, Balatonfiired, Lake Balaton, Hungary, September 10-13, 2000.

D. Petcu, D. Dubu, M. Paprzycki. Towards a Grid-Aware Computer Al-
gebra System. LNCS 3038, eds. M. Bubak, J. Dongarra, Springer (2004),
499-502.

D. Petcu, D. Dubu, M. Paprzycki. Fxtending Maple to the Grid. Design
and Implementation. Submitted to ISPDC’2004, Cork, Ireland, July 5—
7, 2004.

P-GRADE environment: http://www.lpds.sztaki.hu/projects/pgrade.

James S. Plank, Youngbae Kim, and Jack Dongarra. Algorithm-Based
Diskless Checkpointing for Fault Tolerant Matriz Operations. In 25th
International Symposium on Fault-Tolerant Computing, Pasadena, Cal-
ifornia, June 1995. IEEE Computer Society Press.

B. Randell, P. Lee, and P. Treleaven. Reliability issues in computing
system design. ACM Computing Surveys, 10(2):123-166, Jun 1978.

Jean Louis Roch and Gilles Villard. Parallel Computer Alge-
bra. Lecture Notes for a Tutorial, ISSAC’97, Hawaii, July 1997.
http://www.apache.imag.fr/~jlroch /ps/97-issac.ps.gz.

Samuel H. Russ, Jonathan Robinson, Brian K. Flachs, and Bjorn Heckel.
The Hector Distributed Run-Time Environment. IEEE Transactions on
Parallel and Distributed Systems, 9(11):1104-1112, November 1998.

Fred B. Schneider. Implementing Fault-Tolerant Services Using State
Machine Approach. ACM Computing Surveys, 22(4):299-319, December
1990.

Wolfgang Schreiner. A Para-Functional Programming Interface for a
Parallel Computer Algebra Package. Journal of Symbolic Computation,
21(4-6):593-614, 1996.

BIBLIOGRAPHY 107

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

Wolfgang Schreiner. Distributed Maple — User and Reference Manual.
Technical Report 98-05, RISC-Linz, Johannes Kepler University, Linz,
May 1998. http://www.risc.uni-linz.ac.at/software/distmaple.

Wolfgang Schreiner. Developing a Distributed System for Algebraic Ge-
ometry. In Barry H.V. Topping, editor, EURO-CM-PAR’99 Third Euro-
conference on Parallel and Distributed Computing for Computational
Mechanics, pages 137-146, Weimar, Germany, March 20-25, 1999. Civil-
Comp Press, Edinburgh.

Wolfgang Schreiner. Analyzing the Performance of Distributed Maple.
Technical Report 00-32, Research Institute for Symbolic Computa-
tion (RISC-Linz), Johannes Kepler University, Linz, Austria, November
2000.

Wolfgang Schreiner, Cristian Mittermaier, and Franz Winkler. Analyzing
Algebraic Curves by Cluster Computing. In Peter Kacsuk and Gabriele
Kotsis, editors, DAPSYS’2000, 3rd Austrian-Hungarian Workshop on
Distributed and Parallel Systems, pages 179-188, Balatonfiired, Lake
Balaton, Hungary September 10-13, 2000. Kluwer Academic Publishers.

Wolfgang Schreiner, Cristian Mittermaier, and Franz Winkler. On
Solving a Problem in Algebraic Geometry by Cluster Computing. In
Arndt Bode, Thomas Ludwig, and Roland Wismiiller, editors, Euro-
Par 2000, European Conference on Parallel Computing, Lecture Notes
in Computer Science, Munich, Germany, August 29-September 1, 2000.
Springer, Berlin.

Wolfgang Schreiner. Manager- Worker Parallelism versus Dataflow in
a Distributed Computer Algebra System. PaCT’ 2001, Parallel Comput-
ing Technologies, Sixth International Conference, September 3-7, 2001,
Novosibirsk, Russia. Lecture Notes in Computer Science 2127, pp. 329—
343, Springer, Berlin.

Wolfgang Schreiner, Karoly Bésa, Gabor Kusper. Fault Tolerance for
Cluster Computing on Functional Tasks. Euro-Par 2001, 7th Interna-
tional Euro-Par Conference, Manchester, UK, August 28 — August 31,
2001. Lecture Notes in Computer Science, Springer, Berlin, 5 pages,
Springer-Verlag.

Wolfgang Schreiner, Kéroly Bésa, and Gabor Kusper. Introducing Fault
Tolerance to Distributed Maple. Technical Report 01-03, Research Insti-
tute For Symbolic Computation (RISC-Linz), Johannes Kepler Univer-
sity, Linz, Austria, January 2001.

108

[66]

[67]

[68]

[69]

[70]

[71]

[72]
73]

[74]

BIBLIOGRAPHY

Wolfgang Schreiner, Christian Mittermaier, Kéaroly Bésa. Distributed
Maple: Parallel Computer Algebra in Networked Environments. Journal
of Symbolic Computation, volume 35, number 3, pp. 305-347, Academic
Press, 2003.

Kurt Siegl. Parallelizing Algorithms for Symbolic Computation Using
|| MAPLE||. In Fourth ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, pages 179-186, San Diego, California,
May 19-22, 1993. ACM Press.

P. Stelling, C. Lee, 1. Foster, G. von Laszewski, and C. Kesselman. A
Fault Detection Service for Wide Area Distributed Computations. In Sev-
enth IEEE International Symposium on High Performance Distributed
Computing, July 28-31, Chicago, lllinois, 1998. IEEE Computer Society
Press.

Scott D. Stoller. Leader Election in Asynchronous Distributed Systems.
Appeared in IEEE Transactions on Computers, Vol. 49No. 3; March
2000, pp. 283-284.

S. Sultan, K. Srinivasan, D. Iyer, and L. Iftode. Migratory TCP: Connec-
tion mugration for service continuity over the internet. In Proceedings
of the 22th IEEE International Conference on Distributed Computing
Systems, Vienna, Austria, July 2002.

Dongming Wang. On the Parallelization of Characteristic-Set-Based Al-
gorithms. In H. P. Zima, editor, Parallel Computation — First Inter-
national ACPC Conference, volume 591 of Lecture Notes in Computer
Science, pages 338-349. Springer, Berlin, 1991.

Waterloo Maple. Maple 6, 2001. http://www.maplesoft.com

R. E. Zippel. Computer Algebra and Parallism. Lecture Notes in Com-
puter Science, Ithaca, USA, May 1990. Springer-Verlag.

H. Zou and F. Jahanian. Real-time primary-backup (RTPB) replication
with temporal consistency guarantees. In Proceedings of the 18th Inter-
national Conference on Distributed Computing Systems, 1998.

List of Figures

3.1
3.2
3.3

4.1
4.2
4.3
4.4
4.5
4.6
4.7

5.1

5.2

6.1
6.2
6.3

6.4

6.5

6.6

The User Interface of Distributed Maple 15
a.) System Model b.) Execution Model 17
a.) Scheduler Architecture on the Root b.) Scheduler Architecture on

Non-Root Nodes o v v v i i i i e e e e e 19
Logging task description and task result in Fast Mode 25
Recovery in Fast Mode o i i e 28
Scheduler Architecture on the Root in Fast Mode 29
Logging Task Description in Safe Mode 32
Scheduler Architecture on the Root in Safe Mode 37
Handling of Spawned Tasks v o v v v .. 38
Task recovery by task identifier L. 40

a.) and b.): Message Acknowledging c.)and d.): Resending of not Ac-

knowledged Messages after Reconnection 45
Handling of Peer Connection Failure 50
Tolerating Non-Root Node Failures 60
a.) Task Scheduling b.) Result Logging c¢.) Rescheduling 63

a.) A node becomes unreachable to the root. b.) The root restarts the
node with new identifier. If the unreachable node still alive, it eventually
@bOTES. e e e e e e e e e e e e e 65
a.) The root crashes. b.) The connections between the root and some
non-shadow nodes break c.) The network is split. The root is connected
to at least n/2 pieces of non-root nodes. d.) The network is split. The
shadow node is connected to at least n/2 pieces of non-root nodes. 69
The generalized root election method on node k where n is the initial
number of the non_root nodes. R is a set which consists of the identifiers

of those nodes that sent root_lost message to k. |R| signs the size of R. . 72

Root election with two competitor shadow root nodes. 79

109

110

6.7

7.1
7.2

8.1
8.2

LIST OF FIGURES

Rescheduling after Root Failure: a.) Restoring all task identifiers logged
in a session b.) Removing the identifiers of those tasks which are either

already computed or still under processing. ¢.) Reschedule the remainders. 81

The user is informed about fault tolerance activities 86
Execution Model for the Example in Section 7.3 92
Assessment of Distributed Maple Fault Tolerance 96

Comparison of Fault Tolerance in Distributed Maple and P-
GRADE Checkpointing L. 97

Index

active backup server, 10
Byzantine failures, 22

CASA, 13
checkpointing, 8, 23, 57, 96
commands
dist[all], 16
dist[clear], 16
dist[data], 16
dist[get], 16
dist[initialize], 14, 15
dist[logging], 28, 36, 85
dist[main], 88
dist[process|, 16, 35
dist[put], 16
dist[select], 16
dist[shadow], 88
dist[start], 14, 16
dist[terminate], 14, 15
dist[visualize], 16
dist[wait], 14, 16
Communication failures, 22
Consensus, 7

dead node, 59
dist.maple, 17

files
descr.taskld, 27, 29, 40
dist.maple, 14
dist.systems, 14, 18, 20
link.taskld, 36, 40
logging directory, 27, 28, 37
result.taskld, 27, 29, 40

111

sessionid, 36
taskid.hashCode, 27, 28
first order tasks, 24
FLP impossibility results, 7
FoxBox, 6
functional model, 17

higher-order tasks, 24, 30
Invitation Algorithm, 10, 57
kernel, 17

leader election, 10, 57, 68
load balancing, 20
Logging, 23
Fast Mode, 24, 25
Safe Mode, 24, 30

Maple2g, 6

maxload, 20

Message Acknowledging, 44

messages
ack message, 36, 38
all message, 18, 68
brokenpeer message, 52, 55
check_root message, 74, 77
data message, 21
dead message, 62, 63, 82
new_root message, 75, 80
okay message, 47, 48
outclose message, 52, 62
ping message, 20, 47
put message, 21, 41
reconnection message, 47, 48

112

reply message, 18
request message, 18, 39
result message, 18, 39
root_lost message, 75, 77
scheduled_tasks message, 75, 82
shadow message, 74, 76
stable message, 27, 28, 37, 68
start message, 67
store message, 27, 30, 63, 83
task message, 17, 29, 38, 62
wait message, 18, 21, 39, 42
minload, 20
muPad, 6

nodes, 17

P-GRADE, 96

Parallel Maple, 5

peer connections, 19
primary backup systems, 9
PVMaple, 6

Reconnecting, 44

replication, 8

Restarting after Node Failures, 64
Insert Operation, 67, 83
Remove Operation, 68

root, 17

scheduler, 17, 18
session identifier, 35
speed, 20

Stop failures, 22
Sugarbush, 5

task identifier, 18, 35

threads
connect thread, 19, 48, 53
input thread, 19
output thread, 19
restarter thread, 66
server thread, 19

INDEX

watchdog thread, 19, 48, 54, 63
Tolerating Non-Root Node Failures,
58
Tolerating Peer Connection Failures,
49
Closing_Peer Operation, 54
Tolerating Root Failures, 68
transaction, 8
transport-level fault tolerance, 9

unreliable failure detector, 7
visualization, 16

watchdog, 20, 48, 54, 63
Root_lost Mode, 77
Shadow_root Mode, 78

Curriculum Vitae 113

CURRICULUM VITAE

KArROLY B6sa

Research Institute for Symbolic Computation (RISC)
Johaness Kepler University, Linz, Austria

Tel: +43 (0)732 2468 9984 Fax: +43 (0)732 2468 9930
E-mail: kbosa@risc.uni-linz.ac.at
Homepage: http://www.risc.uni-linz.ac.at/people/kbosa

Personal Data

Family name: Bésa

First name: Karoly

Date of birth: 22nd December, 1975

Place of birth: Miskolc, Hungary

Citizenship: Hungarian

Private address: A-4232 Hauptstrasse 62., Hagenberg, Austria

Education

1999 — : Currently, I am a Ph.D. Student of Technical Sciences.
Research Institute for Symbolic Computation (RISC-Linz),
Johannes Kepler University, Linz, Austria.
Research topic: Parallel Computing and Fault Tolerance
Mechanisms.

1994 — 1999: M.Sc. in Computer Science.
University of Arts and Sciences "Kossuth Lajos” (KLTE),
Debrecen, Hungary.
Diploma Thesis: The MNEWS Information System.

1990 — 1994: High School ”Foldes Ferenc”, Miskolec, Hungary
I passed the final exam with excellent marks.

Research Interests

e Parallel and distributed computing

e GRID computing

Parallel functional programming

Fault Tolerance

Formal methods in computer science

114 CURRICULUM VITAE

Journal Publication

Kéroly Bésa, Wolfgang Schreiner.

Tolerating Stop Failures in Distributed Maple.

Parallel and Distributed Computing Practices, special issue on DAP-
SYS 2002, 15 pages, NovaPublishers, 2003 (to appear).

Wolfgang Schreiner, Christian Mittermaier, Kéroly Boésa.
Distributed Maple: Parallel Computer Algebra in Networked
Environments.

Journal of Symbolic Computation, volume 45, number 3, pp. 305-347,
Academic Press., 2003.

Refereed Publications

Kéroly Bésa, Wolfgang Schreiner.

Tolerating Stop Failures in Distributed Maple.

DAPSYS 2002, 4th Austrian-Hungarian Workshop on Distributed and
Parallel Processing, Linz, Austria, September 29-October 2, 2002, Kluwer
Academic Publishers, Boston, 8 pages.

Wolfgang Schreiner, Karoly Bésa, Gabor Kusper.

Fault Tolerance for Cluster Computing Based on Functional
Tasks.

Euro-Par 2001, European Conference on Parallel Computing, Manch-
ester, UK, August 28 - August 31, 2001. Lecture Notes in Computer
Science, Springer, Berlin, 5 pages, Springer-Verlag.

Technical Reports

Kéroly Bésa, Wolfgang Schreiner.

Task Logging, Rescheduling, and Peer Checking in Distributed
Maple.

Technical Report, RISC-Linz, Johannes Kepler University, Linz, Aus-
tria, March 2002.

Wolfgang Schreiner, Karoly Bésa, Gabor Kusper.

Introducing Fault Tolerance to Distributed Maple.

Technical Report 01-03, RISC-Linz, Johannes Kepler University, Linz,
Austria, January 2001.

Curriculum Vitae 115

Professional Specifications

e [have 6 years experience in Object Oriented Technology and Java
programming.

e For my Ph.D. thesis, I developed Java software. (Fault Tolerance
for Distributed Maple).

e For seven months, I have participated in the development of the
Panasonic mobile phone X60 at the COMNEON GmbH. In this

project, I worked with C++.

e For my diploma work, I also developed Java software. (The MNEWS
Information System).

More:
Operating systems: DOS, Windows (98/NT/2000), UNIX(Linux)
Programming languages: Pascal, C/C++, Java, and Assembler
Database handlers: Oracle(SQL), MS Access
Others: HTML, XML, TEX, and Perl

Other Professional Experience

September 2003 - March 2004: Working at COMNEON GmbH.
and participating in the development of Panasonic mobile phone X60.
Topic: Member of a group whose task was the integration of Teleca’s
WAP/MMS application into the Cell Phone Operating System APOXI.

November 2001 - May 2002: Member of the System Administration
Group of RISC-Linz.

Topic: Installation and maintains of Windows and Linux systems. Con-
figuration and testing new softwares (VMware, Xfree86-4, port scan-
ners, etc.).

March 2001-June 2001: Scholarship of Foundation Action Austrian-
Hungarian.

Since October 1999, I am a Ph.D. student at RISC-Linz in Austria.

September 1998-December 1998: OMFB project and TDK (Scien-
tific Student Forum) work.
Topic: Development of network applications in Java (client-server sys-
tems managing databases). Special Award, Hungarian Scientific Stu-
dent Forum (OTDK) 1999.

July 1998: Summer practice at Mol Rt., Budapest.

116

CURRICULUM VITAE

Topic: Network organization, network maintenance, network adminis-
tration: Windows NT, ORACLE.

October 1997-February 1998: University-GH Paderborn with Tem-
pus scholarship (Germany).
Topic: Problems of modulo arithmetics.

May 1997-July 1997: University-GH Paderborn with Tempus schol-
arship (Germany).
Topic: Problems of modulo arithmetics and Java programming.

1996-1999: Teaching at the Institute of Mathematics and Informatics,
KLTE (University of Arts and Sciences ”Kossuth Lajos”).

Topic: General Informatics, Programming languages, Database han-
dling.

February 1996: Participation on the Hungarian Programming Cham-
pionship, Miskolc, Hungary.

Languages

Hungarian: native
English: good
German: beginner

